大学物理 第十五章 磁介质的磁化习题解答

大学物理 第十五章  磁介质的磁化习题解答
大学物理 第十五章  磁介质的磁化习题解答

第十五章 磁介质的磁化习题解答(仅作为参考)

15.1 一均匀磁化的磁介质棒,直径为25mm ,长为75mm ,其总磁矩为12000A·m 2.求棒的磁化强度M 为多少?

[解答] 介质棒的面积为S = πr 2,

体积为 V = Sl = πr 2l ,

磁矩为p m = 12000A·m 2,磁化强度为

m m p p M V V

∑==? 323

12000(2510/2)7510π--=??? =3.26×108(A·m -1).

15.3 一螺绕环中心周长l = 10cm ,线圈匝数N = 200匝,线圈中通有电流I = 100mA .求:

(1)管内磁感应强度B 0和磁场强度H 0为多少?

(2)设管内充满相对磁导率μr = 4200的铁磁质,管内的B 和H 是多少?

(3)磁介质内部由传导电流产生的B 0和由磁化电流产生的B`各是多少?

[解答](1)管内的磁场强度为

3

02

200100101010NI H l --??==? = 200(A·m -1).

磁感应强度为

B = μ0H 0 = 4π×10-7×200 = 2.5×10-4(T).

(2)当管内充满铁磁质之后,磁场强度不变H = H 0 =200(A·m -1).

磁感应强度为

B = μH = μr μ0H

= 4200×4π×10-7×200 = 1.056(T).

(3)由传导电流产生的B 0为2.5×10-4T .由于B = B 0 + B`,所以磁化电流产生的磁感应强度为

B` = B - B 0 ≈1.056(T).

15.5 一根磁棒的矫顽力为H c = 4.0×103A·m -1,把它放在每厘米上绕5匝的线圈的长螺线管中退磁,求导线中至少需通入多大的电流?

[解答]螺线管能过电流I 时,产生的磁感应强度为 B = μ0nI .

根据题意,螺线管产生的磁场强度至少要与磁棒的矫顽力大小相等,但方向相反, 因此 B = μ0H c ,

所以电流强度为

I = H c /n = 4.0×103/500 = 8(A).

大学物理练习题(下)

第十一章真空中的静电场 1.如图所示,真空中一长为L的均匀带电细直杆,电荷为q,试求在直杆延长线上距杆的一端距离为d的P点的电场强度. L P 2.一个点电荷位于一边长为a的立方体高斯面中心,则通过此高斯面的电通量为???,通过立方体一面的电场强度通量是???,如果此电荷移到立方体的一个角上,这时通过(1)包括电荷所在顶角的三个面的每个面电通量是???,(2)另外三个面每个面的电通量是???。 3.在场强为E的均匀静电场中,取一半球面,其半径为R,E的方向和半球的轴平行,可求得通过这个半球面的E通量是() A.E R2 π B. R2 2π C. E R2 2π D. E R2 2 1 π 4.根据高斯定理的数学表达式?∑ ?= S q S E / dε ? ? 可知下述各种说法中,正确的是() (A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零. (B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零. (C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零. (D) 闭合面上各点场强均为零时,闭合面内一定处处无电荷. 5.半径为R的“无限长”均匀带电圆柱体的静电场中各点的电场强度的大小E与距轴线的距离r的关系曲线为( ) E O r (A) E∝1/r 6.如图所示, 电荷-Q均匀分布在半径为R,长为L的圆弧上,圆弧的两端有一小空隙,空隙长为图11-2 图11-3

)(R L L <

大学物理(第二版)第一章习题答案

第一章习题 1.1 一人自愿点出发,25s 内向东走了30m ,又10s 内向南走了10m ,再15s 内向正西北 走了18m 。求: ⑴ 位移和平均速度 ⑵ 路程和平均速率 解: 由图所示,人的移动曲线是从O 点出发,到A 点,再到B 点,C 点。 ⑴ 位移:OC 30OA m = ,10AB m = ,18BC m = 由于是正西北方向,所以45ABD ADB ∠=∠=? BD = (( )(( )2222 2 2cos 4518301021830102 OC CD OD OD CD =+-? =-+--?-?-? 1324305.92=-≈ 17.5OC m ≈ 平均速度的大小为:()17.50.35m 50 r v t ?===? ⑵ 路程应为: 58m s OA AB BC =++= 平均速率为1.16m s 1.2 有一质点沿着x 轴作直线运动,t 时刻的坐标为2 3 4.52x t t =-,试求: ⑴ 第2秒内的平均速度 ⑵ 第2秒末的瞬时速度 ⑶ 第2秒内的路程。 解:⑴ 当1t s =时,1 2.5x m = 当2t s =时,218162x m =-=

平均速度为 ()212 2.50.5m s v x x =-=-=- ⑵ 第2秒末的瞬时速度为 ()22966m t dx v t t dt == =-=- ⑶ 第2秒内的路程:(在此问题中必须注意有往回走的现象) 当 1.5t s =时,速度0v =,2 3.375x m = 当1t s =时,1 2.5x m = 当2t s =时,32x m = 所以路程为:3.375 2.5 3.3752 2.25m -+-= 1.3 质点作直线运动,其运动方程为2 126x t t =-,采用国际单位制,求: ⑴ 4t s =时,质点的位置,速度和加速度 ⑵ 质点通过原点时的速度 ⑶ 质点速度为零时的位置 ⑷ 作位移,速度以及加速度随着时间变化的曲线图。 解:⑴ 由运动方程2 126x t t =-,可得速度,加速度的表达式分别为 1212dx v t dt = =- 12dv a dt ==- 所以当4t s =时,质点的位置,速度和加速度分别为 48m x =-;36m s v =-;2 12m a =- ⑵ 质点经过原点的时刻12s t =,20s t =此时的速度分别为 ()112m v =- ()212m s v = ⑶ 质点速度为零对应的1s t =,位置为6m x = 1.4 质点沿直线运动,速度()32 22m v t t =++,如果当2s t =时,4m x =,求3s t =时质点的位置,速度和加速度。 解: 速度()3 2 22m v t t =++,位置,加速度的表达式分别为 ()43 3 2 222243 t t x t t dx t C =++=+ ++? 当2s t =时,4m x =,即164443x C =+ ++=,可得28 3 C =- 43228 2433 t t x t =+ +-,234a t t =+

第15章习题(彭志华版大物)

习 题 15-1 使自然光通过两个偏振化方向成 60角的偏振片,透射光强为1I ,今在这两个偏振片之间再插入另一偏振片,它的偏振化方向与前两个偏振片均成 30角,则透射光强为多大? 解:由马吕斯定律,得 102201002014932930cos 30cos 28860cos 2I I I I I I I I I ====?== 又有 即透射光强为第一此透射光强的9/4. 15-2自然光入射到两个重叠的偏振片上,如果透射光强为:(1)透射光最大强度的三分之一;(2)入射光强的三分之一,则这两个偏振片偏振化方向间的夹角是多少? 解:(1)由马吕斯定律有 33arccos 31cos 6 213 1cos 2112010max max 1201=?==?= ==ααα则因为透射光强的最大值I I I I I I I (2) 332arccos 32cos 31cos 222202201=?=== ααα则I I I 15—3 如果一光束是由自然光和线偏振光混合而成,该光束通过一偏振片时,随着偏振片以光的传播方向为轴的转动,透射光的强度也跟着改变。如最强和最弱的光强之比为6︰1,那么入射光中自然光和线偏振光的强度之比为多大? 解:设入射光中自然光强为0I ,线偏振光光强为1I ,则总光强为10I I I +=,当光束通过一偏振片时,先偏振光被吸收,最小光强为自然光光强的一半, 即 0min 2 1I I = 最大光强是线偏振光光强与自然光光强的一半之和,就是线偏振光的偏振化方向与偏振片的透射方向同。即 10max 21I I I +=

2 /5/62 12110010min max ==+=I I I I I I I 即入射光中自然光和线偏振光的强度之比为5/2. 15—4 水的折射率为1.33,玻璃的折射率为.50。当光由水中射向玻璃而反射时,起偏角为多少?当光由玻璃射向水面而反射时,起偏角又为多少? 解:当光由水射向玻璃时,水的折射率为1n ,玻璃的折射率为2n ,据布儒斯特定律 61.20376.0arctan 376.0tan 1 2==?==b b n n θθ 当光由玻璃射向水时, 39.6966.2arctan 66.2tan 2 1=='?=='b b n n θθ 可见两角度互余。 15—5 一束太阳光以某一入射角射到平面玻璃上,这时反射光为线偏振光,折射角为 32。求:(1)入射角;(2)玻璃折射率。 解:(1)据题意,当反射光为线偏振光时,折射角与入射角互余,即 583290=-=r θ入射角 (2)由布儒斯特定律,6.158tan 158tan 2212==?== n n n n 15—6 在偏振化方向相互正交的两偏振片之间放一 4 1波片,其光轴与第一偏振片的偏振化方向成 60角,强度为0I 的单色自然光通过此系统后,出射光的强度为多少?如用21波片,其结果又如何? 解:提图参考教材图15—14,由图可知通过第一各偏振片单色自然光变成与P1偏振方向相同的线偏振光,而此线偏振光通过拨片后,分成两相互垂直的线偏振光,其中包括与波晶片光轴平行的非寻常光(其振幅为e E )和与光轴垂直的寻常光(振幅为O E ),这两束偏振光中却只有平行于P2透射方向的分量2e E 和2o E 能透过,且透射光满足相干条件。有关系如下

第七章-磁介质习题及答案

第七章 磁介质 一、判断题 1、顺磁性物质也具有抗磁性。 √ 2、只有当M=恒量时,介质内部才没有磁化电流。 × 3、只要介质是均匀的,在介质中除了有体分布的传导电流的地方,介质内部无体分布的磁化电流。 √ 4、磁化电流具有闭合性。 √ 5、H 仅由传导电流决定而与磁化电流无关。 × 6、均匀磁化永久磁棒内B H 与方向相反,棒外B H 与方向相同。 √ 7、在磁化电流产生的磁场中,H 线是有头有尾的曲线。 √ 8、由磁场的高斯定理 0s d B ,可以得出 0 s d H 的结论。 × 9、一个半径为a 的圆柱形长棒,沿轴的方向均匀磁化,磁化强度为M ,从棒的中间部分切出一厚度为b<

(D) r r M J 1 A 3、图是一根沿轴向均匀磁化的细长永久磁棒,磁化强度为M 图中标出的1点的B 是: (A )M 0 (B)0 (C)M 021 (D)M 021 A 4、图中一根沿轴线均匀磁化的细长永久磁棒,磁化强度为M ,图中标出的1点的H 是: (A )1/2M (B )-1/2M (C )M (D )0 B 5、图中所示的三条线,分别表示三种不同的磁介质的B —H 关系,下面四种答案正确的是: (A )Ⅰ抗磁质,Ⅱ顺磁质, Ⅲ铁磁质。 (B )Ⅰ顺磁质, Ⅱ抗磁质, Ⅲ铁磁质。 (C )Ⅰ铁磁质,Ⅱ顺磁质, Ⅲ抗磁质。 (D )Ⅰ抗磁质, Ⅱ铁磁质,Ⅲ顺磁质。 A 6、如图所示,一半径为R ,厚度为l 的盘形介质薄片被均匀磁化,磁化强度为M M ,的方 向垂直于盘面,中轴上,1、2、3各点处的磁场强度H 是: M R l H R M l H M H A 22321 ,,)( (B)M R l H R M l H H 220321 ,, ?00321 H H M H ,, (D)123H M H M H M r r r r r r ,, A 7、一块很大的磁介质在均匀外场0H 的作用下均匀磁化,已知介质内磁化强度为M ,M 的方向与H 的方向相同,在此介质中有一半径为a 的球形空腔,则磁化电流在腔中心处产生的磁感应强度是: (A )M 031 H B l R 1 23M l R

大学物理学-第1章习题解答

大学物理简明教程(上册)习题选解 第1章 质点运动学 1-1 一质点在平面上运动,其坐标由下式给出)m 0.40.3(2 t t x -=,m )0.6(3 2 t t y +-=。求:(1)在s 0.3=t 时质点的位置矢量; (2)从0=t 到s 0.3=t 时质点的位移;(3)前3s 内质点的平均速度;(4)在s 0.3=t 时质点的瞬时速度; (5)前3s 内质点的平均加速度;(6)在s 0.3=t 时质点的瞬时加速度。 解:(1)m )0.6()0.40.3(322j i r t t t t +-+-= 将s 0.3=t 代入,即可得到 )m (273j i r +-= (2)03r r r -=?,代入数据即可。 (3)注意:0 30 3--=r r v =)m/s 99(j i +- (4)dt d r =v =)m/s 921(j i +-。 (5)注意:0 30 3--=v v a =2)m/s 38(j i +- (6)dt d v a ==2)m/s 68(j -i -,代入数据而得。 1-2 某物体的速度为)25125(0j i +=v m/s ,3.0s 以后它的速度为)5100(j 7-i =v m/s 。 在这段时间内它的平均加速度是多少? 解:0 30 3--= v v a =2)m/s 3.3333.8(j i +- 1-3 质点的运动方程为) 4(2k j i r t t ++=m 。(1)写出其速度作为时间的函数;(2)加速度作为时间的函数; (3)质点的轨道参数方程。 解:(1)dt d r =v =)m/s 8(k j +t (2)dt d v a = =2m/s 8j ; (3)1=x ;2 4z y =。 1-4 质点的运动方程为t x 2=,22t y -=(所有物理量均采用国际单位制)。求:(1)质点的运动轨迹;(2)从0=t 到2=t s 时间间隔内质点的位移r ?及位矢的径向增量。 解:(1)由t x 2=,得2 x t = ,代入22t y -=,得质点的运动轨道方程为 225.00.2x y -=; (2)位移 02r r r -=?=)m (4j i - 位矢的径向增量 02r r r -=?=2.47m 。 (3)删除。 1-6 一质点做平面运动,已知其运动学方程为t πcos 3=x ,t πsin =y 。试求: (1)运动方程的矢量表示式;(2)运动轨道方程;(3)质点的速度与加速度。 解:(1)j i r t t πsin πcos 3+=; (2)19 2 =+y x (3)j i t t πcos πsin 3π+-=v ; )πsin πcos 3(π2j i t t a +-= *1-6 质点A 以恒 定的速率m/s 0.3=v 沿 直线m 0.30=y 朝x +方 向运动。在质点A 通过y 轴的瞬间,质点B 以恒 定的加速度从坐标原点 出发,已知加速度2m/s 400.a =,其初速度为零。试求:欲使这两个质点相遇,a 与y 轴的夹角θ应为多大? 解:提示:两质点相遇时有,B A x x =,B A y y =。因此只要求出质点A 、B 的运动学方程即可。或根据 222)2 1 (at y =+2(vt)可解得: 60=θ。 1-77 质点做半径为R 的圆周运动,运动方程为 2021 bt t s -=v ,其中,s 为弧长,0v 为初速度,b 为正 的常数。求:(1)任意时刻质点的法向加速度、切向加速度和总加速度;(2)当t 为何值时,质点的总加速度在数值上等于b ?这时质点已沿圆周运行了多少圈? 题1-6图

大学物理学下册第15章

第15章 量子物理 一 选择题 15-1 下列物体中属于绝对黑体的是[ ] (A) 不辐射可见光的物体 (B) 不辐射任何光线的物体 (C) 不能反射可见光的物体 (D) 不能反射任何光线的物体 解:选(D)。绝对黑体能够100%吸收任何入射光线,因而不能反射任何光线。 15-2 用频率为υ的单色光照射某种金属时,逸出光电子的最大动能为k E ;若改用频率为2υ的单色光照射此金属,则逸出光电子的最大初动能为[ ] (A) k 2E (B) k 2h E υ- (C) k h E υ- (D) k h E υ+ 解:选(D)。由k E h W υ=-,'2k E h W υ=-,得逸出光电子的最大初动能 'k ()k E hv hv W hv E =+-=+。 15-3 某金属产生光电效应的红限波长为0λ,今以波长为λ(0λλ<)的单色光照射该金属,金属释放出的电子(质量为e m )的动量大小为[ ] (A) /h λ (B) 0/h λ (C) (D) 解:选(C)。由2e m 012 hv m v hv =+,2e m 012hc hc m v λλ= +,得m v = , 因此e m p m v == 。 15-4 根据玻尔氢原子理论,氢原子中的电子在第一和第三轨道上运动速率之比13/v v 是[ ] (A) 1/3 (B) 1/9 (C) 3 (D) 9

解:选(C)。由213.6n E n =-,n 分别代入1和3,得22 1122331329112mv E E mv ===,因 此 1 3 3v v =。 15-5 将处于第一激发态的氢原子电离,需要的最小能量为[ ] (A) 13.6eV (B) 3.4eV (C) 1.5eV (D) 0eV 解:选(B)。由2 13.6 n E n =- ,第一激发态2n =,得2 3.4eV E =-,设氢原子电离需要的能量为2'E ,当2'20E E +>时,氢原子发生电离,得2' 3.4eV E >,因此最小能量为3.4eV 。 15-6 关于不确定关系x x p h ??≥有以下几种理解,其中正确的是[ ] (1) 粒子的动量不可能确定 (2) 粒子的坐标不可能确定 (3) 粒子的动量和坐标不可能同时确定 (4) 不确定关系不仅适用于电子和光子,也适用于其他粒子 (A) (1), (2) (B) (2), (4) (C) (3), (4) (D) (4), (1) 解:选(C)。根据h p x x ≥???可知,(1)、(2)错误,(3)正确;不确定关系适用于微观粒子,包括电子、光子和其他粒子,(4)正确。 二 填空题 15-7 已知某金属的逸出功为W ,用频率为1υ的光照射该金属能产生光电效应,则该金属的红限频率0υ=________,截止电势差c U =________。 解:由0W hv =,得h W v = 0;由21e m 12hv m v W =+,而2 e m c 12m v eU =,所以 1c hv eU W =+,得1c h W U e υ-= 。

大学物理下15章习题参考答案中国石油大学(供参考)

15章习题参考答案 15-3求各图中点P 处磁感应强度的大小和方向。 [解] (a) 因为长直导线对空间任一点产生的磁感应强度为: 对于导线1:01=θ,2 2π θ= ,因此a I B πμ401= 对于导线2:πθθ==21,因此02=B 方向垂直纸面向外。 (b) 因为长直导线对空间任一点产生的磁感应强度为: 对于导线1:01=θ,2 2π θ= ,因此r I a I B πμπμ44001= = ,方向垂直纸面向内。 对于导线2:21π θ=,πθ=2,因此r I a I B πμπμ44002==,方向垂直纸面向内。 半圆形导线在P 点产生的磁场方向也是垂直纸面向内,大小为半径相同、电流相同的 圆形导线在圆心处产生的磁感应强度的一半,即 r I r I B 4221003μμ= = ,方向垂直纸面向内。 所以,r I r I r I r I r I B B B B 4244400000321p μπμμπμπμ+=++=++= (c) P 点到三角形每条边的距离都是 o 301=θ,o 1502=θ 每条边上的电流在P 点产生的磁感应强度的方向都是垂直纸面向内,大小都是 故P 点总的磁感应强度大小为 方向垂直纸面向内。 15-4在半径为R 和r 的两圆周之间,有一总匝数为N 的均匀密绕平面线圈,通有电流I ,方向如图所示。求中心O 处的磁感应强度。 [解] 由题意知,均匀密绕平面线圈等效于通以 I NI 圆盘,设单位长度线圈匝数为n 建立如图坐标,取一半径为x 厚度为dx 的 圆环,其等效电流为: 方向垂直纸面向外. 15-5电流均匀地流过一无限长薄壁半圆筒,设电流I =5.0A ,圆筒半径 R =m 100.12?如图所示。求轴线上一点的磁感应强度。 [解] 把无限长薄壁半圆筒分割成无数细条,每一细条可看作一无限长直导线,取一微元d l 则I R l I πd d = 则l d 在O 点所产生的磁场为 又因,θd d R l = 所以,R I R I B 2002d 2d d πθ μπμ== θcos d d x B B =,θsin d d y B B = 半圆筒对O 点产生的磁场为:

磁介质习题与解答

磁介质习题 1、螺线环中心周长l=10cm ,环上均匀密绕线圈N=200匝,线圈中通有电流I=100mA 。 (1)求螺线管内的磁感应强度B 0和磁场强度H 0 ;(2)若管内充满相对磁导率为μr=4200的磁性物质,则管内的B 和H 是多少? 分析:螺线环内的磁感应强度具有同心圆的轴对称分布,对均匀密绕的细螺绕环可认为环内的磁感应强度均匀;环外的磁感应强度为零。磁场强度H 的环流仅与传导电流有关,形式上与磁介质的磁化无关。 解:(1)管内为真空时,由安培环路定理, ∑?=?i i L I d l H 0 m A I l N nI H /2000=== 磁感应强度为T H B 40001051.2-?==μ (2)管内充满磁介质时,仍由安培环路定理可得 m A I l N nI H /200=== 磁感应强度为T H H B r 06.10===μμμ 2、一磁导率为μ1的无限长圆柱形直导线,半径为R 1,其中均匀地通有电流I ,在导线外包一层磁导率为μ2的圆柱形不导电的磁介质,其外半径为R 2。试求磁场强度和磁感应强度的分布。 分析:系统具有轴对称性分布,因此,空间的磁场分布也应具有轴对称性。利用安培环路定理可求出空间磁感应强度和磁场强度的分布。 解:以轴到场点的距离为半径,过场点作环面垂直于轴的环路,取环路的方向与电流方向成右手螺旋关系,应用安培环路定理。 当r

磁介质一章习题答案

磁介质一章习题答案 习题10—1 将一有限长圆柱形的均匀抗 磁质放在一无限长直螺线管内,其螺线管 线圈的电流方向如图所示。在a 、b 、c 三 点的磁感应强度与未放入抗磁质前相比 较其增减情况是:[ ] (A) a 点增加,b 点减小,c 点不变。 (B) a 点增加,b 点增加,c 点增加。 (C) a 点减小,b 点减小,c 点增加。 (D) a 点减小,b 点增加,c 点减小。 解:抗磁质放在一无限长直螺线管内,相当于把它放在均匀的外磁场中。现 已知外场0B 方向向右。对磁介质中的a 点来说,其本身磁化电流产生的附加磁场B '的方向与外场方向相反,叠加的结果使a 点的场减小;对介质外的b 点来说,外场0B 方向仍旧向右,这时的抗磁质相当于N 极在左、S 极在右的磁铁,其附加磁场B '的方向在b 点向左,因此,b 点的场也减小;对介质外侧的c 点来说,外场0B 方向仍旧向右,但是在该处B '的方向也向右,与外场同向,故c 点的场是增加的。综上所述,应该选择答案(C)。 习题10—2 图示三种不同磁介质的磁化曲线,虚线表示真空中的B —H 关系。则表示铁磁质的是曲线 ;表示抗磁质的是曲线 ;表示顺磁质的是曲线 。 解:真空中的B —H 关系为:H B 0μ=; 对一般弱磁介质的B —H 关系为: H H B r μμμ0==,式中r μ为常数,若为顺磁 质,则1>r μ因而0μμ>;若为抗磁质,则1

大学物理2,15.第十五章思考题

大学物理2,15.第十 五章思考题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1、一束光垂直入射在偏振片上,以入射光线为轴转动偏振片,观察通过偏振片后的光强变化过程。如果观察到光强不变,则入射光是什么光如果观察到明暗交替变化,有时出现全暗,则入射光是什么光如果观察到明暗交替变化,但不出现全暗,则入射光是什么光 【答案:自然光;完全偏振光;部分偏振光】 详解:当一束光垂直入射在偏振片上时,以入射光线为轴转动偏振片,如果观察到通过偏振片后的光强不发生变化,入射光是由自然光;如果观察到光强有明暗交替变化,并且有时出现全暗,则入射光是完全偏振光;如果观察到光强有明暗交替变化,但不出现全暗,则入射光是部分偏振光。 2、一束光是自然光和线偏振光的混合光,让它垂直通过一个偏振片。若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光强比值为多少? 【答案:1/2】 详解:设该光束中自然光和线偏振光的强度分别为I 1和I 2。当以此入射光束为轴旋转偏振片时,透射光强度的最大值和最小值分别为 21max 21I I I += 1min 2 1I I = 依题意有I max =5I min ,即 1212 1521I I I ?=+ 解之得 2 121=I I 即入射光束中自然光与线偏振光的光强比值等于1/2。 3、一束光强为I 0的自然光相继通过三个偏振片P 1、P 2、P 3后,出射光的光强为0.125I 0 。已知P 1和P 2的偏振化方向相互垂直,若以入射光线为轴旋转P 2,要使出射光的光强为零,P 2最少要转过多大的角度

湖南大学物理(2)第14,15章课后习题参考答案

湖南大学物理(2)第 14,15章课后习题参 考答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第14章 稳恒电流的磁场 一、选择题 1(B),2(D),3(D),4(B),5(B),6(D),7(B),8(C),9(D),10(A) 二、填空题 (1). 最大磁力矩,磁矩 ; (2). R 2c ; (3). )4/(0a I μ; (4). R I π40μ ; (5). 0i ,沿轴线方向朝右. ; (6). )2/(210R rI πμ, 0 ; (7). 4 ; (8). )/(lB mg ; (9). aIB ; (10). 正,负. 三 计算题 1.一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量. 解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定 律可得: )(220R r r R I B ≤π=μ 因而,穿过导体内画斜线部分平面的磁通Φ1为 ???==S B S B d d 1 Φr r R I R d 2020?π=μπ=40I μ 在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20 R r r I B >π=μ 因而,穿过导体外画斜线部分平面的磁通Φ2为 ??=S B d 2Φr r I R R d 220?π=μ2ln 20π=I μ 穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π +I μ I S 2R 1 m

大学物理 第十五章 磁介质的磁化习题解答

第十五章 磁介质的磁化习题解答(仅作为参考) 15.1 一均匀磁化的磁介质棒,直径为25mm ,长为75mm ,其总磁矩为12000A·m 2.求棒的磁化强度M 为多少? [解答] 介质棒的面积为S = πr 2, 体积为 V = Sl = πr 2l , 磁矩为p m = 12000A·m 2,磁化强度为 m m p p M V V ∑==? 323 12000(2510/2)7510π--=??? =3.26×108(A·m -1). 15.3 一螺绕环中心周长l = 10cm ,线圈匝数N = 200匝,线圈中通有电流I = 100mA .求: (1)管内磁感应强度B 0和磁场强度H 0为多少? (2)设管内充满相对磁导率μr = 4200的铁磁质,管内的B 和H 是多少? (3)磁介质内部由传导电流产生的B 0和由磁化电流产生的B`各是多少? [解答](1)管内的磁场强度为 3 02 200100101010NI H l --??==? = 200(A·m -1). 磁感应强度为 B = μ0H 0 = 4π×10-7×200 = 2.5×10-4(T). (2)当管内充满铁磁质之后,磁场强度不变H = H 0 =200(A·m -1). 磁感应强度为 B = μH = μr μ0H = 4200×4π×10-7×200 = 1.056(T). (3)由传导电流产生的B 0为2.5×10-4T .由于B = B 0 + B`,所以磁化电流产生的磁感应强度为 B` = B - B 0 ≈1.056(T). 15.5 一根磁棒的矫顽力为H c = 4.0×103A·m -1,把它放在每厘米上绕5匝的线圈的长螺线管中退磁,求导线中至少需通入多大的电流? [解答]螺线管能过电流I 时,产生的磁感应强度为 B = μ0nI . 根据题意,螺线管产生的磁场强度至少要与磁棒的矫顽力大小相等,但方向相反, 因此 B = μ0H c , 所以电流强度为 I = H c /n = 4.0×103/500 = 8(A).

大学物理学习题解答习题

第十章 10-1无限长直线电流的磁感应强度公式为B=μ0I 2π a,当场点无限接近于导线时(即a→0),磁感应强度B→∞,这个结论正确吗?如何解释? 答:结论不正确。公式 a I B π μ 2 =只对理想线电流适用,忽略了导线粗细,当a→0,导线的尺寸不能忽略,电流就不能称为线电流,此公式不适用。 10-2如图所示,过一个圆形电流I附近的P点,作一个同心共面圆形环路L,由于电流分布的轴对称,L上各点的B大小相等,应用安培环路定理,可得∮L B·d l =0,是否可由此得出结论,L上各点的B均为零?为什么? 答:L上各点的B不为零. 由安培环路定理 ∑ ?= ? i i I l d B μ 得0 = ? ?l d B ,说明圆形环路L内的电流代数和为零, 并不是说圆形环路L上B一定为零。 10-3设题10-3图中两导线中的电流均为8A,对图示的三条闭合曲线a,b,c,分别写出安培环路定理等式右边电流的代数和.并讨论: (1)在各条闭合曲线上,各点的磁感应强度B 的大小是否相等? (2)在闭合曲线c上各点的B 是否为零?为什么? 解:?μ = ? a l B 8 d ?μ = ? ba l B 8 d ?= ? c l B0 d (1)在各条闭合曲线上,各点B 的大小不相等. (2)在闭合曲线C上各点B 不为零.只是B 的环路积分为零而非每点0 = B .题10-3图 习题10-2图

10-4 图示为相互垂直的两个电流元,它们之间的相互作用力是否等值、反向?由此可得出什么结论? 答:两个垂直的电流元之间相互作用力不是等值、反向的。 B l Id F d ?= 2 0?4r r l Id B d ?= πμ 221 21221 10221212201112)?(4?4r r l d I l d I r r l d I l d I F d ??=??= πμπμ 2 12 12112 20212121102212)?(4?4r r l d I l d I r r l d I l d I F d ??=??= πμπμ ))?()?((42 12 121221************r r l d l d r r l d l d I I F d F d ??+??-=+ πμ 2 122112 210212112221212102112)(?4))?()?((4r l d l d r I I r l d r l d l d r l d I I F d F d ??=?-?=+πμπμ 一般情况下 02112≠+F d F d 由此可得出两电流元(运动电荷)之间相互作用力一般不满足牛顿第三定律。 10-5 把一根柔软的螺旋形弹簧挂起来,使它的下端和盛在杯里的水银刚好接触,形成串联电路,再把它们接到直流电源上通以电流,如图所示,问弹簧会发生什么现象?怎样解释? 答:弹簧会作机械振动。 当弹簧通电后,弹簧内的线圈电流可看成是同向平行的,而同向平行电流会互相吸引,因此弹簧被压缩,下端会离开水银而电流被断开,磁力消失,而弹簧会伸长,于 是电源又接通,弹簧通电以后又被压缩……,这样不断重复,弹簧不停振动。 10-6 如图所示为两根垂直于xy 平面放置的导线俯视图,它们各载有大小为I 但方向相反的电流.求:(1)x 轴上任意一点的磁感应强度;(2)x 为何值时,B 值最大,并给出最大值B max . 解:(1) 利用安培环路定理可求得1导线在P 点产生的磁感强度的大小为: r I B π=201μ2/1220)(12x d I +?π=μ 2导线在P 点产生的磁感强度的大小为: r I B π=202μ2 /1220)(1 2x d I +?π=μ 1B 、2B 的方向如图所示. P 点总场 θθcos cos 2121B B B B B x x x +=+= 021=+=y y y B B B 习题10-4图 r 12 r 21 习题10-5图 习题10-6图 y P r B 1 x y 1 o x d θ θ

磁介质习题解答

第十二章磁介质 一 选择题 1. 磁介质有三种,用相对磁导率r μ表征它们各自的特征时,( ) A .顺磁质0r >μ,抗磁质0r <μ,铁磁质1r >>μ。 B .顺磁质1r >μ,抗磁质1r =μ,铁磁质1r >>μ。 C .顺磁质1r >μ,抗磁质1r <μ,铁磁质1r >>μ。 D .顺磁质0r >μ,抗磁质0r <μ,铁磁质1r >μ。 解:选(C ) 2. 关于稳恒磁场的磁场强度H 的下列几种说法中哪个是正确的?( ) A . H 仅与传导电流有关。 B . 若闭合曲线内没有包围传导电流,则曲线上各点的H 必为零。 C . 由于闭合曲线上各点H 均为零,则该曲线所包围传导电流的代数和为 零。 D . 以闭合曲线L 为边界的任意曲面的H 通量均相等。 解:由?∑=?L i I l H d ,H 的环流仅与闭合曲线内的传导电流I 有关,而不是H 仅与传导电流有关,所以A 不对。同样,若闭合曲线内没有包围传导电流,则H 的环流为零,而不是H 为零,B 不对。H 通量的正负与环路的积分方向有关,所以H 通量并不相同,D 不对 所以选(C ) 二 填空题 1. 一个单位长度上密绕有n 匝线圈的长直螺线管,每匝线圈中通有强度为I 的电流,管内充满相对磁导率为μr 的磁介质,则管内中部附近磁感应强度B 的大小=,磁场强度H 的大小=。 解:B =nI r μμ0,H =nI 2.图示为三种不同的磁介质的B-H 关系曲线,其中虚线表示的是B =μ0H 的关系,说明a 、b 、c 各代表哪一类磁介质的B-H 关系曲线: a 代表的B-H 关系曲线; b 代表的B-H 关系曲线; c 代表的B-H 关系曲线。

磁介质例题作业

第十五章磁介质 例15-1 顺磁物质的磁导率:[ ] (A) 比真空的磁导率略小(B) 比真空的磁导率略大 (C) 远小于真空的磁导率(D) 远大于真空的磁导率 例15-2 用细导线均匀密绕成长为l、半径为a (l >> a)、总匝数为N的螺线管,管内充满相对磁导率为μr 的均匀磁介质.若线圈中载有稳恒电流I,则管中任意一点的[ ] (A) 磁感强度大小为B = μ0 μ r NI.(B) 磁感强度大小为B = μ r NI / l. (C) 磁场强度大小为H = μ0NI / l.(D) 磁场强度大小为H = NI / l. 例15-3 置于磁场中的磁介质,介质表面形成面磁化电流,试问该面磁化电流能否产生楞次─焦耳热? 为什么? 习题 15-1 磁介质有三种,用相对磁导率μr表征它们各自的特性时,[ ] (A) 顺磁质μr >0,抗磁质μr<0,铁磁质μr>>1. (B) 顺磁质μr >1,抗磁质μr=1,铁磁质μr>>1. (C)顺磁质μr >1,抗磁质μr<1,铁磁质μr>>1. (D) 顺磁质μr<0,抗磁质μr<1,铁磁质μr>0. 15-2 长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I通过,其间充满磁导率为μ的均匀磁介质.介质中离中心轴距离为r的某点处的磁场强度的大小H= ;磁感强度的大小B = . 15-3 图示为三种不同的磁介质的B~H关系曲线,其中虚线表示的是B = μ0H的关系.说明各代表哪一类磁介质的B~H关系曲线:a代表 的B~H关系曲线.b代表 的B~H关系曲线. 15-4 有很大的剩余磁化强度的软磁材料不能做成永磁体,这是因为软磁材料 ;如果做成永磁体 . 15-5 如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I为2.0 A时,测得铁环内的磁感应强度的大小B为1.0 T,则可求得铁环的相对磁导率μr为(真空磁导率μ 0 =4π×10-7 T·m·A-1) [ ] 习题15-3图 习题15-5图

大学物理学第15章作业题

15 -8 天狼星的温度大约是11 000 ℃.试由维恩位移定律计算其辐射峰值的波长. 解 由维恩位移定律可得天狼星单色辐出度的峰值所对应的波长 nm 1057.27-?== T b λm 该波长属紫外区域,所以天狼星呈紫色. 15 -9 太阳可看作是半径为7.0 ×108 m 的球形黑体,试计算太阳的温度.设太阳射到地球表面上的辐射能量为1.4 ×103 W·m -2 ,地球与太阳间的距离为1.5 ×1011m. 分析 以太阳为中心,地球与太阳之间的距离d 为半径作一球面,地球处在该球面的某一位置上.太阳在单位时间内对外辐射的总能量将均匀地通过该球面,因而可根据地球表面单位面积在单位时间内接受的太阳辐射能量E ,计算出太阳单位时间单位面积辐射的总能量 ()T M ,再由公式()4T σT M =,计算太阳温度. 解 根据分析有 ()2 2π4π4R E d T M = (1) ()4T σT M = (2) 由式(1)、(2)可得 K 58002 /122=? ?? ? ??=σR E d T 15 -10 钨的逸出功是4.52eV ,钡的逸出功是2.50eV ,分别计算钨和钡的截止频率.哪一种金属可以用作可见光范围内的光电管阴极材料? 分析 由光电效应方程W m h += 2 v 2 1v 可知,当入射光频率ν =ν0 (式中ν0=W/h )时,电子刚能逸出金属表面,其初动能02 =v 2 1m .因此ν0 是能产生光电效应的入射光的最低频率(即 截止频率),它与材料的种类有关.由于可见光频率处在0.395 ×1015 ~0.75 ×1015Hz 的狭小范围内,因此不是所有的材料都能作为可见光范围内的光电管材料的(指光电管中发射电子用的阴极材料). 解 钨的截止频率 Hz 1009.1151 01?== h W v

大学物理第八章练习题

10题图 第八章 磁场 填空题 (简单) 1、将通有电流为I 的无限长直导线折成1/4圆环形状,已知半圆环的半径为R ,则圆心O 点的磁 感应强度大小为 。 2、磁场的高斯定律表明磁场是 ,因为磁场发生变化而引起电磁感应,所 产生的场是不同于回路变化时产生的 。相同之处是 。 3、只要有运动电荷,其周围就有 产生;而法拉弟电磁感应定律表明,只要 发生变 化,就有 产生。 4、(如图)无限长直导线载有电流I 1,矩形回路载有电流I 2,I 2回路的AB 边与长直导线平行。电 流I 1产生的磁场作用在I 2回路上的合力F 的大小为 ,F 的方向 。 (综合) , 5、有一圆形线圈,通有电流I ,放在均匀磁场B 中,线圈平面与B 垂直,I 则线圈上P 点将受到 , 力的作用,其方向为 ,线圈所受合力大小为 。(综合) 6、∑?==?n i i l I l d B 0 0μ 是 ,它所反映的物理意义是 。 7、磁场的高斯定理表明通过任意闭合曲面的磁通量必等于 。 8、电荷在磁场中 (填一定或不一定)受磁场力的作用。 9、磁场最基本的性质是对 有力的作用。 10、如图所示,在磁感强度为B 的均匀磁场中,有一半径为R 的半球面, B 与半球面轴线的夹角为α。求通过该半球面的磁通量为 。(综合) 11、当一未闭合电路中的磁通量发生变化时,电路中 产生感应电流;电路中 产生感应电动势(填“一定”或“不一定”) (综合) > 12、一电荷以速度v 运动,它既 电场,又 磁场。(填“产生”或“不产生”) 4题图 5题图

14题图 13、一电荷为+q ,质量为m ,初速度为0 的粒子垂直进入磁感应强度为B 的均匀磁场中,粒子将作 运动,其回旋半径R= ,回旋周期T= 。 14、把长直导线与半径为R 的半圆形铁环与圆形铁环相连接(如图a 、b 所示),若通以电流为I ,则 a 圆心O 的磁感应强度为 _____________; 图b 圆心O 的磁感应强度为 15、在磁场中磁感应强度B 沿 任意闭合路径的线积分总等于 。这一重要结论称为磁场的环路定理,其数学表达式为 。 16、磁场的高斯定理表明磁场具有的性质 。 17、在竖直放置的一根无限长载流直导线右侧有一与其共面的任意形状的平面线圈,直导线中的电流由上向下,当线圈以垂直于导线的速度背离导线时,线圈中的感应电动势 ,当线圈平行导线向上运动时,线圈中的感应电动势 。(填>0,<0,=0)(设顺时针方向的感应电动势为正) 18、在磁场空间分别取两个闭合回路,若两个回路各自包围载流导线的根数不同,但电流的代数和相同,则磁感应强度沿两闭合回路的线积分 ,两个回路的磁场分布 。(填“相同”或“不相同” ) ( 判断题 (简单) 1、安培环路定理说明电场是保守力场。 ( ) 2、安培环路定理说明磁场是无源场。 ( ) 3、磁场的高斯定理是通过任意闭合曲面的磁通量必等于零。 ( ) 4、电荷在磁场中一定受磁场力的作用。 ( ) 5、一电子以速率V 进入某区域,若该电子运动方向不改变,则该区域一定无磁场;( ) 6、在B=2特的无限大均匀磁场中,有一个长为L1=2.0米,宽L2=0.50米的矩形线圈,设线圈平 面的法线方向与磁场方向相同,则线圈的磁通量为1Wb 。 7、磁场力的大小正比于运动电荷的电量。如果电荷是负的,它所受力的方向与正电荷相反。 8、运动电荷在磁场中所受的磁力随电荷的运动方向与磁场方向之间的夹角的改变而变化。当电荷的运动方向与

相关文档
最新文档