基坑位移监测日报表

基坑位移监测日报表
基坑位移监测日报表

基坑位移监测日报表

工程名称:本次测量日期:天气:前次测量日期

基坑位移监测日报表

工程名称:本次测量日期:天气:前次测量日期

基坑水平位移监测

深基坑水平位移监测 测量深基坑水平位移可采用视准线法、小角度法、投点法、前方交会法、自由设站法、极坐标法等。本节简要叙述常用的小角度法、极坐标法及前方交汇法。 监测控制值: 监测频率: 基准点及测点布置要求: 监测基准点应在基坑开挖影响范围之外设立强制对中观测墩,且尽量通视各测点,观测墩使用混凝土浇筑地下1.4M地面1.2M,顶面长宽20CM*20CM,顶部嵌入焊接中心螺旋的钢板,螺旋与钢板垂直且均做防腐处理。监测基准点观测按三级平面控制要求施测,且每个月与高等级控制网联测一次。为防止观测墩被破坏,顶部应加钢保护盖。埋设示意图如下:

当采用精密的光学对中装置时,对中误差不宜大于0.5mm,且尽量通视测点。 在混凝土支撑、连续墙顶等混凝土结构上安装水平位移桩,可直接在结构上用冲击钻成孔插入水平位移桩,垂直放置,缝隙使用锚固剂填充,容易受施工破坏的地方应加保护装置。在土体等松软结构埋设水平位移测点应采用混凝土桩顶插入水平位移桩的形式,混凝土桩采用直径10CM地下50CM地面10CM,中心用钢筋加固。如有需要应加保护装置,并设置醒目标志。实物图如下: 仪器架设: 到达测量现场后打开仪器箱一段时间,使仪器温度与周围环境温度相适应,消除由环境温度带来的误差。检查设备是否完整,配件是否齐全,电源电力是否充足等。仪器架设时应注意仪器安全,在光滑的地面上架设全站仪时须在脚架上套绳索,防止脚架滑落损坏仪器。全站仪脚架高度与观测者肩高齐平,拧紧脚架螺旋,将脚架均匀架设在基准点上。取出仪器一手提全站仪手提柄,一手拧紧中心螺旋,将全站仪平稳架设在脚架上。 对中整平: 在有强制对中装置的观测墩上架设全站仪时,应一手提全站仪手提柄,另一只手旋转基座使仪器牢固地固定在观测墩上。调节基座脚螺旋使圆水准气泡居中,旋转仪器使管水准平行于两脚螺旋的连线,调节脚螺旋使管水准气泡居中,再将仪器旋转90°调节脚螺旋使管

混凝土支撑轴力监测分析

混凝土支撑轴力监测分 析精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

混凝土支撑轴力监测分析 摘要:结合广州地铁某基坑工程的设计和施工方案,对混凝土支撑轴力监测的原理进行介绍。在对基坑施工过程中轴力监测数据变化进行分析的基础上,对其形成原因进行了探讨,得到一些经验性规律,供类似工程参考。 关键词:钢筋混凝土;支撑轴力;监测;分析 引言 我国基础建设的快速发展,深基坑工程的建设也越来越多,在深基坑施工过程中,深基坑的支护起着举足轻重的作用。只有对基坑支护结构、基坑周围的土体和相邻的构筑物进行全面、系统的监测,才能对基坑工程的安全性和对周围环境的影响程度有全面的了解,支撑结构轴力的监测是基坑工程现场监测的主要内容之一。通过对轴力的监测,可准确掌握支护结构的受力状况,从而对基坑的安全性状进行分析,在出现异常情况时及时反馈,并采取必要的工程应急措施,甚至调整施工工艺或修改设计方案,从而保证基坑本身和周围建筑物、构筑物的安全,以确保工程的顺利进行。结合广州地铁某基坑工程的设计方案和监测数据,对基坑的混凝土支撑轴力变化进行初步分析。 1工程概况 该工程包括盾构始发井兼轨排井及后明挖段,设计为 1~3 跨的闭合框架结构,其中盾构始发井基坑开挖深度约为 m,明挖段基坑开挖深度约 m;基坑深度范围内大部分为砂层,以淤泥质粉细砂层为主,基坑底部几乎全部位于淤泥质粉细砂层。基坑设计采用 800 mm 厚的地下连续墙+内支撑的围护结构体系。内支撑采用 3 道支撑体系,第一道为具有一定刚度的冠梁,第二、三道为Ф 600、 t=14 的钢管,在

建筑基坑沉降、位移监测的内容及方法

《建筑基坑沉降、位移监测的内容及方法》 一、深基坑监测的意义 随着城市建设的发展,基坑施工的开挖深度越来越深,从最初的5~7m发展到目前最深已达20m多。由于地下土体性质、荷载条件、施工环境的复杂性,对在施工过程中引发的土体性状、环境、邻近建筑物、地下设施变化的监测已成了工程建设必不可少的重要环节。 对于复杂的大中型工程或环境要求严格的项目,往往难从以往的经验中得到借鉴,也难以从理论上找到定量分析、预测的方法,这就必定要依赖于施工过程中的现场监测。首先,靠现场监测据来了解基坑的设计强度,为今后降低工程成本指标提供设计依据。第二,可及时了解施工环境——地下土层、地下管线、地下设施、地面建筑在施工过程中所受的影响及影响程度。第三,可及时发现和预报险情的发生及险情的发展程度,为及时采取安全补救措施充当耳目。 二、深基坑监测的内容及方法 深基坑施工,必须要有一定的围护结构用以挡土、挡水。围护设施必须安全有效。浅基坑的围护结构以前常用的是钢板桩或混凝土板桩;深基坑则大多采用现场浇灌的地下连续墙结构或排桩式灌注桩结构,并配以混凝土搅拌桩或树根桩止水。开挖时,坑内必须抽去地下水,7~15m深的基坑,中间必须配二到三道水平支撑,水平支撑采用钢管式结构或钢筋混凝土结构。围护结构必须安全可靠,并能确保施工环境稳定。从经济角度来讲,好的围护设计应把安全指标取在临界点附近,再靠现场监测提供的动态信息反馈来调整施工方案。 1、以下内容是基坑监测目前能够做到的也是应该做到的项目: (1)地下管线、地下设施、地面道路和建筑物的沉降、位移。 (2)围护桩地下桩体的侧向位移(桩体测斜)、围护桩顶的沉降和水平位移。 (3)围护桩、水平支撑的应力变化。 (4)基坑外侧的土体侧向位移(土体测斜)。 (5)坑外地下土层的分层沉降。 (6)基坑内、外的地下水位监测。 (7)地下土体中的土压力和孔隙水压力。 (8)基坑内坑底回弹监测。

基坑水平位移监测报告

基坑变形监测报告 工程名称: 工程地点: 委托单位: 检测日期:2008年1月至2009年1月报告总页数:75页(含此页) 报告编号: kkkkkk 二OO九年三月十八日

建设项目 一期基坑工程基坑变形监测报告现场监测人员: 报告编写: 校核: 审核: 批准: 声明: 1.报告无“检测专用章”无效。 2.报告无编写、审核、批准人签字无效。 3.报告涂改、换页无效。 4.复制报告无重新加盖“检测专用章”或“检测单位公章”无效。 5.检测单位名称与检测报告专用章名称不符者无效。 jjjjjj 二OO九年三月十八日 j

目录 一、工程概况 (4) 二、监测依据 (4) 三、监测项目与点位布置 (4) 四、观测精度及观测方法 (5) 五、允许值及报警值 (5) 六、观测结果及分析 (5) 七、结论 (6) 八、附图表 (8) 1、基坑监测点水平位移成果表 (9) 2、基坑监测点水平位移变化速率成果表 (17) 3、基坑监测点水平位移位移~时间关系曲线图 (25) 4、测斜累计位移最大点的位移成果表 (26) 5、测斜曲线图 (52) 6、侧向变形累计最大位移点位移~时间关系曲线图 (61) 7、地下水水位测试结果汇总表 (62) 8、总部经济区水位随时间变化图 (73) 9、监测点位平面布置图 (74)

一、工程概况 位于开创大道西南侧、揽月路以西一带,地处科学城中心区东部,西面毗邻初具规模的综合研发孵化中心,总建筑面积约34万平方米。该项目基坑安全等级为二级,按设计及规范要求并结合本项目的具体情况,本项目设置如下监测项目: (1)、支护结构水平位移 (2)、支护结构变形 (3)、土体侧向变形 (4)、地下水位 二、监测依据 1、《建筑基坑支护技术规程》JGJ120-99,中华人民共和国行业标准。 2、《建筑变形测量规程》JGJ/T8-97,中华人民共和国行业标准。 3、《工程测量规范》GB50026-93,中华人民共和国国家标准。 4、《广州地区建筑基坑支护技术规定》GJB02-98 。 5、科学城总部经济区工程基坑支护监测点布置图。 三、监测项目与点位布置 1、基坑支护结构水平位移观测: 按设计要求,共布设31个监测点,编号为W1~W31,详见观基坑监测点布置图。 2、支护结构及土体侧向变形监测: 按设计要求,共布设27个监测点,编号为K1~K27,其中K2、K10、K15和K22为土体侧向变形监测点,详见基坑监测点布置图。 3、地下水位监测: 按设计要求,共布设19个监测点,编号为SW1~SW19,详见基坑监

基坑轴力监测

基坑工程混凝土支撑轴力监测方法的讨论 2014-01-18 13:52 来源:中国岩土网阅读:1060 通过现场试验,探讨混凝土支撑轴力监测过程中的问题及解决方法。 基坑工程混凝土支撑轴力监测方法的讨论 1.混凝土支撑轴力监测的问题及现状 国内明挖基坑工程的监测中,混凝土支撑系统的轴力监测结果异常(轴力监测值过大,但实际工程结构中并非内力过大或不稳定;如:一根C35 1m×1m截面的钢筋混凝土支撑,有时轴力监测值会达到20000~30000kN,而依然处于正常工作状态)问题普遍地存在着,时常会对监测结果分析及工程施工的进行造成不必要的阻碍。如苏州轨道交通一号线广济路站基坑混凝土支撑轴力监测数据,在实际监测过程中发现随着基坑开挖深度的加深,基坑支撑的监测轴力值变化较快并远大于设计值,有的甚至好几倍,以标准段8-2道混凝土支撑轴力为例,最大监测轴力值接近15000kN,远远超过该段8700kN的设计值。广州地铁五号线员村站基坑工程,在D101监测点处支撑横断面下表面钢筋所测应力为负值,即为拉应力,说明斜撑在土压力的作用下已向下弯曲,且下表面混凝土拉应力为 2.51 MPa,超过了混凝土的设计抗拉强度,就现场观看支撑上表面有细微裂缝,而轴力平均值才达到1440.44 kN,还远未达到轴力设计报警值3000 kN。广州某地铁基坑工程混凝土支撑系统的轴力监测结果起初均为负值,随着基坑的开挖轴力值持续增大,一直到基坑开挖结束,最大值达到设计允许值的6倍,而支撑系统一直处于正常工作的状态。天津某轨道换乘中心⑩轴~⑩轴工程截至2009年8月6日,⑦轴轴力值为18247 kN,占设计值204%;⑦轴轴力值为18994 kN,占设计值213%;已大大超过支撑的安全报警值,但支撑一直安全工作,未出现裂缝等不安全、失稳迹象。上海虹桥国际商城基坑开挖深度13.70m,3道混凝土支撑,第2道支撑(C351200mm×l000mm)轴力监测值最大处曾达到30500kN,已大大超过支撑的安全报警值,但支撑一直安全工作,未出现裂缝等不安全、失稳迹象,直至支撑拆除;南京地铁指挥中心基坑开挖深度15.40m,4道钢筋混凝土支撑,施工过程中第3道支撑(C35 1200mm×1000mm)轴力监测值最大处达到21000kN,已超出轴力安全报警值,但并未出现不安全工作的迹象,直至支撑拆除。南京鼓楼峨眉路北侧某基坑工程混凝土轴力的设计值为2000kN,但是实际监测值基本上都超过2000kN,最大值5139kN,超过了设计值的2.5倍。青岛地铁一期工程火车北站A区基坑第一层混凝土支撑轴力采用混凝土应变计进行监测,期间日变化量波动很大,范围在-1140kN~1560kN之间,甚至一天内上下午监测数据变化达800kN。可以看出,国内各基坑工程混凝土支撑轴力监测过程中,该监测异常的现象比较普遍。 本人参建扬州某大型市政工程,其基坑工程第一层多为混凝土支撑,现场监测采用钢筋应力计进行混凝土支撑轴力的量测,自2012年3月6日,大部分混凝土支撑轴力监测值超过5000kN,有的甚至超过10000kN,远大于设计轴力及设计所提控制值,现场就此事讨论激烈。 2.混凝土支撑轴力的主要监测方法

基坑水平位移监测

基坑水平位移监测 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

深基坑水平位移监测 测量深基坑水平位移可采用视准线法、小角度法、投点法、前方交会法、自由设站法、极坐标法等。本节简要叙述常用的小角度法、极坐标法及前方交汇法。 监测控制值: 监测频率: 基准点及测点布置要求: 监测基准点应在基坑开挖影响范围之外设立强制对中观测墩,且尽量通视各测点,观测墩使用混凝土浇筑地下地面,顶面长宽20CM*20CM,顶部嵌入焊接中心螺旋的钢板,螺旋与钢板垂直且均做防腐处理。监测基准点观测按三级平面控制要求施测,且每个月与高等级控制网联测一次。为防止观测墩被破坏,顶部应加钢保护盖。埋设示意图如下: 当采用精密的光学对中装置时,对中误差不宜大于,且尽量通视测点。 在混凝土支撑、连续墙顶等混凝土结构上安装水平位移桩,可直接在结构上用冲击钻成孔插入水平位移桩,垂直放置,缝隙使用锚固剂填充,容易受施工破坏的地方应加保护装置。在土体等松软结构埋设水平位移测点应采用混凝土桩顶插入水平位移桩的形式,混凝土桩采用直径10CM地下50CM地面

10CM,中心用钢筋加固。如有需要应加保护装置,并设置醒目标志。实物图如下: 仪器架设: 到达测量现场后打开仪器箱一段时间,使仪器温度与周围环境温度相适应,消除由环境温度带来的误差。检查设备是否完整,配件是否齐全,电源电力是否充足等。仪器架设时应注意仪器安全,在光滑的地面上架设全站仪时须在脚架上套绳索,防止脚架滑落损坏仪器。全站仪脚架高度与观测者肩高齐平,拧紧脚架螺旋,将脚架均匀架设在基准点上。取出仪器一手提全站仪手提柄,一手拧紧中心螺旋,将全站仪平稳架设在脚架上。 对中整平: 在有强制对中装置的观测墩上架设全站仪时,应一手提全站仪手提柄,另一只手旋转基座使仪器牢固地固定在观测墩上。调节基座脚螺旋使圆水准气泡居中,旋转仪器使管水准平行于两脚螺旋的连线,调节脚螺旋使管水准气泡居中,再将仪器旋转90°调节脚螺旋使管水准气泡居中。旋转任意角度观察管水准气泡是否居中,居中则完成整平工作。 两手分别扶住脚架的两条架腿,眼睛注视全站仪对中目镜,如果控制点不明显,可将自己的一只脚放在控制点旁边,目标大方便寻找与定向,小幅移动两条架腿使对中点与控制点中心重合。放开架腿将三条架腿踩实,调节其中两条架腿使圆水准气泡居中。转动全站仪,使管水准与其中两只脚螺旋连线平行,调节两只脚螺旋使管水准居中,旋转全站仪90°,再次使管水准居中。观察对中目镜中的对中点,松开中心螺旋,平稳移动对中点至控制点中心,查看圆水准与管水准是否居中,不居中再次对中、整平。 轻触键盘上的“ON”键开机,查看电源电力,如果仪器显示电池电力不足应立刻关机更换电池,防止测量过程中由于电力不足导致测量失败,光线不足使按下背光键进行背光补偿,需要关机时同时按下“ON”与背光键。开机后使用“FUNC”键找到“倾斜”选项,进入“倾斜”模式,再次进行精确调节。 目标照准: 旋转照准装置在目镜中找到目标,旋紧水平制动螺旋与垂直制动螺旋,调节望远镜目镜调焦环使十字丝清晰,再调节望远镜调焦环使目标点清晰可见,调节水平微动手轮与垂直微动手轮使十字对准目标点中心(如棱镜中心)。如

(整理)支撑轴力的监测

1.1支撑轴力监测点的布设 测试元件选择:本站支撑轴力监测采用振弦式钢筋应力计和轴力计。钢筋计埋设应与钢筋规格相匹配,轴力计量程选择应大于设计极限值的2倍。 监测点布设:孔浦站主体结构砼支撑布置10个监测断面,间距约为30m,钢支撑布置11个监测断面,间距约为25m。共计布设钢筋计40只,轴力计48只。考虑到监测点的相互验证和综合分析,轴力监测点位置选在靠近测斜孔的位置。 埋设方法: ⑴支撑钢筋计:在绑扎支撑钢筋的同时将支撑四个角位置处的主筋切断,并将钢筋应力计焊接在切断部位,在浇筑支撑砼的同时将应力计上的电线引出至合适位置以便今后测试时使用。 图错误!文档中没有指定样式的文字。-1 砼支撑轴力布设示意图 ⑵钢支撑轴力计:支撑轴力计在安装前,要进行各项技术指标及标定系数的检验。轴力计有一套安装配件:两块400*400*20mm的钢板,一只直径为15cm 的圆形钢筒,钢筒外翼状对称焊接有4片与钢筒等长的钢板。安装时,一块钢板与圆钢筒一端焊接,并焊接在钢支撑一端的固定端头上;轴力计一端安放在钢筒中,并随钢支撑的安装一起撑在围护墙的围檩上。

图 错误!文档中没有指定样式的文字。-2 轴力计安装示意图 监测点保护:轴力计安装好后,须注意传感线的保护,禁止乱牵,并分股做好标志;钢筋计焊接过程中须用湿布包裹钢筋计,避免高温导致内部元件失灵,安装完毕后应注意日常监测过程中的传感线的保护,并分股做好标志。 受损修复:混凝土支撑轴力中的钢筋计坏了可以在混凝土支撑梁的外侧粘上应变片测量混凝土的应变量来计算支撑的轴力;钢支撑轴力监测计的损坏一般不在施工中更换,本工程中可以在所测钢支撑上焊接钢管表面应变计测量钢支撑的应变量来计算钢支撑的受力。 1.2 支撑轴力监测 测试方法:目前工程中常用的是手持式数显频率仪现场测试传感器频率。测试前,调试仪器,测得各测点初始频率值和环境温度,读数稳定,方可投入正常运行。具体操作方法为:接通频率仪电源,将频率仪两根测试导线分别接在传感器的导线上,按频率仪测试按钮,频率仪数显窗口会出现数据(传感器频率),反复测试几次,观测数据是否稳定,如果几次测试的数据变化量在 1Hz 以内,可以认为测试数据稳定,取平均值作为测试值。由于频率仪在测试时会发出很高的脉冲电流,所以在测试时操作者必须使测试接头保持干臊,并使接头处的两根导线相互分开,不要有任何接触,不然会影响测试结果。 支撑轴力量测时必须考虑尽量减少温度对应力的影响,避免在阳光直接照射支撑结构时进行量测作业,同一批支撑尽量在相同的时间或温度下量测,每次读数均应记录温度测量结果。量测后根据率定曲线,将轴力计的频率读数直接换算成轴力值,对于钢筋应力计还可根据理论模型再换算成支撑轴力。然后分别绘制不同位置、不同时间的轴力曲线,制作形象的轴力分布图。 数据处理: (1) 砼支撑轴力 采用振弦式钢筋应力计,按如下公示计算支撑轴力: 钢筋应力计算公式: )(202f f K F i s -= 然后根据支撑中砼与钢筋应变协调的假定,可得计算公式:

支撑轴力监测方案

(四)、支撑轴力监测 测点布置:第一道、第二道、第三道、第四道、支撑均为砼支撑,支撑轴力每道布置2组,四道支撑共布置8组。编号为ZC1-1~ZC4-2。 监测目的:基坑围护支撑体系处于动态平衡之中,随着基坑施工工况的变化建立新的平衡。通过支撑轴力监测,可及时了解支撑受力及其变化情况,准确判断基坑围护支撑体系稳定情况和安全性,以指导基坑施工程序、方法,确保基坑施工安全。 仪器选用:选用国产系列钢筋应力计和DKY -51-2型记录仪。 安装方法:选用的钢筋应力计应与钢筋笼主筋相配套。钢筋计在安装前,要进行各项技术指标及标定系数的检验。安装时,将钢筋计的拉杆与同直径的半米长钢筋碰焊,螺丝口一端与钢筋计螺母拧紧,联成一体。钢筋计埋设在支撑截面的两个角的主筋上。将碰焊好的钢筋计电焊在支撑的主筋上,电焊长度应满足规范要求。浇注混凝土时,注意保护好钢筋计的电缆线。(安装方法如图4所示) 测试:在开挖前一天测试钢筋计的初始值。测试时用频率接收仪与钢筋计的电缆线接通,待频率稳定后,该频率值即为本次频率测试值。以此方法逐个观测钢筋计的频率。计算其支撑轴力、本次变化量、累计变化量。支撑轴力计算公式如下: 2200(1)(()())c b s i s i s s E A N K f f T T T E A =--+- 其中:N —— 支撑轴力(KN ) b A 、s A —— 支撑截面面积和钢筋截面面积(轴力2m ); c E 、s E —— 混凝土、钢筋弹性模量(kPa );

s K —— 钢筋计的标定系数(KN /HZ 2) i f —— 本次频率值(HZ) 0f —— 初始频率值(HZ) s T —— 钢筋计的温度修正系数(0/ kN C ) i T —— 钢筋计的本次测试温度值(0C ) s T —— 钢筋计的初始测试温度值(0C )

基坑深层水平位移监测方案

基坑深层水平位移监测方案 1概述 深层水平位移主要用于大地运动,如可能产生在不稳固的边坡(滑坡)或挖土工程周围的测向运动等,也可以用来监测软土地基处理,堤坝,芯墙稳定性,钻孔设置的偏差,打桩引起的土体位移,以及回填筑堤和地下工程的土体沉陷,也可用于沿海、江边重力存放物场的土层变化等。 2 仪器设备 测斜仪(一般测斜仪由探头、电缆、数据采集仪(读数仪)组成。探头的传感器型式有伺服加速度计式、电阻应变片式、钢弦式、差动电阻式等多种型式,目前使用最多的是伺服加速度式。国内有航天部33 所生产的CX 系列,国外有美国SINCO 公司的数字测斜仪,瑞士的PRIVEC 等) 内壁有导槽的测斜管(测斜管道由以下几部分组成:测斜管、连接管、管座、管盖。测斜管是用聚氯乙烯、ABS 塑料、铝合金等材料制成,管内有互成90 度四个导向槽,国产塑料测斜管尺寸多为:内径Φ58mm,径Φ70mm、长度分2m,3m,4m 三种。塑料连接管多采用市场上出售的聚氯乙烯塑料管制成,还可用软的万能接头相连。连接管的尺寸为内径Φ70mm,外径Φ82mm,长度分300,400mm两种。在管壁的两端铣制有滑动槽各4 条或仅一端铣制滑动槽4 条,各槽相隔90 度。管座位于测斜管底端,与管外径匹配,防止泥砂从管底端进入管内的一个安全护盖。管盖用于保护测斜管管口,防止杂物从管口掉入管内影响正常观测工作也由聚氯乙烯制成,其外形尺寸同管座。) 3监测仪器工作原理 测斜仪的工作原理是测量测斜管轴线与铅垂线之间的夹角变化量,从而计算出土层各点的水平位移大小。通常在坝内埋设一垂直并互成90°四个导槽的管子,当管子受力发生变形时,将测斜仪探头放入测斜管导槽内,逐段(一般50cm 一

支撑轴力特点及支承轴力监测方案

第一部分轴力支持方案特点及发展 随着高层建筑数量和高度的增加,基础埋深也随着增加。进入90年代后,我国经济的迅速发展,城市地价不断上涨,空间利用率随之提高,出现了众多的超高层建筑,使有些地下室埋深达20米以上,对基坑开挖技术提出更高、更严的要求,即不仅要确保边坡的稳定,而且要满足变形控制的要求,以确保基坑周围的建筑物、地下管线、道路等安全。同时,为了适应建筑市场日趋激烈的竞争,还要考虑提高土方挖运的机械化程度、缩短土方工期、降低工程成本、提高经济效益等方面的因素。我公司自1994年以来,先后在佛山国际商业中心,中山六福广场、广州文化娱乐广场、广州博成大厦等基坑施工中,采用了大跨度钢筋混凝土内支撑梁或圆环拱形钢筋混凝土内支撑支护,由于它们具有在计算方面的正确性、土方施工的经济性和施工实践的安全可靠性,所以在施工中越来越多地应用,并通过广东省建筑工程总公司及有关专家的鉴定,获得科技进步奖三等奖,得到推广和应用。 1.特点 1.1.发挥材料的优点。深基坑土方施工中,基坑深度往往较大,挡土结构的水平压力也较大,因此,钢筋混凝土支撑表现为水平受压为主,由于钢筋混凝土支撑与钢支撑不同,它具有变形小的特点,加上采用配筋和加大支撑截面的方法,可以提高钢筋混凝土支撑的强度,用以作为支撑的混凝土能充分发挥材料的刚度大和变形小的受力特性,它能确保地下室施工和基础施工以及周边邻近建筑物、道路和地下管线等公共设施的安全,因此,它是作为深基坑支护技术的新形式和新材料。 1.2.加快土方挖运速度。在软地基深基坑施工时采用钢筋混凝土支撑,由于它的跨度大,尤其是采用圆环拱形钢筋混凝土内支撑形式,基坑内的平面形成大面积无支撑的空旷,空旷面积可达到整个基坑面积的65%~75%,形成开阔的工作面,满足挖土机械回转半径的要求,有利于多台大型挖土机械自如运转作业,在基坑内可以留坡道让运土车直接驶入基坑装土,并采用逐层开挖或留岛形式开挖,这样,最后剩余小量土方用吊土机吊起即可。挖土速度可以提高三倍以上,达到缩短土方施工工期的目的,同时有利于基坑挡土结构变形的时效控制和缩短基坑内的降水时间,保证邻近建筑物的安全。 1.3.降低工程造价。采用了大跨度钢筋混凝土内支撑梁或圆环拱形钢筋混凝土内支撑形式,材料便宜,节省了其它支撑结构(如钢结构)一次性投入的大笔资金。

基坑监测水平和竖向位移

基坑监测水平和竖向位移 1.总则 本细则适用于一般土及软土建筑基坑工程水平位移及竖直位移监测。 目的是为了掌握基坑施工对临近建筑物造成的影响,及时起到预警预报的作用,为了深基坑施工提供科学的决策依据,确保施工安全,减少对周边环境的不利影响。 2.仪具与材料 全站仪,水准仪。 其它:脚架,棱镜,三脚架,因瓦尺等。 3.监测原理和方法 为保证所有监测工作的统一,提高监测数据的精度,使监测工作有效的指导整个工程施工,监测工作采用整体布设,分级布网的原则。即首先布置统一的监测控制网,再在此基础上布设监测点。 3.1监测点垂直位移测量:根据国家二等水准测量规范要求,历次垂直位移监测是通 过工作基点间联测一条二等水准闭合或附合路线,由线路的工作点来测量各监测点的高程,各监测点高程初始值在监测工程前期两次测定(两次取平均),某监测点本次高程

减前次高程的差值为本次垂直位移,本次高程减初始高程的差值为累计垂直位移。 3.2监测点水平位移测量:采用轴线投影法。在某条测线的两端远处各选定 一个稳固基准点A、B,经纬仪或全站仪架设于A点,定向B点,则A、B连成一条基准线。观测时,在仪器上读取各监测点至AB基准线垂距E值,某监测点本次E值和初始E 值即为该点累计水平位移,各变形监测点初始E值均为取两次平均的值。 4.监测点的布置原则及测点的设置 4.1、布置原则 4.1.1、符合有关规范及设计技术要求 4.1.2、《建筑变形测量规范》JGJ 8-2007 4.1.3、《工程测量规范》GB50026- 2007 4.1.4、《建筑基坑工程监测技术规范》GB50497- 2009 4.2、基准点的设置 位移观测为基坑施工过程中的位移测量。精度要求高,观测时间长。根据 《建筑变形测量规范》JGJ 8-2007和《建筑基坑工程监测技术规范》GB50497- 2009中要求,为减少测量误差,位移基准点应布设在观测建筑物的沉降区域之外。监测点间距不宜大于20m,每边监测点数目不应少于3个。监测基准点具有稳定性高、保存时间长的特点,本次监测拟位移观测基准点设置8个。基准 点设置在不易受沉降及施工影响的地区,为保证基准点能够长期使用,采用① 18钢筋埋入地下,埋深不少于1.0米,四周采用混凝土固定,并砌筑保护井,钢筋裸露出 1-2公分,在裸露的顶部设置十字标识。 4.3、位移点的布设 4.3.1、基坑垂直、水平位移监测: —8,测点间距在基坑周圈围护顶面上布置垂直位移及水平位移监测点号 1 20内米。

监测监控点设置规定

矿井监测监控点设置规定 一、一般要求 1、本规定依据AQ1029-2007和集团实际制定,各矿井(公司)必须执行。如在执行中有疑意,请及时向集团公司通防处请示。 2、本规定未涉及部分请执行AQ1029-2007行业标准。 3、煤矿(公司)每月必须编制监测监控点设置计划,报矿总工程师批准后实施;月度内监测监控点增减和变更,亦必须履行报批手续。 4、矿井必须填报安全监控日报(仅对模拟量示值),并按《煤矿安全规程》规定履行审报手续。 5、煤矿(公司)监测监控的模拟量;局部通风机开停和风筒传感器;主要通风机开停;主要风门运行状态等必须实现上传。 二、安装位置 1、井下分站,应设置在便于人员观察、调试、检验及支护良好、无滴水、无杂物的进风巷道或硐室中,安设时应垫支架,或吊挂在巷道中,使其距巷道底板不小于300mm。 2、隔爆兼本质安全型等防爆电源,宜设置在采区变电所,严禁设置在下列区域:(1)断电范围内;(2)低瓦斯和高瓦斯矿井的采煤工作面和回风巷内;(3)煤与瓦斯突出矿井的采煤工作面、进风巷和回风巷;(4)掘进工作面内;(5)采用串联通风的被串采煤工作面、进风巷和回风巷;(6)采用串联通风的被串掘进巷道内。 3、安全监控设备的供电电源必须取自被控开关的电源侧,严禁接在被控开关的负荷侧。宜为井下安全监控设备提供专用供电电源。 4、安装断电控制时,必须根据断电范围要求,提供断电条件,并接通井下电源及控制线。断电控制器与被控开关之间必须正确接线。具体方法由总工程师审定。 5、模拟量传感器应设置在能正确反映被测物理量的位

置。开关量传感器应设置在能正确反映被监测状态的位置。声光报警器应设置在经常有人工作便于观察的地点。详见附件1:《安全监测监控点设置明细》。 6、吊挂要求 (1)甲烷传感器应垂直悬挂,距顶板(顶梁、屋顶)不得大于300mm,距巷道侧壁(墙壁)不得小于200mm,并应安装维护方便,不影响行人和行车。 (2)一氧化碳传感器应垂直悬挂,距顶板(顶梁)不得大于300mm,距巷壁不得小于200mm,并应安装维护方便,不影响行人和行车。 (3)风速传感器应设置在巷道前后10m内无分支风流、无拐弯、无障碍、断面无变化、能准确计算风量的地点。当风速低于或超过《煤矿安全规程》的规定值时,应发出声、光报警信号。 (4)温度传感器应垂直悬挂,距顶板(顶梁)不得大于300mm,距巷壁不得小于200mm,并应不影响行人和行车,安装维护方便。 (5)粉尘传感器应垂直悬挂,距帮300mm,原则上距底板1.8~2.2m(近呼吸带高度),显示窗口面向人行侧,不得影响行人和行车,且安装维护方便。 (6)同一监测点安装多个传感器时,需使用传感器综合吊挂装置。 7、本规定自2011年9月1日起执行。 附:1、安全监测监控点设置明细 2、月度监测监控点设置计划 3、监测监控点变更单 4、传感器报警、断电设置明细表 5、监控系统巡检手册 6、安全监控日报表 7、安全监控系统性能时间保障一览表 二〇一一年九月一日

基坑支护位移监测方案

附:基坑支护结构位移变形监测方案 一、工程概况: 天津市中医药研究院为我市重点医疗科研学术单位,在原中医药研究院、长征医院、中医药研究附属医院、中医医院和医药科学研究所的基础上合并重建。本工程位于天津市红桥区北马路现第二中心医院旧址。医院新建建筑总面积56000㎡,其中地上建筑面积48000㎡,地下建筑面积8000㎡。工程由主楼建筑与独立附属用房组成。工程±0.000相当于大沽水平6.100。该工程由天津市中医药研究院投资兴建,天津市勘察院勘察,天津华汇工程建筑设计有限公司设计,二建二分公司负责施工。 二、基坑支护监测点布置: 三、基坑支护变形设计允许值: 根据本工程基坑支护设计形式不同,将支护分为形式1、形式2两区段。形式1区段为水泥土搅拌帷幕桩,形式2区段为帷幕桩与混凝土灌注

桩组合支护形式。形式1区段设计变形允许值为50mm;形式2区段设计变形允许值为60mm。该允许值为基坑支护警戒变形值,各区段支护结构如超过该允许值,宜增加每日支护监测记录次数,在出现异常变化情况时,应及时通报主管单位,并按基坑支护安全预案采取措施。 四、基坑支护监测措施内容: 1、现场基坑支护结构监测点在基坑开挖前统一进行布点,对观测点进行统一编号,并将原始值进行记录。观测点布置应清晰可见,牢固可靠,不能因外力产生位移。 2、现场设专人,自基坑开挖至基础还槽施工期间对支护结构进行24小时监测。基坑开挖初期,每日进行3次观测。待支护结构受力稳定后,每日进行2次观测。如支护结构出现异常情况,监测记录恢复至每天3次。 3、监测记录负责人:刘恩起、王晨、季宇。监测记录人应将每日记录数据进行统一整理,定期报予项目部及监理公司。 4、观测仪器:J2型经纬仪。 5、监测人员职责:现场监测人员在施工期间,认真按照规范及监测方案进行监测。监测应确保数值准确,并及时汇总。 五、基坑安全预案: 针对本工程基坑施工期间,由于不可预见的情况有可能出现的安全隐患,我单位制定了以下的基坑安全应急预案: 支护桩内侧变形值过大: 原因:支护结构设计安全储备小,靠近基坑范围地面荷载过大等。 应急措施:立即停止坑内挖土,与设计协商采取外部挖土卸荷等应急措施。预防措施:在现场施工底板时,及时在底板砖模外部回填土,降低基坑开

监测监控工操作规程1

监测监控工操作规程 一、监测监控工应完成下列工作要求 1、负责管辖范围内的矿井通风安全监测系统、装置的安装、调试、维修、校正、监测等工作。 2、应将在籍的装置逐台建帐,并认真填写设备及仪表台帐、传感器使用管理卡片、故障登记表、检修校正记录。 3、负责矿井监测系统图的绘制、修改。 4、负责监测报表的打印、签字、送审等工作。 二、设备要求 1、矿井必须装备可靠的矿井安全监控系统,系统的安装、使 用、维修,必 须符合《煤矿安全规程》、《煤矿安全监控系统通用技术要求(AQ6201-2006)》、《煤矿安全监控系统及检测仪器使用管理规范》(AQ1029-2007)的规定。 2、地面中心站的装备 1.安全监控系统的主机必须双机或多机备份,24h不间断运行。当主机发生故障时,备份主机应在5min内投入工作。(井下分站必须配备备用电源) 2.中心站设备应有可靠的接地装置和防雷装置。 3、煤矿安全监控装备必须工作稳定,性能可靠,符合有关国家标准和行业标准,防爆型煤矿安全监控设备之间的输入、输出信号必须为本质安全型信号。 4、煤矿安全监控设备之间必须使用专用阻燃电缆或光缆连接,严禁与调度电话线和动力电缆等共用。 5、矿井安全监控系统主机、系统电缆或电网发生故障,系统必须保证各地点甲烷断电仪和甲烷风电闭锁装置的全部功能,时间不小于2小时。 6、矿井安全监控系统必须具备防雷保护。

7、安全监控系统应按规定配齐以下监测传感器:甲烷传感器、一氧化碳传感器、风速传感器、温度传感器、压力传感器、烟雾传感器、主要通风机开停状态传感器、局部通风机开停状态传感器、风门开关状态传感器、馈电状态传感器等。 三、管理制度及技术要求 (一)基本要求 1、矿井通风安全监控机构必须配齐满足需要的管理、技术、维护和监测人员。上述人员(包括调度室值班人员)必须经过专业培训,并经实践操作考核合格后,持证上岗。 2、建立完善安全监控系统运行管理制度,包括检修、调试、标校、日报制度、瓦斯超限分析制度、故障分析报告制度和报警分析报告制度等。 3、凡出现系统故障及报警,必须及时分析原因,制定措施,进行处理。 4、安全监控人员必须每天打印安全监测日报表,安全监测日报表必须真实,按规定报送矿长、矿技术负责人审阅、处理。 5、管理、维护和值班等人员必须加强对安全监控系统运行情况的检查、检测,发现问题及时汇报、处理,并做好记录。 6、安全监控人员应每3个月对矿井安全监控系统数据进行备份,备份的数据介质保存时间应不少于2年。各种图纸、技术资料、记录至少保存2年,井下事故记录应长期保存。 7、安全监控应建立以下帐卡及报表: ⑴安全监控设备台帐; ⑵安全监控设备故障登记表; ⑶检修记录; ⑷巡检记录; ⑸传感器调校记录 ⑹安全监控日报; ⑺报警断电记录月报;

监测监控管理制度

山西平安煤业有限公司监测监控管理制度 监控系统管理制度 1、监控管理人员统一由通防科管理。 2、监控维修管理人员要经常对井下传感器及配套设施的运行情况进行日常维护和管理,发现异常及时进行处理。 3、操作步骤严格按照监控系统操作规程进行操作。 4、操作人员要按时记录,按时打印送交报表,严禁乱用打印纸。 5、无关人员不准查看数据。需查看时须经有关领导批准。 6、雷雨天时应关机,防止雷击破坏系统。 监控室工作岗位责任制 1、机房监测人员要严格执行24小时值班制度,上岗要认真操作,严禁擅离职守,严禁打盹瞌睡会私客。 2、严格执行监控系统的有关管理规定,不得随意开、关机。 3、认真填写当班运行情况记录,对出现的故障迅速汇报,并积极采取措施和进行详细记录。 4、填写的各种报表,数据要准确无误,逐班报表要及时报送有关领导,并有存档。 5、爱护监控设备,保持清洁卫生,无关人员禁止入内。 6、系统改变各种数据和图案,未经领导批准,不得随意进行操作,确保系统正常运行。 安全监测监控室工作制度 1、严格执行上级有关精神,认真做好本职工作。 2、认真学习专业知识,不断提高业务水平。 3、实行二十四小时轮流值班制度,不得空岗和缺岗,上班时间不得擅自离岗,违者一次罚款50元。 4、严格执行交接班制度,按时交接班,做到无人接班不离岗,故障处理不清不交接班,认真做好记录。 5、按规定及时上报瓦斯日报表。 6、发现有异常情况立即向调度室和值班矿长汇报。 7、严禁在电脑上玩游戏,看电影,一经发现,一次罚款100元,严重失职调离岗位。 8、严禁任何闲杂人员进入监控室内,违者一次罚值班人员50元。 9、确保室内清洁卫生,以确保机器正常运转。 监测监控设备管理制度 1、各类仪器、仪表维修、收发、保存要专人管理,发现问题及时处理。 2、仪器、仪表要编号、挂牌。 3、建立仪器、仪表领退登记制度。

深基坑监测

深基坑监测 深基坑在开挖和后期承台施工过程中对基坑进行监测至关重要,通过监测可以时刻掌握基坑沉降、位移等重多因素,可以有效的判断基坑稳定性,为安全施工提供保障。监测内容包括以下几项: 6.1水平位移监测 测定特定方向上的水平位移时可采用视准线法、小角度法、投点法等;测定监测点任意方向的水平位移时可视监测点的分布情况,采用前方交会法、自由设站法、极坐标法等;当基准点距基坑较远时,可采用GPS测量法或三角、三边、边角测量与基准线法相结合的综合测量方法。 水平位移监测基准点应埋设在基坑开挖深度3倍范围以外不受施工影响的稳定区域,或利用已有稳定的施工控制点,不应埋设在低洼积水、湿陷、冻胀、胀缩等影响范围内;基准点的埋设应按有关测量规范、规程执行。宜设置有强制对中的观测墩;采用精密的光学对中装置,对中误差不宜大于0.5mm。 6.2 竖向位移监测 竖向位移监测可采用几何水准或液体静力水准等方法。 坑底隆起(回弹)宜通过设置回弹监测标,采用几何水准并配合传递高程的辅助设备进行监测,传递高程的金属杆或钢尺等应进行温度、尺长和拉力等 基坑围护墙(坡)顶、墙后地表与立柱的竖向位移监测精度应根据竖向位移报警值确定。 6.3 深层水平位移监测

围护墙体或坑周土体的深层水平位移的监测宜采用在墙体或土体中预埋测斜管、通过测斜仪观测各深度处水平位移的方法。 6.4倾斜监测 建筑物倾斜监测应测定监测对象顶部相对于底部的水平位移与高差,分别记录并计算监测对象的倾斜度、倾斜方向和倾斜速率。应根据不同的现场观测条件和要求,选用投点法、水平角法、前方交会法、正垂线法、差异沉降法等。 6.5裂缝监测 裂缝监测应包括裂缝的位置、走向、长度、宽度及变化程度,需要时还包括深度。裂缝监测数量根据需要确定,主要或变化较大的裂缝应进行监测。裂缝监测可采用以下方法: 1)对裂缝宽度监测,可在裂缝两侧贴石膏饼、划平行线或贴埋金属标志等,采用千分尺或游标卡尺等直接量测的方法;也可采用裂缝计、粘贴安装千分表法、摄影量测等方法。 2)对裂缝深度量测,当裂缝深度较小时宜采用凿出法和单面接触超声波法监测;深度较大裂缝宜采用超声波法监测。 3)应在基坑开挖前记录监测对象已有裂缝的分布位置和数量,测定其走向、长度、宽度和深度等情况,标志应具有可供量测的明晰端面或中心。 裂缝宽度监测精度不宜低于0.1mm,长度和深度监测精度不宜低于1mm。 6.6 钢板桩内力监测 坑开挖过程中支护结构内力变化可通过在结构内部或表面安装

监测监控人员责任书

个人收集整理-ZQ 安全生产目标管理 责 任 书 副矿长(签字) 监测监控员(签字) 考核目标 瓦斯监控员安全生产责任制 一、严格按设备使用说明地操作程序进行操作,不得出现误操作,不准随意拆线和移动设备. 二、定期检查计算机系统各部件之间地联线,保证接触良好. 三、出现电源报警、停电、电压不稳定等有可能损坏设备地情况时,必须及时关闭系统,切断电源,待供电恢复正常后,方可重新启动系统设备,出现以上情况必须及时汇报调度和矿值班领导,并做好记录.个人收集整理勿做商业用途 四、发现测点超限、报警和不稳定信号时,查明原因,及时向矿值班领导汇报,并做好记录. 五、负责打印当天日报表,及时送有关领导审阅签字,并妥善保管日报表. 六、按井下实际及时补充、更改、定义测点和修改监测系统图. 七、努力学习有关业务知识,不断提高技术水平. 八、保持设备和室内清洁,严格执行计算机室管理地各项制度. 九、搞好外来人员地接待和登记工作,按时完成领导交给地各项工作任务. 二、责任对象 责任人:大田坝煤矿:监测监控员 三、考核及奖惩办法 参照宣煤安发[]号文件有关奖惩办法实施,附奖惩办法,奖惩办法. 、监测监控员交接班时间:上班前半小时监测监控室交接班地,更换其它管理人员,处罚当班人员元. 、监测监控员负责打印当天日报表,及时送有关领导审阅签字,并妥善保管日报表,缺一次处罚元.个人收集整理勿做商业用途 、监测监控员每日搞好监测监控室地卫生工作,机械设备地卫生等工作,出现拖拉或者未搞好地情况,处罚本班人员元.个人收集整理勿做商业用途 、监测监控员发现测点超限、报警和不稳定信号时,查明原因,及时向矿值班领导汇报,并做好记录,缺一次记录或者未向矿值班领导汇报处罚元.个人收集整理勿做商业用途 、监测监控人员上班时间严禁看小说或者使用电脑玩游戏,处罚本班人员元. 、年底奖金:元,以上实施办法,望各位管理人员遵照执行,处罚不在本月工资扣除,在年底奖金中扣除.个人收集整理勿做商业用途 1 / 1

(完整版)GB50497-2009建筑基坑工程监测技术规范

建筑基坑工程监测技术规范 GB50497-2009 2009-1-18 发布2009-9-1-实施中华人民共和国住房和城乡建设部

目次 1 总则 (3) 2. 术语 (3) 3 基本规定 (3) 4 监测项目 (5) 4.1 一般规定 (5) 4.3 巡视检查 (6) 5 监测点布置 (6) 5.1 一般规定 (6) 5.3 周边环境 (8) 6 监测方法及精度要求 (8) 6.1 一般规定 (8) 6.2 水平位移监测 (9) 6.3 竖向位移监测 (9) 6.4深层水平位移监测 (10) 6.5 倾斜监测 (11) 6.6裂缝监测 (11) 6.7支护结构内力监测 (11) 6.8土压力监测 (11) 6.9孔隙水压力监测 (12) 6.10地下水位监测 (12) 6.11 锚杆拉力监测 (12) 6.12坑外土体分层竖向位移监测 (12) 7 监测频率 (12) 8监测报警 (14) 9 数据处理与信息反馈 (15) 9.1一般规定 (15) 9.2 当日报表 (16) 9.3 阶段性监测报告 (16) 9.4总结报告 (16) 附录A 墙(坡)顶水平位移和竖向位移监测日报表样表 (17) 附录B 支护结构深层水平位移监测日报表样表 (18) 附录C 桩、墙体内力及土压力、孔隙水压力检测日报表样表 (19) 附录D 支撑轴力、拉锚拉力监测日报表样表 (20) 附录E 地下水水位、墙后地表沉降、坑底隆起监测日报表样表 (21) 附录F 巡视监测日报表样表 (22)

建筑基坑工程监测技术规范 GB50497-2009 GB50497-2009,自2009年9月1日起实施。其中,第3.0.1、7.0.4(1、2、3、4、5、6、7、8、9、10)、8.0.1、8.0.7条(款)为强制性条文,必须严格执行。该规范是我国第一部关于基坑工程监测的专项国家级标准,技术水平达到了国际先进水平,对于保证基坑工程安全生产、保护基坑周边环境具有重要实践意义,是建设工程安全生产重要技术法规之一。 1 总则 1.0.1 为规范建筑基坑工程监测工作,保证监测质量,为优化设计、指导施工提供可靠依据,确保基坑安全和保护基坑周边环境,做到安全适用、技术先进、经济合理,特制定本规范。 1.0.2 本规范适用于建(构)筑物的基坑及周边环境监测。对于冻土、膨胀土、湿陷性黄土、老粘土等其他特殊岩土和侵蚀性环境的基坑及周边环境监测,尚应结合当地工程经验应用。 1.0.3 建筑基坑工程监测应综合考虑基坑工程设计方案、建设场地的工程地质和水文地质条件、周边环境条件、施工方案等因素,制定合理的监测方案,精心组织和实施监测。 1.0.4 建筑基坑工程监测除应符合本规范外,尚应符合国家现行有关标准的规定。 2. 术语 2.0.1 建筑基坑building foundation pit 为进行建(构)筑物基础、地下建(构)筑物的施工所开挖的地面以下空间。 2.0.2基坑周边环境surroundings around foundation pit 基坑开挖影响范围内既有建(构)筑物、道路、地下设施、地下管线、岩土体及地下水体等的统称。 2.0.3 建筑基坑工程监测Monitoring of Building Foundation Pit Engineering 在建筑基坑施工及使用期限内,对建筑基坑及周边环境实施的检查、监控工作。 2.0.4 围护墙retaining structure 承受坑侧水、土压力及一定范围内地面荷载的壁状结构。 2.0.5 支撑bracing 由钢、钢筋混凝土等材料组成,用以承受围护墙所传递的荷载而设置的基坑内支承构件。 2.0.6 锚杆anchor bar 一端与挡土墙联结,另一端锚固在土层或岩层中的承受挡土墙水、土压力的受拉杆件。 2.0.7 冠梁top beam 设置在围护墙顶部的连梁。 2.0.8 监测点monitoring point 直接或间接设置在被监测对象上能反映其变化特征的观测点。 2.0.9 监测频率frequency of monitoring 单位时间内的监测次数。 2.0.10 监测报警值alarming value on monitoring 为确保基坑工程安全,对监测对象变化所设定的监控值。用以判断监测对象变化是否超出允许的范围、施工是否出现异常。 3 基本规定 3.0.1 开挖深度超过5m、或开挖深度未超过5m但现场地质情况和周围环境较复杂的基坑工程均应实施基坑工程监测。

相关文档
最新文档