示波器测信号的周期和频率实验报告

示波器测信号的周期和频率实验报告
示波器测信号的周期和频率实验报告

示波器的使用

1、了解通用双通道示波器的结构和工作原理,熟悉各个旋钮的作用和使用方法。

2、掌握用示波器观察波形、测量电压和频率的方法;了解用示波器测量相位差的

方法。

3、掌握观察李萨如图形的方法,并能用李萨如图形测量未知正弦信号的频率;能

用示波器观察“拍”现象。

1、通用双通道示波器的结构,面板旋钮的作用和使用方法;

2、通用双通道示波器的工作原理,李萨如图形测量未知正弦信号频率的原理,观

察“拍”现象的原理。

一、前言

示波器是利用电子束的电偏转来观察电压波形的一种常用电子仪器,主要用于观

察电信号随时间变化的波形,定量测量波形的幅度、周期、频率、相位等参数。

一般的电学量(如电流、电功率、阻抗等)和可转化为电学量的非电学量(如温

度、位移、速度、压力、光强、磁场、频率)以及它们随时间变化的规律都可以用示

波器来观测。由于电子的惯性很小,电子射线示波器一般可在很高的频率范围内工作。

采用高增益放大器的示波器可以观察微弱的信号;具有多通道的示波器,则可以

同时观察几个信号,并比较它们之间的相应关系(如时间差或相位差),是目前科学

实验、科研生产常用的电子仪器。

二、实验仪器

通用双通道示波器,函数信号发生器、同轴电缆等。

三、实验原理

1、仪器工作原理

(1)通用双通道示波器的介绍

主要结构:示波管、电子放大系统、扫描触发系统、电源

工作原理: (a )示波管

示波管是呈喇叭形的玻璃泡,被抽成高真空,内部装有电子枪和两对相互垂直的偏转板,喇叭口的球面内壁上涂有荧光物质,构成荧光屏。下图是示波管的构造图。

电子枪由灯丝F 、阴极K 、栅极G 以及一组阳极A 所组成。灯丝通电后炽热,使阴极发热而发射电子。由于阳极电位高于阴极,所以电子被阳极电压加速。当高速电子撞击在荧光屏上会使荧光物质发光,在屏上就能看到一个亮点。改变阳极组电位分布,可以使不同发射方向的电子恰好会聚在荧光屏某一点上,这种调节称为聚焦。栅极G 电位较阴极K 为低,改变G 电位的高低,可以控制电子枪发射电子流的密度,甚至完全不使电子通过,这称为辉度调节,实际上就是调节荧光屏上亮点的亮暗。

Y 偏转板是水平放置的两块电极。当Y 偏转板上电压为零时,电子束正好射在荧光屏正中P 点。如果Y 偏转板加上电压,则电子束受到电场力作用,运动方向发生上下偏移。如果所加的电压不断发生变化,P 点的位置也随着在铅垂线上移动。在屏上看到的是一条铅直的亮线。荧光屏上亮点在铅直方向位移Y 和加在Y 偏转板的电压U Y 成正比。

X 偏转板是垂直放置的两块电极。在X 偏转板加上一个变化的电压,那么,荧光屏上亮点在水平方向的位移X 也与加在X 偏转板的电压U X 成正比,于是在屏上看到

Y 输入

X 输入 外触发

的则是一条水平的亮线。

(b )示波器显示波形的原理

如果在Y 偏转板上加上一个随时间作正弦变化的电压t U U YM Y ωsin =,我们在荧光屏上仅看到一条铅直的亮线,而看不到正弦曲线。只有同时在X 偏转板上加上一个与时间成正比的锯齿形电压t U U XM x ?=,才能在荧光屏上显示出信号电压U Y 和时间t 关系曲线,其原理如下图所示。

设在开始时刻a ,电压U Y 和U X 均为零,荧光屏上亮点在A 处,时间由a 到b ,在只有电压U Y 作用时,亮点沿铅直方向的位移为AB Y ,屏上亮点在B Y 处,而在同时加入U X 后,电子束既受U Y 作用向上偏转,同时又受U X 作用向右偏转(亮点水平位移为bB X ),因而亮点不在B Y 处,而在B 处。随着时间的推移,以此类推,便可显示出正弦波形来。所以,在荧光屏上看到的正弦曲线实际上是两个相互垂直的运动(t U U YM Y ωsin =和t U U xm x ?=)合成的轨迹。

由上可见,要想观测加在Y 偏转板上电压U Y 的变化规律,必须在X 偏转板上加上锯齿形电压,把U Y 产生的垂直亮线“展开”。这个展开过程称为“扫描”,锯齿形电压又称为扫描电压。

上面讨论的波形因为U Y 和U X 的周期相同,荧光屏上显示出一个正弦波形,若频率,1,2,3......y x f Nf N ==则荧光屏上将出现一个,两个,三个……稳定的正弦波形。只有当y f 为x f 的整数倍时,正弦波形才能在荧光屏上稳定。为了在荧光屏上得到稳定不动的信号波形,一般采用被测信号来控制扫描电压的产生时刻,称为触发扫描。只要被测信号达到某一个定值时,扫描电路才开始工作,产生一个锯齿波,将被测信号显示出来。由于每次被测信号触发扫描电路工作的情况都是一样的,所以显示的波形也相同。这样,在荧光屏上看到的波形就稳定不动了。

面板旋纽的作用:见双通道示波器使用说明书(略) (2)函数信号发生器简介

输出信号的频率范围和电压范围:见函数信号发生器使用说明书(略) 面板旋纽的作用:见函数信号发生器说明书(略)

2.测量原理

1) 测量信号的电压和周期

用示波器测量信号的电压,一般是测量其峰—峰值U pp ,即信号的波峰到波谷之间的电压值。在选择适当的通道偏转因数和扫描时基因数后,只要从屏上读出峰—峰值对应的垂直距离Y (div)和一个周期对应的水平距离X (div),即可求出信号的电压和周期。

偏转因数?=Y U pp (1)

扫描时基因数?=X T (2)

正弦信号的有效值U eff 和峰—峰值U pp 的关系为

pp eff U U 2

21=

(3)

有时,被测信号电压比较高,必须经过衰减后才能输入示波器的Y 通道。衰减倍数用分贝数表示,

其定义为0

10

dB 20log U U

= (4) 式中,U 0为未衰减时的信号电压值,U 为示波器测得的衰减后的电压值。根据衰减的分贝数和示波器测得的值U ,就可得到被测信号的电压值。

2) 观察李萨如图形,测信号频率 设两个互相垂直的振动为

)2cos(111?π+=t f A x )2cos(222?π+=t f A y

式中,1f 、2f 为两振动的频率,1?、2?为两振动的初相。当12f f =时合成振动的轨迹方程为

)(sin )cos(2122

12212

2

2212????-=--+A A xy A y A x (5) (5)式是一个椭圆方程。当210??-=或π±时,椭圆退化为一条直线;当212??π-=±时,合成轨迹为一正椭圆。

当f 1≠f 2时,合成振动的轨迹比较复杂,但当f 1与f 2成简单的整数比时,合成振动的轨迹为封闭的稳定几何图形,这些图形称为李萨如图形,如下图所示。

:x y n n

1:1 1:2 1:3 2:3 3:4 李萨如图形

x n

1 1 1

2

3 y n

1

2

3

3

4

从图形中,人们总结出如下规律:如果作一个限制光点在x ,y 方向运动的假想矩形框,则图形与此矩形框相切时,竖边上的切点数n y 与横边上的切点数n x 之比恰好等于两振动的频率之比,即

::x y y x f f n n =或y y x x f n f n = (6) 因此,若已知其中一个信号的频率,从李萨如图形上数得切点数n x 和n y ,就可以求出另一待测信号的频率。

3) 观察“拍”现象

两个同方向的谐振动合成时,若其频率1f 与2f 的差值远小于1f 、2f ,合成振动的振幅随时间缓慢的呈周期性变化,这种现象称为“拍”。

设两个同方向的简谐振动为

)2cos(1111?π+=t f A y )2cos(2222?π+=t f A y

选某一时刻两振动相位相同时作为计时起点,则21???==,若两振动的振幅也相同(21A A A ==),则合成振动可以表示为

])(cos[])(cos[2121221?ππ++-=+=t f f t f f A y y y

当f 1与f 2的差值远小于f 1、f 2时,合成振动的振幅()212cos A f f t π-????随时间缓慢地呈周期性变化,这种现象称为拍,振幅变化的频率叫拍频

123f f f -= (7) 下图所示为拍的形成的示意图,其中,t =0时,y 1与y 2的相位差为π。如果信号频率f 1已知且连续可调,则通过改变f 1观察拍频的变化,可以判断出待测信号频率f 2是大于f 1还是小于f 1,然后根据测得的拍频f 3和(7)式就可求出待测信号的频率。

四、实验内容与步骤

1、使用练习

(1)开机准备:了解示波器面板上各功能键的作用,并把各个旋钮调到居中。 (2)打开电源开关,电源指示灯亮,稍等预热,屏上出现亮点。分别调节亮度和聚焦旋钮,使光点亮度适中、清晰。

2、观察交流信号波形并画出波形图

打开信号发生器电源开关,将其输出接CH1。调节信号发生器频率为1kHz ,输出电压为4.0V ,输出衰减置20dB ,CH1通道偏转因数旋钮调为0.2V/格,扫描速率旋钮调为0.5ms/格,观察示波器上的波形;若波形不稳定,调节电平旋钮使之稳定;将扫描速率旋钮改为0.2ms/格,再观察示波器上的波形;画出观察到的波形图。

3、正弦信号电压与周期测量

按观察交流信号波形的输出信号频率和电压调好信号发生器,CH1通道偏转因数置为50mV/格,选择合适的扫描速率值,使屏上刻度范围内出现完整波形,将实验数据记录入下表:

4、观察李萨如图形,测量信号的频率

(1)将待测信号输入CH1通道,使示波器显示出信号波形,并估算其频率大致值。 (2)将标准已知频率信号输入CH2通道,扫描速率旋钮置X-Y (逆时针到底),调节信号幅度或改变通道偏转因数,使图形不超出荧光屏视场。

(3)根据待测信号频率的粗测值,调节CH2通道信号的频率,使示波器屏上分别出现y x x y n n f f :: =1:1、1:2、2:3、3:4的李萨如图形。描下李萨如图形,并在下表中记下相应的CH2通道信号的频率值y f 。

5、观察“拍”现象(选做)

(1)将待测信号输入CH1通道,垂直方式选CH1,选择适当的偏转因数和扫描速率,使屏上出现合适的稳定的正弦波图形估算信号的大致频率。

(2)将可调标准信号源信号输入CH2通道,垂直方式选CH2,调节信号源,使其输出信号的频率和幅度与待测信号的大致相同。

(3)垂直方式选ADD ,通道2极性选NORM ,扫描速率调到合适值。调可调标准信号源信号频率,使屏上出现稳定的“拍”波形。记下此时一个“拍”波形的长度X 1、标准信号源频率f 1和扫描速率值。缓慢改变标准信号源频率,得到另一稳定的“拍”波形,记下此时一个“拍”波形的长度X 2、标准信号源频率2f 和扫描速率值。

6、关闭电源,整理仪器。

五、数据表格及数据处理

1、正弦信号电压与周期测量数据表

表1 正弦信号电压与周期测量数据记录表

信号发生器示波器

频率(Hz)电压示数(V)偏转因数(V/格) Y(格) 扫描速率(s/格)X(格)

z

2、用李萨如图形测正弦信号频率

表2 用李萨如图形测量正弦信号频率数据记录表n n1:1 1:2 2:3 3:4

:

x y

李萨如图形

n

x

n

y

f Hz(待测)

()

x

f Hz

()

y

3、用“拍”现象测正弦信号的频率

表3 用“拍”现象测正弦信号的频率

标准信号频率(H z)扫描速率(ms/格) 拍长度X(格)

1

2

六、注意事项

1.双通道示波器使用说明书和函数信号发生器使用说明书在实验桌上资料夹内;

2.测信号电压时,一定要将电压衰减旋纽的微调顺时针旋足(校正位置);测信号周期时,一定要将扫描速率旋纽的微调顺时针旋足(校正位置);

3.不要频繁开关机,示波器上光点的亮度不可调得太强,也不能让亮点长时间停在荧光屏的一点上,如果暂时不用,把辉度降到最低即可。

4.动旋钮和按键时必是有的放矢,不要将开关和旋钮强行旋转、死拉硬拧,以免损坏按键、旋钮和示波器,电缆与插座的配合方式类似于挂口灯泡与灯座的配合方式,切忌生拉硬拽。。

5.示波器的标尺刻度盘与荧光屏不在同一平面上,之间有一定距离,读数时要尽量减小视差。

6.电压表指示的电压值是正弦信号的有效值U eff,它与峰峰值U pp之间的关系为

U 。

pp eff

充放电实验

实验报告 专业:实验日期: 2016.5.16 班级:授课教师: 学号:指导教师: 姓名:成绩评定: 实验2 电容与电感的充放电实验 一、实验目的 1.熟悉电感与电容的充放电过程,掌握充放电过程中电流、电压的计算公式; 2.明确时间常数τ对电感与电容充放电时间的影响; 3.掌握信号发生器与示波器的使用方法; 4.学习分析充放电过程中电压、电流波形的变化规律,比较当τ改变时对波形的影响。 二、实验电路 将一个0.22μF 的电容器、一个4.7kΩ的电阻与函数发生器按图1(a)实验电 路联接。设定函数发生器,使其输出6V/100Hz,占空比为50%的方波。输出6V时模 拟电容器充电; 输出OV时,模拟电容器放电。联接示波器,接通函数发生器的电源 开关,用A通道观察方波,用B通道观察电容器上的电压。 U=6V f=100Hz 方波 A 示波器 Y1 Y2 图1(a) 将一个100mH的电感与一个1 kΩ的电阻串联,然后联接到电压为6V 、频率为1 kHz 的方波上,如图1(b)所示。用示波器观察电感上电压的变化规律。

. U=6V f=1KHz 方波 A B C 示波器 Y1 Y2 图1(b) 三、实验设备 1.Multisim电路仿真软件(机房上机运行); 2.函数发生器、电阻、电容、电感; 3.示波器。 四、电路联接 通过实验1的学习在掌握Multisim电路仿真软件放置电源、电阻、开关等原件,以及连线的基础上,学习函数发生器、示波器的使用方法。 1.函数发生器 函数发生器位于仿真菜单下的仪器选项中,可以产生不同频率、占空比、振幅、以及偏置的正弦波、三角波、方波。 2.示波器 示波器的位置与函数发生器相同。利用示波器能观察各种 不同信号幅度随时间变化的波形曲线,还可以用它测试各种 不同的电量,如电压、电流、频率、相位差、调幅度等等。 五、仿真测试 1.电容的充放电实验 按照图1(a)在Multisim电路仿真软件中连接电路,并进行仿真。 将上述电路中的4.7kΩ固定电阻换成10kΩ的电阻,观察充放电曲线的变化。 实验结论: 将电阻值固定为4.7kΩ,将电容器换成10μF,观察充放电曲线的变化。

示波器的使用实验报告

示波器的使用实验报告 示波器的使用实验报告1 在数字电路实验中,需要使用若干仪器、仪表观察实验现象和结果。常用的电子测量仪器有万用表、逻辑笔、普通示波器、存储示波器、逻辑分析仪等。万用表和逻辑笔使用方法比较简单,而逻辑分析仪和存储示波器目前在数字电路教学实验中应用还不十分普遍。示波器是一种使用非常广泛,且使用相对复杂的仪器。本章从使用的角度介绍一下示波器的原理和使用方法。 1 示波器工作原理 示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。 1.1 示波管 阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。 1.荧光屏 现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高

速电子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。 当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的10%所经过的时间叫做余辉时间。余辉时间短于10s为极短余辉,10s1ms为短余辉,1ms0.1s 为中余辉,0.1s-1s为长余辉,大于1s为极长余辉。一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。 由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。 2.电子枪及聚焦 电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。如果栅极电位过低,则全部电子返回阴极,即管子截止。调节电路中的W1电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的辉度。第一阳极、第二阳极和前加速极都是与阴极在同一条轴线上的三个金属圆筒。前加速极G2与A2相连,所加电位

用示波器测电容实验报告

用示波器测电容 摘要:电容在交流电路中电压发生了变化,相位也发生了变化,而通过示波器可以清楚的观察到这些变化,本实验利用示波器和电容的交流特性,通过实验得出谐振频率的特殊值进而通过公式计算,得出电容器的电容值大小。 关键词:电容RLC谐振频率阻抗相位差电流峰值 一、引言 电容是电容器的参数之一,对于解决生活及实验中的实际问题,有着很重要的作用,不同电容的电容器因所需不同而被应用在不同的地方,在实验中测电容器的电容,已成为大学物理实验中很重要的一个环节,在此实验中,我们用示波器测量电容的容量,该方法操作简单,且能加深我们对电容和电容性质的理解,巩固我们所学的知识。 二、实验任务利用示波器测量电容器的电容量C。 三、实验仪器 200欧姆电阻一个,10mH电感一个,信号发生器一台, 双踪示波器一台,面包板一个, 电容一个,导线若干。 四、实验原理 测RLC谐振频率 RLC串联电路如图1所示: 所加交流电压U(有效值)的角频率为w,则电路的的复阻抗 为: 复阻抗模为: 复阻抗的幅角: 即该电路电流滞后于总电压的位差值。回路中的电流I(有效值)为 上面三式中Z﹑﹑I均为频率f(或角频率,)的函数,当回路中其他元件参数取确定值的情况下,它们的特性完全取决于频率。 图2(a)(b)(c)分别为RLC串联电路的阻抗,相位差,电流随频率的变化曲线。

其中(b)图-f曲线称为相频特性曲线;(c)图i-f曲线称为幅频特性曲线。由曲线图 可以看出,存在一个特殊的频率特点为 (1)当f<时,<0,电流相位超前于电压,整个电路 呈电容性。 (2)当f>时,>0,电流相位滞后于电压,整个电路 呈电感性。 (3)当时,即或 时,=0,表明电路中电流I和电压 U同相位,整个电路呈纯电阻性。 这就是串联电路谐振现象,此时电路总阻抗的模最小,电流达到极大值,易知只要调节f﹑L﹑C中任意一个量,电路就能达到谐振。 根据LC谐振回路的谐振频率或可求得。 五、实验内容(或步骤) 1.电路连接如图1,其中L=10mH,R=,U=2V。 2.用万用电表测出待测电容。 3.调节信号发生器的频率同时观察两端电压变化,当调至某一频率时,电压最大,测得这个最大值及信号的周期(或频率)。 4.由这个最大值的周期(或频率)计算出电容的值。 六、数据处理和分析 测RLC谐振频率数据记录表 5.9 6.9 7.9 8.910.911.912.913.914.915.916.917.9 f (KHZ) 331362393412434442431421402390381372 (mv)

电路元件特性曲线的伏安测量法和示波器观测法实验报告

课程名称:电路与模拟电子技术实验指导老师:孙晖成绩:__________________ 实验名称:电路元件特性曲线的伏安测量法和示波器观测法实验类型:______ _同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1、熟悉电路元件的特性曲线 2、学习非线性电阻元件的特性曲线的伏安测量法 3、掌握伏安测量法中测量样点的选择和绘制曲线的方法 4、学习非线性电阻元件特性曲线的示波器观测方法 5、设计实验方案,用示波器观测电容的特性曲线。 二、实验内容和原理 1、在电路原理中,元件特性曲线是指特定平面上的定义的一条线,其函数关系式称为 元件的伏安特性曲线。电阻元件的伏安特性曲线是在U-I平面上的一条曲线,当曲 线为直线时,对应的元件是线性元件,斜率为电阻值。线性电阻的伏安特性曲线符 合欧姆定律,在U-I平面内是过原点的直线,与电压、电流无关;非线性元件在 U-I内是一条曲线。 2、普通警惕二极管的特点是正反向电阻差别很大,正向压降很小,正向电流随着正向 压降的上升而急骤上升,而反向电压从零一直增加到十几伏到几十伏时,其反向电 流增加很小,粗略地可视为零。可见,二极管具有单向导电性,如果反响电压加的 过高,超过管子的极限值,会导致管子击穿损坏。 3、稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但其反向 特性则与普通二极管不同。在反向电压开始增加时,其反向电流几乎为零,但当反 向电压增加到一定数值时(称为管子的稳压值)。电流将突然增加,以后它的端电压 将维持恒定,不再随外加的反向电压升高而增大。这两种二极管的特性属于单调型,电压与电流之间为单调函数。二极管的特性参数有开启电压U th、导通电压U on,反 向电流I R、反向击穿电压U Br以及最大整流电流I F。 三、主要仪器设备。 1、数字万用表; 2、电工综合实验台; 3、DG07多功能网络实验组件; 4、信号源;

大学物理实验示波器实验报告

示波器的使用 【实验简介】 示波器是用来显示被观测信号的波形的电子测量仪器,与其他测量仪器相比,示波器具有以下优点:能够显示出被测信号的波形;对被测系统的影响小;具有较高的灵敏度;动态范围大,过载能力强;容易组成综合测试仪器,从而扩大使用范围;可以描绘出任何两个周期量的函数关系曲线。从而把原来非常抽象的、看不见的电变化过程转换成在屏幕上看得见的真实图像。在电子测量与测试仪器中,示波器的使用范围非常广泛,它可以表征的所有参数,如电压、电流、时间、频率和相位差等。若配以适当的传感器,还可以对温度、压力、密度、距离、声、光、冲击等非电量进行测量。正确使用示波器是进行电子测量的前提。 第一台示波器由一只示波管,一个电源和一个简单的扫描电路组成。发展到今天已经由通用示波器到取样示波器、记忆示波器、数字示波器、逻辑示波器、智能化示波器等近十大系列,示波器广泛应用在工业、科研、国防等很多领域中。 Karl Ferdinand Braun 生平简介 1909年的诺贝尔物理奖得主Karl Ferdinand Braun 于1897年发明世界上 第一台阴极射线管示波器,至今许多德国人仍称CRT 为布朗管(Braun Tube)。 【实验目的】 1、 了解示波器的结构和工作原理,熟悉示波器和信号发生器的基本使用方法。 2、 学习用示波器观察电信号的波形和测量电压、周期及频率值。 3、 通过观察李沙如图形,学会一种测量正弦波信号频率的方法。 【实验仪器】 VD4322B 型双踪示波器、EM1643型信号发生器、连接线及小喇叭等 图8-1 Karl Ferdinand Braun 5 6 9 10

电工电子学实验报告常用电子仪器的使用

电工电子学实验报告04常用电子仪器的使用 实验报告课程名称:电工电子学实验指导老师:实验名称:常用电子仪器的使用一、实验目的1.了解常用电子仪器的主要技术指标、主要性能以及面板上各种旋钮的功能。2.掌握实验室常用电子仪器的使用方法。二、主要仪器设备1.XJ4318 型双踪示波器。2.DF2172B 型交流电压表。3.XJ1631 数字函数信号发生器。 4.HY3003D-3 型可调式直流稳压稳流电源。5.10kΩ 电阻和0.01μ F 电容各一个。三、实验内容1.用示波器检测机内“校正信号”波形首先将示波器的“显示方式开关(VERTCAL MODE)”置于单踪显示,即Y 1 (CH1)或Y 2 (CH2),“触发方式开关(TRIGGER)”置于“自动(AUTO)”即自激状态。开启电源开关后,调节“辉度(INTEN)”、“聚焦(FOCUS)”“辅助聚焦”等旋钮,使荧光屏上显示一条细而且亮度适中的扫描基线。将示波器的“校正信号”引入上面选定的Y 通道(CH1 或CH2),将Y 轴“输入耦合方式开关” 置于“AC”或“DC”,调节X 轴“扫描速率选择开关”(t/div 或t/cm)和Y 轴“轴入灵敏度开关(V/div 或 V/cm)”,并且将各自的“微调”旋钮置于校正位置,使示波器显示屏上显示出约两个周期,垂直方向约4~8div(cm)的校正信号波形。从示波器显示屏的坐标刻度上读得X 轴(水平)方向和Y 轴(与X 轴垂直)方向的原始数据(即从示波器刻度上读取的刻度数值和所选的刻度单位值),填入表4-1,并计算出对应的实测值。校正信号标称值示波器测得的原始数据测量值幅度U P-P 0.2V 4div 0.05V/div 0.2V 频率f 1000Hz 5div 0.2ms/div 1000Hz 表4-1 观察“Y 轴输入灵敏度微调开关”和“X 轴扫描速率微调开

示波器使用大学物理实验报告示范及数据处理

《示波器的使用》实验报告 物理实验报告示范文本: 包含数据处理李萨如图 【实验目的】 1.了解示波器显示波形的原理,了解示波器各主要组成部分及它们之间的联系和配合; 2.熟悉使用示波器的基本方法,学会用示波器测量波形的电压幅度和频率; 3.观察李萨如图形。 【实验仪器】 1、双踪示波器 GOS-6021型 1台 2、函数信号发生器 YB1602型 1台 3、连接线示波器专用 2根 示波器和信号发生器的使用说明请熟读常用仪器部分。 [实验原理] 示波器由示波管、扫描同步系统、Y轴和X轴放大系统和电源四部分组成, 1、示波管 如图所示,左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。亮点在偏转板电压的作用下,位置也随之改变。在一定范围内,亮点的位移与偏转板上所加电压成正比。 示波管结构简图示波管内的偏转板 2、扫描与同步的作用

如果在X 轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如图 图扫描的作用及其显示 如果在Y 轴偏转板上加正弦电压,而X 轴偏转板不加任何电压,则电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。我们看到的将是一条垂直的亮线,如图 如果在Y 轴偏转板上加正弦电压,又在X 轴偏转板上加锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,其合成原理如图所示,描出了正弦图形。如果正弦波与锯齿波的周期(频率)相同,这个正弦图形将稳定地停在荧光屏上。但如果正弦波与锯齿波的周期稍有不同,则第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。由此可见: (1)要想看到Y 轴偏转板电压的图形,必须加上X 轴偏转板电压把它展开,这个过程称为扫描。如果要显示的波形不畸变,扫描必须是线性的,即必须加锯齿波。 (2)要使显示的波形稳定,Y 轴偏转板电压频率与X 轴偏转板电压频率的比值必须是整数,即: n f f x y = n=1,2,3, 示波器中的锯齿扫描电压的频率虽然可调,但要准确的满足上式,光靠人工调节还是不够的,待测电压的频率越高,越难满足上述条件。为此,在示波器内部加装了自动频率跟踪的装置,称为“同步”。在人工调节到接近满足式频率整数倍时的条件下,再加入“同步”的作用,扫描电压的周期就能准确地等于待测电压周期的整数倍,从而获得稳定的波形。 (1)如果Y 轴加正弦电压,X 轴也加正弦扫描电压,得出的图形将是李萨如图形,如表所示。李萨如图形可以用来测量未知频率。令f y 、f x 分别代表Y 轴和X 轴电压的频率,n x 代表X 方向的切线和图形相切的切点数,n y 代表Y 方向的切线和图形相切的切点数,则有 y x x y n n f f = 李萨如图形举例表

示波器实验报告

示波器的原理和使用及声速测量实验报告2016年5月6日星期五粟鹏文2015011744 核51 示波器的原理和使用及声速测量 一、示波器的原理和使用 实验目的 (1)了解示波器的基本结构及其工作原理,学习使用示波器。 (2)学习电信号有关参数的基本概念及其测量。 实验原理 示波器原理 示波器按显示方式可分为阴极射线示波管和液晶显示两种。阴极射线示波器一般包括示波管、竖直放大器、水平放大器、扫描发生器、触发同步和直流电源等。 示波管为示波器的主要部分,包括电子枪、偏转系统和荧光屏三部分,全部密封在真空玻璃外壳内。 电子枪由灯丝、阴极、控制栅极、第一阳极及第二阳极组成。灯丝加热表面涂有氧化物的阴极,使其发射电子。因控制栅极电位比阴极低,初速度较大的电子才能通过控制栅极,示波器上的亮度就是通过调整栅极电位来控制的。阳极电位比阴极电位高很多,电子被阴阳极间的电场加速而形成阴极射线。当控制栅极、第一阳极及第二阳极的电位调节合适时,射线收到聚焦。所以第一阳极也称聚焦阳极,而第二阳极电位更高,称为加速阳极。 偏转系统由互相垂直的偏转板组成。如果在竖直偏转板上加待测电压,在水平偏转板上加上与待测电压同周期或周期为整数倍的扫描电压,则在荧光屏上将能显示出完整周期的所加待测电压的波形图。 荧光屏上涂有荧光粉,电子打上去能发出荧光,形成光斑。性能较好的示波管中,荧光屏玻璃内表面直接刻有坐标刻度,荧光粉紧贴坐标刻度以消除视差。 李萨如图形的基本原理 如果示波器的X和Y输入是频率相同或成简单整数比的两个正弦电压,则屏上的光点将呈现特殊形状的轨迹,这种轨迹图称为李萨如图形。如果做一个限制光点x、y方向变化范围的假想方框,则图形与此框相切时,横边上的切点数n x与竖边上的切点数n y之比恰好等于Y和X输入的两正弦信号的频率之比。即:f y:f x=n x:n y,若有端点与假想边框相接时,应把一个端点记为1/2个切点。利用李萨如图形能方便得比较出两个正弦信号的频率。 实验仪器 (1)SS-7802双踪示波器 实验用SS-7802双踪示波器能够同时测量频率在20MHz范围内的两个电压信号。借助于电子开关可将两个信号交替加到示波管的Y偏转板上,当电子开关的频率足够高时,在屏上可以同时得到两个信号。其基本使用方式如下。 1.X方式选择按键(HORIZ DISPLAY):通常选“A”方式,需要显示李萨如图时选择“X-Y”,此时CH-1为X输入,CH-2为Y输入。 2.触发方式选择按键(SWEEP MODE):通常选“AUTO” 方式。 3.打开信号通道,如果信号线插在CH1通道,按下“CH1”键,使屏幕左下方显示“1:”,如果信号线插在CH2通道,按下“CH2”键,使屏幕左下方显示“2:”,注意,“2:”前不能出现“+”号,如果出现“+”,请看第10步。 4.如果屏幕正上方有“TV”字符显示,按下“TV”键,将该功能取消。

示波器的使用实验报告

物理实验报告 一、【实验名称】 示波器的使用 二、【实验目的】 1.了解示波器的基本结构和工作原理,掌握示波器的调节和使用方法 2.掌握用示波器观察电信号波形的方法 3.学会使用双踪示波器观察李萨如图形和控制示波管工作的电路 三、【实验原理】 双踪示波器包括两部分,由示波管和控制示波管的控制电路构成 1.示波管示波管是呈喇叭形的玻璃泡,抽成高真空,内部装有电子枪和两队相互垂直的偏转板,喇叭口的球面壁上涂有荧光物质,构成荧光屏,高速电子撞击在荧光屏上会使荧光物质发光,在荧光屏上就能看到一个亮点。Y偏转板是水平放置的两块电极。在Y偏转板上和X偏转板上分别加上电压,可以在荧光屏上得到相应的图形。 双踪示波器原理 2.双踪示波器的原理 双踪示波器控制电路主要包括:电子开关,垂直放大电路,水平放大电路,扫描发生器,同步电路,电源等; 其中,电子开关使两个待测电压信号Y CH1和Y CH2周期性的轮流作用在Y偏转板,这样在荧光屏上忽而显示Y CH1信号波形,忽而显示Y CH2信号波形,由于荧光屏荧光物质的余晖及人眼视觉滞留效应,荧光屏上看到的是两个波形。 如果正弦波与锯齿波电压的周期稍不同,屏上呈现的是一移动的不稳定图形,这是因为扫描信号的周期与被测信号的周期不一致或不呈整数倍,以致每次扫描开始时波形曲线上的

起点均不一样所造成的,为了获得一定数量的完整周期波形,示波器上设有“Time/div”调节旋钮,用来调节锯齿波电压的周期,使之与被测信号的周期呈合适的关系,从而显示出完整周期的正弦波性。(看到稳定波形的条件:只有一个信号同步) 当扫描信号的周期与被测信号的周期一致或是整数倍,屏上一般会显示出完整周期的正弦波形,但由于环境或其他因素的影响,波形会移动,为此示波器内装有扫描同步电路,同步电路从垂直放大电路中取出部分待测信号,输入到扫描发生器,迫使锯齿波与待测信号同步,此称为“内同步”;反之则为“外同步”。操作时,使用“电平旋钮”,改变触发电势高度,当待测电压达到触发电平时,开始扫描,直到一个扫描周期结束。但如果触发电势超出所显示波形最高点或最低点的范围,则扫描电压消失,扫描停止。 3.示波器显示波形原理 如果在示波器的Y CH1或Y CH2端口加上正弦波,在示波器的X偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期相等时,则在荧光屏上显示出完整的正弦波形。 4.李萨如图形的基本原理 如果在示波器的Y偏转板上加上正弦波,在X偏转板上加上另一正弦波,则当两正弦波信号的频率比为简单整数比时,在荧光屏上将得到李萨如图形。 四、【仪器用具】: 信号发生器、双踪示波头、探头 五、【实验内容】 几种李萨如图形 n x n y分别代表图形在水平或垂直方向的切点数量 =3/4 nx/n y=1/2 n x/n y=1/3 n x/n y=2/3 n x/n y 1.观察正弦波形 a.打开示波器 b.开通CH1及相应信号发生器fx=100Hz c.得到大小合适稳定的正弦波 2.测正弦波电压,测正弦波的周期 a.调节波形上下移动键,使得fx=100Hz,改变一次v/div,再记录dy b.调整波形左右移动键,使得改变一次t/div,再记录dx

RC一阶电路的响应测试 实验报告

实验六RC一阶电路的响应测试 一、实验目的 1. 测定RC一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用虚拟示波器观测波形。 二、原理说明 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图6-1(b)所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法 用示波器测量零输入响应的波形如图6-1(a)所示。 根据一阶微分方程的求解得知u c=U m e-t/RC=U m e-t/τ。当t=τ时,Uc(τ)=0.368U m。此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632 U m所对应的时间测得,如图6-1(c)所示。 (a) 零输入响应 (b) RC一阶电路(c) 零状态响应 图 6-1 4. 微分电路和积分电路是RC一阶电路中较典型的电路,它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC T时串联电路,在方波序列脉冲的重复激励下,当满足τ=RC<< 2(T为方波脉冲的重复周期),且由R两端的电压作为响应输出,这就是一个微分电路。因为此时 电路的输出信号电压与输入信号电压的微分成正比。如图6-2(a)

示波器的使用实验报告

示波器的使用实验报告 一、实验目的 二、1. 了解示波器的基本结构和工作原理,掌握示波器的调节和使用方法; 三、2. 学会利用双踪示波器观测电信号波形; 四、3. 学会利用双踪示波器观察李萨如图形,并利用其测量正弦信号的频率。 五、二、实验仪器 六、EE1642B型函数信号发生器、GDS-2062型双踪示波器、导线。 七、三、实验原理 双踪示波器包括两部分:示波管和控制示波管工作的电路。 1. 示波管 如下图所示,示波管是呈喇叭形的玻璃泡,抽成高真空,内部装有电子枪和两对相互垂直的偏转板,喇叭口的球面壁上涂有荧光物质,构成荧光屏。高速电子撞击在荧光屏上会使荧光物质发光,在荧光屏上就能看到一个亮点。Y偏转板是水平放置的两块电极。X偏转板是垂直放置的两块电极。在Y 偏转板和X偏转板上分别加电压,可以在荧光屏上得到相应的图形。 2. 双踪示波器的原理

双踪示波器控制电路主要包括:电子开关、垂直放大电路、水平放大电路、扫描发生器、同步电路、电源等。 电子开关将两个待测的电压信号Y CH1和Y CH2周期性的轮流作用在Y偏转板上。由于视觉滞留效应,能在荧光屏上看到两个波形。 由示波器的原理功能方框图可见,被测信号电压加到示波器的Y轴输入端,经垂直放大电路加于示波管的垂直偏转板。示波管的水平偏转电压,虽然多数情况都采用锯齿电压(用于观察波形时),但有时也采用其它的外加电压(用于测量频率、相位差等时),因此在水平放大电路输入端有一个水平信号选择开关,以便按照需要选用示波器内部的锯齿波电压,或选用外加在X轴输入端上的其它电压来作为水平偏转电压。 此外,为了使荧光屏上显示的图形保持稳定,要求锯齿波电压信号的频率和被测信号的频率保持同步。这样,不仅要求锯齿波电压的频率能连续调节,而且在产生锯齿波的电路上还要输入一个同步信号。这样,对于只能产生连续扫描(即产生周而复始、连续不断的锯齿波)一种状态的简易示波器(如国产SB10型等示波器)而言,需要在其扫描电路上输入一个与被观察信号频率相关的同步信号,以牵制锯齿波的振荡频率。对于具有等待扫描功能(即平时不产生锯齿波,当被测信号来到时才产生一个锯齿波,进行一次扫描)功能的示波器(如国产ST-16型示波器、SR-8型双踪示波器等而言,需要在其扫描电路上输入一个与被测信号相关的触发信号,使扫描过程与被测信号密切配合。为了适应各种需要,同步(或触发)信号可通过同步或触发信号选择开关来选择,通常来源有3个:①从垂直放大电路引来被测信号作为同步(或触发)信号,此信号称为“内同步”(或“内触发”)信号;②引入某种相关的外加信号为同步(或触发)信号,此信号称为“外同步”(或“外触发”)

电测实验报告解析

《电子测量技术》实验报告 电气工程学院 姓名:李晓峰 学号:12281035 班级:电气1307班

实验一示波器波形参数测量 一、实验目的 通过示波器的波形参数测量,进一步巩固加强示波器的波形显示原理的掌握,熟悉示波器的使用技巧。 1.熟练掌握用示波器测量电压信号峰峰值,有效值及其直流分量。 2.熟练掌握用示波器测量电压信号周期及频率。 3.熟练掌握用示波器在单踪方式和双踪方式下测量两信号的相位差。 二、实验设备 1.信号发生器,示波器。 示波器——SS7802A a、主要参数: SS-7802模拟示波器·具有能够选择场方式、线路的TV/视频同步功能·附有光标和读出功能·5位数计数器规格及性能·显像管:6英寸、方型8*10p(1p=10mm)约16kV·垂直灵敏度:2mV/p~5V/p(1-2-5档)(通道1、通道2)精度:±2%·频率范围:20MHz·时间轴扫描A·100ns/p~500ms/p·TV/视频同步:能够选择场方式、能够选择ODD、EVEN、BOTH、扫描线路 b、主要功能描述 示波器操作板如图所示:

包括如下五个操作控制区域: 水平控制区 【?POSITION?】:将【?POSITION?】向右旋转,波形右移。 FINE 指示灯亮时,旋转【?POSITION?】可作微调。 MAG×10 :扫描速率提高10倍,波形将基于中心位置向左右放大。 ALTCHOP :选择ALT(交替,两个或多个信号交替扫描)或CHOP (断续,两个或多个信号交替扫描)。 垂直控制区 INPUT:输入连接器(CH1、CH2),连接输入信号。 EXTINPUT :用外触发信号做触发源。外信号通过前面板的EXTINPUT接入。 【VOLTS/DIV】:调节【VOLTS/DIV】选择偏转因数。按下【VOLTS/DIV】;偏转因数显示“”符号。在该屏幕下,可执行微调程序。 【▲POSITION▼】:垂直位移,向右旋转,波形上移。

用示波器测量相位差实验报告

竭诚为您提供优质文档/双击可除用示波器测量相位差实验报告 篇一:示波器的使用及测量相位差 示波器的使用及测量相位差 摘要:示波器一般由示波管、扫描信号发生器、信号输入和放大系统、同步系 统以及电源五部分组成。用示波器可以观察电信号波形以及测量电压、频率和相位差等。本文就是主要介绍如何利用示波器测量两个正弦电压的相位差,主要采用李萨如图形法和双踪法。 关键词:示波器测量相位差李萨如图法双踪法实验目的: 1.了解示波器的结构和原理。 2.掌握示波器各旋钮、按钮、按键的作用和使用方法。 3.学会用示波器采用李萨如图法和示踪法测量相位差。 4.能对实验结果进行分析,比较各种测量方法的优缺点,对实验数据进行不确定度处理,写出合格的实验报告。 实验原理:示波器的工作原理:示波器一般由示波管、扫描信号发生器、信号

输入和放大系统、同步系统以及电源五部分组成。示波器内有电子枪,电子枪发射电子束经Y轴偏转板或x轴偏转板会发生偏转,从而打在荧屏上。人们可以根据显示在荧屏上波的形状、幅度来判断信号源的电压、频率等的大小。用示波器测量相位差的原理:(1)用李萨如图法测量。使示波器工作在x-Y方式,分别把两个信号输入到x偏转板和Y偏转板,然后移相,则得到如图所示的李萨如图(1).从示波器屏幕上读出A和b的值(格数),则信号的相位差为 (2)双踪法。使示波器工作在扫描工作方式,选择交替显示,调节两条扫描线重合。把两待测信号通过示波器的两个输入通道输入,得到如上图(2)图所示,读出一个信号周期T所占的格数n(T)及?t的对应格数n(?t),则相位差?? 2?n(?t) n(T) 实验内容与步骤:(一)测量正弦电压的电压和频率、周期 (1)首先将示波器的各个旋钮的功能和用法弄清楚。(2)第二,将示波器的各个旋钮调到实验所需的正常状态,然后使之处于工作 状态。(3)第三,用信号发生器作为信号源,调节输出电压峰峰值为2V,频率为10khZ,

示波器的使用 实验报告

×××××实验报告 实验名称:示波器的使用 姓名___________学号_______班级_________实验日期____________ 温度___________压力___________ 同组者___________ 一、实验预习部分 (一)实验目的要求: 1.了解示波器的工作原理 2.学习掌握示波器和低频信号发生器的使用方法 3.观察正弦波波形和李萨如图形 (二)实验理论原理: 一.示波器原理 在垂直偏转板上加一交变的正弦电压,中子束将垂直方向来回摆。当所加频率很高时,看到一条垂直的亮线,同时在水平方向加一锯齿波扫描电压,电子束即被水平展开,显示出正弦图形。 二.波形同步调节 当正弦波与锯齿波电压的周期稍有不同时,出现移动的不稳定图形,通过调节“扫描时间”和“扫描微调”使锯齿波电压周期Tx与正弦波周期Ty成合适的关系,出现同步稳定正弦波。 三.李萨如原理 当X轴Y轴均为正弦波时,频率之间存在一定比例关系,可观察到的李萨如图形。 (三)实验操作及测定内容 Ⅰ。正弦波的调节 ⑴调节观察正弦波形,绘出所调单个波形的草图,定量测量这一正弦信号的峰峰值Vp-p 和频率Fx,求出该电信号电压的有效值V=Vp-p / 2√2 ①打开电源,随即将“Y轴位移”“X轴位移”“辉度”“聚焦”旋钮调至中央;“自动/常规”开关置于AUTO;触发源开关置于“内触发”。 ②按下示波器面板上的电源开关,将会看到一条亮线或一个亮点,可通过调节时间旋钮得到一条亮线。 ③调节“Y轴位移”和“X轴位移”旋钮,使扫迹移至屏中央。 ④调节“辉度”和“聚焦”旋钮使扫迹亮度和粗细适中。 ⑤从SP1631A型功率函数信号发生器输出一正弦电压,电压值与频率值不要太大,并输出到一个通道上。 ⑥调节“幅度”和“时间”旋钮适中,不要太小,将屏幕上得到的完整的正弦波形。 ⑦调节“触发电平”调节旋钮,使波形稳定。 ⑵正弦波的测量 ①测正弦波形的幅度及周期。

示波器测电容实验报告

示波法测电容设计性实验报告 电容是电容器的参数之一,电容在交流电路中电压与电流间除了大小发生变化,相位也发生了改变,而通过示波器可以很清楚地观察到这些变化。示波谐振法测量电容,就是用示波器观察RLC 串联电路的谐振现象来确定电容的值,这对于解决生活及实验中的实际问题,有着很重要的作用。 一、实验目的 1、进一步熟悉数字示波器的主要技术性能与使用并学会利用示波器测电容的容值。 2、观察RC 和RLC 串联电路的暂态过程,加深对电容充、放电规律特性的认识。 3、学会用半衰期方法测量RC 暂态过程时间常数。 4、观察RLC 串联电路的谐振现象,用示波器确定谐振频率。 二、可供仪器 双踪数字示波器、多功能信号源、电阻、电容三个(1.0,0.1,0.022微法)、电感、导线若干 三、实验原理 1、RLC 串联谐振 将电阻R 、自感L 和电容C 串联后加上交变电压如图所示 图1 RLC 串联电路 在交变电路中,电容C 和电感L 两端的阻抗与电压的园频率有关,所加交流电压U (有效值)的角频率为ω,则电路的复阻抗为: ) C 1L (ωωj R Z - += (1) 复阻抗的模: 2 2) C 1L (R ωωZ - += (2) 复阻抗的幅角: R C 1L arctan ωω- =? (3) 即该电路电流滞后于总电压的位相差。回路中的电流I (有效值)为:

2 2) C 1L (R ωωU I - += (6) 上面三式中Z 、φ、I 均为频率f (或角频率ω,2ωf π= )的函数,当电路中其他元件参数取确定值的情况下,它们的特性完全取决于频率。 图2(a )、(b )、(c )分别为RLC 串联电路的阻抗、相位差、电流随频率的变化曲线。其中,(b )图f ?-曲线称为相频特性曲线;(c )图i f -曲线称为幅频特性曲线。 图2 RLC 串联电路幅频、相频曲线 由曲线图可以看出,存在一个特殊的频率0f ,特点为: 当0f f <时,0?<,电流相位超前于电压,整个电路呈电容性; 当0f f >时,0?>,电流相位滞后于电压,整个电路呈电感性; 当1 L 0C ωω- =时, 即0ω= 0f = 随f 偏离 0f 越远,阻抗越大,而电流越小。 此时,0φ=,表明电路中电流I 和电压U 同位相,整个电路呈现纯电阻性,这就是串联谐振现象。此时电路总阻抗的模Z R =为最小,,电流I U Z =则达到极大值。因此,只要调节f 、L 、C 中的任意一个量,电路都能达到谐振。 根据LC 谐振回路的谐振频率 f 2T = (9) 可求得C : L f C 2 0241 π= (10) 2、示波法测量f 0

示波器使用大学物理实验报告 (1)

《示波器的使用》实验示范报告 【实验目的】 1.了解示波器显示波形的原理,了解示波器各主要组成部分及它们之间的联系和配合; 2.熟悉使用示波器的基本方法,学会用示波器测量波形的电压幅度和频率; 3.观察李萨如图形。 【实验仪器】 1、双踪示波器GOS-6021型 1台 2、函数信号发生器YB1602型 1台 3、连接线示波器专用 2根 示波器和信号发生器的使用说明请熟读常用仪器部分。 [实验原理] 示波器由示波管、扫描同步系统、Y轴和X轴放大系统和电源四部分组成, 1、示波管 如图所示,左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。亮点在偏转板电压的作用下,位置也随之改变。在一定范围内,亮点的位移与偏转板上所加电压成正比。 示波管结构简图示波管内的偏转板 2、扫描与同步的作用 如果在X轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平

线,如图 图扫描的作用及其显示 如果在Y 轴偏转板上加正弦电压,而X 轴偏转板不加任何电压,则电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。我们看到的将是一条垂直的亮线,如图 如果在Y 轴偏转板上加正弦电压,又在X 轴偏转板上加锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,其合成原理如图所示,描出了正弦图形。如果正弦波与锯齿波的周期(频率)相同,这个正弦图形将稳定地停在荧光屏上。但如果正弦波与锯齿波的周期稍有不同,则第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。由此可见: (1)要想看到Y 轴偏转板电压的图形,必须加上X 轴偏转板电压把它展开,这个过程称为扫描。如果要显示的波形不畸变,扫描必须是线性的,即必须加锯齿波。 (2)要使显示的波形稳定,Y 轴偏转板电压频率与X 轴偏转板电压频率的比值必须是整数,即: n f f x y n=1,2,3, 示波器中的锯齿扫描电压的频率虽然可调,但要准确的满足上式,光靠人工调节还是不够的,待测电压的频率越高,越难满足上述条件。为此,在示波器内部加装了自动频率跟踪的装置,称为“同步”。在人工调节到接近满足式频率整数倍时的条件下,再加入“同步”的作用,扫描电压的周期就能准确地等于待测电压周期的整数倍,从而获得稳定的波形。 (1)如果Y 轴加正弦电压,X 轴也加正弦扫描电压,得出的图形将是李萨如图形,如表所示。李萨如图形可以用来测量未知频率。令f y 、f x 分别代表Y 轴和X 轴电压的频率,n x 代表X 方向的切线和图形相切的切点数,n y 代表Y 方向的

示波器测电容实验报告

示波器测电容设计性实验 一、 实验项目名称 示波器测电容 二、 实验目的 1.研究当方波电源加于RC 串联电路时产生的暂态放电曲线及用示波器测量电路半衰期的方法,加深对电容充放电规律特性的认识。 2.进一步熟悉数字示波器的主要技术性能与使用并学会利用示波器测电容的容值。 三、 实验原理(阐明实验的研究意义、实验依据原理、测量 电路等) 1.RC 串联电路暂态过程 RC E U U C =+dt d c 在由R.C 组成的电路中,暂态过程是 电容的充放电的过程。其中信号源用方波信号。在上半个周期内,方波电源(+E )对电容充电;在下半个周期内,方波电压为零,电容对地放电。充电过程中的回路方程为 由初始条件t=0时,U c =0,得解为 RC t R RC C Ee iR U E U - ==-=) e 1(t - 从 按指数函数规律衰减 随时间而电压按指数函数规律增长,是随时间二式可见,、t t c c R R U U U U

在放电过程中的回路方程为 0dt d c =+c U U RC 由初始条件t=0时,U c =E ,得解为 RC t R RC C Ee iR U E U -===-e t - 从上式可见,他们都是随时间t 按指数函数规律衰减。式中的RC=τ.具有时间函数的量纲,称为时间常量(或犹豫时间),是表示暂态过程中进行的快慢的一个重要物理量。与时间常量τ有关的另一个实验中较容易测定的特征值,称为半衰期 2 1 T ,即当下降到初值)t (C U (或上升到终值)一半所需要的时间, 它同样反映了暂态过程的快慢程度,与τ的关系为 ττ693.02ln 2 1==T 2.用RC 法测电容,分别用示波器测出电阻和电容两端的电压,串联电路中电流相等,所以电压之比等于电阻之比,容抗等于 wc 1 ,所以:r c U U = f cr 21π,由此可算出示波器的电容。 四、 实验仪器 面包板,示波器,导线,电容,电阻。 五、 实验内容及步骤 半衰期法测电容;选取一个电阻和一个电容,将它们串联并接在示波器上,另用两根线接在电容两侧,在示波器上可看到电容两端电压随时间变化的图像,读出半衰期,就能用公式算出电容的电压值。

示波器实验报告

示波器实验报告 不少朋友都不会写示波器实验报告,那么,今天,给大家介绍的是示波器实验报告,希望对大家有帮助。 示波器实验报告 【实验题目】示波器的原理和使用 【实验目的】 1.了解示波器的基本机构和工作原理,掌握使用示波器和信号发生器的基本方法。 2.学会使用示波器观测电信号波形和电压副值以及频率。 3.学会使用示波器观察李萨如图并测频率。 【实验原理】 1.示波器都包括几个基本组成部分: 示波管(阴极射线管)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号电路(锯齿波发生器)、同步电路、电源等。 2.李萨如图形的原理: 如果示波器的X和Y输入时频率相同或成简单整数比的两个正弦电压,则荧光屏上将呈现特殊的光点轨迹,这种轨迹图称为李萨如图形。 如果作一个限制光点x、y方向变化范围的假想方框,则图形与此框相切时,横边上的切点数nx与竖边上的切点数ny之比恰好等于Y与X输入的两正弦信号的频率之比,即fy:fx=nx:ny。 【实验仪器】

示波器×1,信号发生器×2,信号线×2。 【实验内容】 1.基础操作: 了解示波器工作原理的基础上阅读所用机器的说明书,了解每个旋钮的作用。其中最主要也是经常使用的旋钮为横向和纵向两个。横向旋钮是控制扫描时间的旋钮,调节时表现为荧光屏上显示波形发生横向的压缩或展开;纵向旋钮是调节垂直放大电路的旋钮,调节时表现为荧光屏上显示波形发生纵向的展开或压缩,次旋钮为两个,分别控制示波器的两个输入信号。 明确操作步骤及注意事项后,接通示波器电源开关。先找到扫描线并调至清晰。 2.观测李萨如图形: 向CH1、CH2分别输入两个信号源的正弦波,"扫描时间"的"粗调"旋钮置于"X-Y"方式(即使两路信号进行合成)。调出不同比值的李萨如图形来,画出草图,并分析图形的特点与两个信号频率之间的关系。绘出所观察到的各种频率比的李萨如图形。 设fx=1000Hz为约定真值,依次求出另一信号发生器的输出频率fy,并与该信号发生器读数值frime;y进行比较,一一求出它们的相对误差。 【实验数据】 【实验结果】 【误差分析】

RC一阶电路的响应测试实验报告

? 实验七 RC 一阶电路的响应测试 一、实验目的 1. 测定RC 一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用示波器观测波形。 二、原理说明 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图7-1(b )所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法: 用示波器测量零输入响应的波形如图7-1(a)所示。 根据一阶微分方程的求解得知u c =U m e -t/RC =U m e -t/τ 。当t =τ时,Uc(τ)=0.368U m 。 此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632U m 所对应的时间测得,如图13-1(c)所示。 a) 零输入响应 (b) RC 一阶电路 (c) 零状态响应 图 7-1 4. 微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC 串联电路, 在方波序列脉冲的重复激励下, 当 满足τ=RC<< 2 T 时(T 为方波脉冲的重复周期),且由R 两端的电压作为响应输出,则该电路就是一个微分电路。因为此时电路的输出信号电压与输入信号电压的微分成正比。如图 0.368t t t t 0.6320 000c u u U m c u c u u U m U m U m

相关文档
最新文档