信号的产生分解与合成

信号的产生分解与合成
信号的产生分解与合成

信号的产生分解与合成 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

东南大学电工电子实验中心

实验报告

课程名称:电子线路实践

第七次实验

实验名称:信号的产生、分解与合成

院(系):电子科学与工程学院专业:

姓名:姜勖学号:06A11315

实验室:104实验组别:27

同组人员:徐媛媛实验时间:年月日

评定成绩:审阅教师:

实验四信号的产生、分解与合成

一、实验内容及要求

设计并安装一个电路使之能够产生方波,并从方波中分离出主要谐波,再将这些谐波合成为原始信号或其他周期信号。

1.基本要求

(1)设计一个方波发生器,要求其频率为1kHz,幅度为5V;

(2)设计合适的滤波器,从方波中提取出基波和3次谐波;

(3)设计一个加法器电路,将基波和3次谐波信号按一定规律相加,将合成后的信号与原始信号比较,分析它们的区别及原因。

2.提高要求

设计5次谐波滤波器或设计移相电路,调整各次谐波的幅度和相位,将合成后的信号与原始信号比较,并与基本要求部分作对比,分析它们的区别及原因。

3.创新要求

用类似方式合成其他周期信号,如三角波、锯齿波等。

分析项目的功能与性能指标:

功能:通过振荡电路产生一个方波,并将其通过滤波得到1、3、5次谐波,最后通过加法电路合成新的波形。

性能指标:

(1)方波:频率1KHz,幅度5V。

(2)滤波器:基础要求从方波中提取基波和三次谐波,提高要求提取五次谐波。

(3)移相电路:通过移相电路调节滤出来的1、3、5次谐波相位,使得其与原方波相位差近似为0。

(4)加法器电路:将基波和3次谐波和5次谐波信号按一定规律相加。

1、信号的产生

通过震荡电路产生1kHz ,幅度为5V 的方波信号。

2、滤波器的设计

根据方波的傅里叶展开式:

可知原信号分解只包含奇次谐波分量。因此设计不同中心频率的带通滤波器,可将各次谐波滤出。

3、相位校正电路

由于滤波器用到了对不同频率有不同响应的储能元件,对于滤除的波形会产生附加相位。若要让各次谐波叠加出原有信号,必须调节其相位使之同相。用全通滤波器可在不影响相对幅度的前提下改变相位。

4、加法电路

将滤除的基波、3次谐波、5次谐波相加,得到近似的方波信号。对于滤波器对不同频率分量不成比例的衰减,可在加法电路中选择合适的比例给予响应的补偿。

二、电路设计(预习要求)

(1) 电路设计思想(请将基本要求、提高要求、创新要求分别表述):

1、信号发生电路:

利用运放和RC 回路构成振荡电路,通过分别调节正反向RC 回路的时间常数和运

放同相输入端的参考电压来调节震荡电路的频率以及占空比。用一对稳压二极管限制输出电压幅度,并对稳压管导通压降进行一定的补偿。

2、有源带通滤波器:

根据实验要求,设计有源带通滤波器,将所需频率的信号以尽量小的衰减输出,同时对其它频率有非常大的衰减。因此需要增加滤波器的阶数。初步选择采用二阶有源带通滤波器,通过理论计算,调节其中一个电阻来改变中心频率。根据实际搭出的电路效果,可尝试使用四阶有源带通滤波器,以求获得更好的滤波效果。

3、相移电路:

由于滤波器难免对滤出的谐波分量产生附加相位,需要在选频电路之后加一全通

网络校正相位,抵消相位差。移向电路有两种,分为正向移向和反向移向。

4、加法电路

将所得到的各次谐波分量叠加,得到近似的方波。同时,加法电路可对滤波对原

信号分量的衰减进行补偿。

(2) 电路结构框图(请将基本要求、提高要求、创新要求分别画出):

基础要求:因基础要求与提高要求相比,除缺少5次滤波与移相电路外,其余部分均相同,其结构框图已包含在提高要求的框图中,故不单独列出。

提高要求:

(3)电路原理图(各单元电路结构、工作原理、参数计算和元器件选择说明): 分工:徐媛媛(滤波电路的设计、搭建和调试);姜勖(方波产生、相移及加法电路设计搭建和调试)

方波振荡及鉴幅电路:

采用迟滞比较及RC 反馈回路以及比较器鉴幅电路,总电路图如下:

设从输出端的对输入端的负反馈电阻分别为1f R 和2f R ,则前部分方波的振荡

周期为111222

ln(12)ln(12)f f R R T R C R C R R =+++,通过电位器分别调节1f R 和2f R 的阻值使方波的频率为1kHz ,占空比为50%。

由于运放741的压摆率较小,在输出方波时跳变沿斜率较低,如下图所示。

在振荡电路后追加高压摆率的LM311构成的鉴幅比较电路,对波形进行修

正,修正效果如下图所示。同时,为了防止鉴幅电路输入过大,在级联处对信号

予以衰减;另外,为了补偿稳压管正向导通压降造成的输出电压大于5V 的情况,在输出端再对信号进行一定的可调衰减。

本来想用LM311直接构成RC 方波振荡电路的,但或许是因为上拉电阻的影

响,电路输出的方波的占空比总不为50%且偏差较大,故仍采用741作为振荡电

路的运放。LM311构成振荡电路的输出波形如下所示,可以发现,占空比明显不

为50%。

带通滤波器:

使用TI 公司的FilterProDT 设计有源带通滤波器,基本电路图如下:

因该软件使用的并非标准电阻,所以实际应用的时候将阻值近似为标准电阻后可能会对滤波效果造成很大影响。若将三个电阻均改为电位器进行调节则难度极大,因此进一步计算其传递函数进行分析。 传递函数:31121212121

21)()(R R R C C s R R C C s C sR s H ++++-=

取ωj s =,求解0|)(|d d =ωω

j H 得取得最大增益时的角频率: 21213101R R C C R R +

=ω,πω200=f 实际试验中,取31R R >>,C C C ==21,则:

当Ω=k 801R ,Ω=k 1602R ,nF 1021==C C 时,对于不同的3R 取值,理论值如下:

Ω=k 801R ,Ω=63.43R ,nF 1021==C C 时,对于不同的2R 取值,理论值如下:

两表格对比可知,当中心频率

是5kHz 时,3R 值不是整数,且中心频率受其影响比受2R 影响要大得多。而且2R 阻值为几十千欧,选用的标准电阻与设计中的理论阻值相差不大,因此2R 选为标准电阻对中心频率基本没有影响。由此可见,3R 不宜用标准化参数的电阻,选用电位器调节更为合适。

从上面的分析可知,固定1C 、2C 、2R ,调节3R 改变通频带中心频率。

实际调试时发现,即使将3R 改为电位器调节,滤得的波形虽然频率大概符合要求,但存在高低不齐的问题。因此选择采用有源四阶带通滤波器。

基本电路图如下:

与以上分析相似,可知3R 是调节通频带中心频率的关键,不宜用标准化参数的电阻,选用电位器调节更为合适。实际操作中,将第一级滤波电路的3R 改为电位器调节即可,滤得的波形与二阶滤波相比要准确很多。 移向电路: 考虑幅值的损失,应使得最终输入输出表达式为两个共轭复数的相除,使得

模值比为1,而使输出相对源输入产生附加相移。通过可变电阻对输出的相移进

行改变,输入输出比表达式应该是R 的函数,即()f R 选择图所示的电路实现移项功能。

由下左图,联立方程组

()31

1R U C j U U in =-ω① 1121R U U R U U out in -=-② 解得 1

3213+-

=CR j R R CR j U U in out ωω 左图0~180°移相电路右图-180~0°移相电路

若选择参数1R =2R ,则表达式化简为1133+-=CR j CR j U U in out ωω,其模为1。针对滤波器网络输出的不同频率的波形适当选择C 的大小,

3CR ω在调节的过程中大小在1左右变动实现相移。当3R =0时,相移为π;当

3CR ω=∞时,相移为0,相移的变化范围可以满足调整的需要。

同理,如图,有1133++-=CR j CR j U U in out ωω,当3R =0时,相移为0;当

3CR ω=∞时,相移为-π;

在本实验中,取21R R ==10k Ω,电容选用100nF 的电容,电位器选用10k

Ω。可以根据实际的情况来选择以上两种移项,其中第一种移相器的可移动相位角为0~180°,第二种移相器的可移动相位角为-180~0°。

仿真波形如下所示,其中,红色为输入波形,黄色为左图相移波形,绿色为

右图相移波形。

加法器电路:

由于滤波电路以及移相电路使得滤出来的各次谐波有一定的衰减,若要使得

合成的波形与原方波较相似,需通过改变电阻调节增益使得各次谐波达到需要的

值,增益应该〉1,因此选择100f R k =Ω,12310R R R k <Ω、、,阻值不过大也不过

小,较合适。

(4)列出系统需要的元器件清单(请设计表格列出,提高要求、创新要求多用到的器件请注明):

元件 数量 元件 数量

电阻10k Ω 1 运放ua741 7+5(提

高)

电阻80k Ω 2(提高)

稳压二极管 2

*注:图示参数并未调

整,具体取值以后面解

说为准,在此仅做功能

分析。

电阻150kΩ 2 LM311 1 电阻450kΩ 2 电位器100Ω1+1(提

高)

电容10nF 4+4(提

高)电位器10kΩ2+1(提

高)

电容100nF 2 电位器1kΩ 3 (3)

出):

三次谐

五次谐波

基础要求扩展要

电路仿真总

三、硬件电路功能与指标,测试数据与误差分析

(1)硬件实物图(照片形式):

(2)制定实验测量方案:

1、用数字存储示波器测量方波产生的信号,测量幅度、频率。调节电位器,使频

率为1kHz,占空比为50%。

2、用双踪示波器分别测量方波和滤波器输出。利用电位器调节5次谐波。

3、用双踪示波器分别测量方波和经过调相电路的信号输出,分别使基波、3次谐

波、5次谐波与方波同相位。

4、加法电路中,依次将其中一路谐波输入信号输入,其余接地,通过双踪示波器

观察,调节电位器,使之输出幅度满足傅里叶系数。

5、将三个信号叠加,观察示波器波形,与原方波对比。

(3)使用的主要仪器和仪表:

1、直流电源

2、双踪数字存储示波器

(4)调试电路的方法和技巧:

采用分模块调试的方法,保证各模块指标符合要求后在进行组合。

方波振荡电路:通过调节电位器,使得频率为1kHz,占空比为50%,由于稳压管不是准确,又对产生的方波进行比例调节,使得幅值为准确的5V。

滤波电路:基波与3次滤波电路实际效果很好,不需要进行调节(3次滤波因采用四阶带通有源滤波器的缘故,且接地电阻与理论值十分接近,因而不需要电位器进行调节即可得到频率符合要求、最大值与最小值相同的正弦波。)调节5次滤波电路的接地电阻,使其中心频率到达所要的频率点。

移相电路:用双踪示波器观察所产生方波与滤除波形,调节电位器,使两者无相位差。

加法电路:依次将其中一路谐波输入信号输入,其余接地,通过双踪示波器观察输出波形的幅值,调节电位器,使之满足傅里叶系数。各路谐波调节好后,再用示波器分别观察基波与3次谐波叠加及基波、3次谐波、5次谐波全部叠加后的波形。

(5)测试的数据和波形并与设计结果比较分析:

【1】方波:

频率:正频宽:sμ负频宽:sμ占空比:%

04

50

.

最小值:最大值:

频率、占空比、幅值均达到要求。

【2】基波

方波频率,基波频率,与理论值吻合。

因本图为直接滤波后得到的波形,滤波电路对增益存在一定的衰减,所以基波幅值较小,将在后面的加法电路中对增益进行补偿。

【3】三次谐波

方波频率,3次谐波频率,与理论值十分接近。

关于幅值的解释同基波。

【4】五次谐波

方波频率,5次谐波频率,与理论值相近。

关于幅值的解释同基波。

【5】基波+3次谐波

方波频率,叠加后的频率也为,符合要求。

叠加后的波形与方波相比几乎没有相位差。

【5】基波+3次谐波+5次谐波

方波频率,叠加后的频率为,十分接近。

叠加后的波形与方波相比几乎没有相位差。

与上图相比,基波和3次、5次谐波叠加的结果更接近原方波。

(6)调试中出现的故障、原因及排除方法:

由于级间耦合的影响,五次谐波滤波电路单级调试正常,在经相移电路后波形出现失真,为了消除该影响,在两级之间连入一电压跟随器,起到隔离作用,解决了问题。

因为作品焊接在了洞洞板上,对焊接要求较高。在最终调试的时候,发现加法电路无法输出波形,检查许久后,终于发现是741芯片引脚接触不良导致,重新焊接芯片座之后问题解决,再次级联后效果很好。

四、总结

(1)阐述设计中遇到的问题、原因分析及解决方法:

电路设计中所用到的电阻很多都不是标准电阻,取相近的标准电阻后,电路功能会出现一定的变化,特别对于滤波电路来说精确的电阻非常重要。

实际中采用定值电阻和电位器组合的方式解决了该问题。

(2)总结设计电路和方案的优缺点:

优点:产生方波的各个参数可控而且瞬时性很好,同时,采用较多电位器对电路结构进行微调,使最终波形较为平滑而完整。

滤波器采用四阶滤波,带内波动较小,输出波形的频率稳定;可通过加法电路补偿衰减;各部分电路结构相似,便于统一分析与调试。

不足:对通频带带宽缺少实时调节办法,同时,用了较多的运放和电位器,电路连接较为复杂。

(3)指出课题的核心及实用价值,提出改进意见和展望:

核心:信号的产生;滤波器的设计;波形的相移及合成

实用价值:可对混杂在一起的信号进行分解,并分离高频噪声,将有用的信号保留,还原有价值的信息,对采样定理等的原理能有一种较为感性的认识。

改进意见:被分解的信号可以是方波以外的常见周期信号,也可将方波分解得到的信号按照别的傅里叶级数合成其它波形(例如按照1:(1/9):(1/25)合成三角波)。

(4)实验的收获和体会:

滤波器在电子电路中有着很重要的作用,并有着广泛的应用。通过信号的产生、分解与合成,体会到了信号的发生、传输与接收的过程。

同时,锻炼动手能力,将理论很好地应用于实际,并对理论有更深的理解。

五、参考文献

1、刘京南.电子线路基础.北京:电子工业出版社,2003.

2、康华光.电子技术基础(模拟部分)第五版

周期信号的分解与合成

实验一周期信号的分解与合成 一、实验目的 1.用同时分析法观测50Hz 非正弦周期信号的频谱。 2.观测基波和其谐波的合成。 二、实验原理 1.一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其它成分则根据其频率为基波频率的2、3、4、...、n 等倍数分别称二次、三次、四次、...、n 次谐波,其幅度将随谐波次数的增加而减小,直至无穷小。 2.不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分。 3.一个非正弦周期函数可用傅里叶级数来表示,级数各项系数之间的关系可用一各个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表1-1 表1-1 各种不同波形的傅里叶级数表达式(下) 1.方波

2.三角波 3.半波 4.全波 5.矩形波 三、预习要求 在做实验前必须认真复习教材中关于周期性信号傅利叶级数分解的有关内容。 四、实验内容 1. 50HZ方波信号的频谱。 2. 周期矩形脉冲的频谱;脉冲宽度为1;周期为4;则基波角频率为0.5pi 3. 使用不同频率的谐波合成方波信号;注意观察随着谐波数的增加合成的波形发生的变化。 4. 使用不同频率的谐波合成矩形脉冲信号;注意观察随着谐波数的增加合成的波形。 五、思考题 1.什么样的周期性函数没有直流分量和余弦项?

附: 1. 50HZ方波信号的频谱。 >> w1= ; %基波角频率 >> n=0:1:30; >>bn= ; %三角级数中系数bn,参考书p122 >> stem(n*w1,bn),grid on >> xlabel('\omega(rad/s)'),ylabel('bn') >> title('方波信号频谱分析图') 2. 周期矩形脉冲的频谱;脉冲宽度为1;周期为4;则基波角频率为0.5pi tao= ; w1= ; n=-15:1:15; fn= ; %矩形脉冲级数系数fn,参考书p130,用matlab自带函数sinc stem(n,fn),grid on xlabel('n'); ylabel('Fn'); title('周期矩形脉冲的频谱图'); 3. %使用不同频率的谐波合成方波信号;注意观察随着谐波数的增加合成的波形 %发生的变化。 t=-1:0.001:1; omega=2*pi; y=square(2*pi*t,50); plot(t,y);grid on xlabel('t'); ylabel('周期方波信号'); axis([-1 1 -1.5 1.5]); n_max=[1 3 5 11 47]; N=length(n_max); for k=1:N n=1:2:n_max(k); b=4./(pi*n); x=b*sin(omega*n'*t); figure; plot(t,y) hold on; plot(t,x); hold off; xlabel('t'); ylabel('部分和的波形');

实验四 信号的产生、分解与合成

实验四信号的产生、分解与合成 一、实验内容及要求 设计并安装一个电路使之能够产生方波,并从方波中分离出主要谐波,再将这些谐波合成为原始信号或其他周期信号。 1.基本要求 (1)设计一个方波发生器,要求其频率为1kHz,幅度为5V; (2)设计合适的滤波器,从方波中提取出基波和3次谐波; (3)设计一个加法器电路,将基波和3次谐波信号按一定规律相加,将合成后的信号与原始信号比较,分析它们的区别及原因。 2.提高要求 设计5次谐波滤波器或设计移相电路,调整各次谐波的幅度和相位,将合成后的信号与原始信号比较,并与基本要求部分作对比,分析它们的区别及原因。 3. 创新要求 用类似方式合成其他周期信号,如三角波、锯齿波等。 分析项目的功能与性能指标: 该项目一是产生方波,二是对方波进行分解与再合成。其中主要涉及方波发生电路,滤波器以及加法电路。为了使合成波形相位相等,还需要用到移相电路以及比例放大电路。 二、电路设计(预习要求) (1)电路设计思想(请将基本要求、提高要求、创新要求分别表述): 采用电压比较器输出方波(占空比达50%),用二阶带通滤波器分别滤出基波、三次、五次谐波。将三次和五次谐波移相使其与基波相位相同,最后用运放同时实现比例与加法运算,得到叠加波形。 (2)电路结构框图(请将基本要求、提高要求、创新要求分别画出): 图1 (3)电路原理图(各单元电路结构、工作原理、参数计算和元器件选择说明):

图2 如上图,整个电路分成五个部分,分别标注为部分一~部分五。 部分一是方波产生电路,利用电压比较器。通过电容的充放电形成电压振荡,振荡中进行电压比较输出方波。由频率的计算公式 ,令f=1kHz ,分别取C1=100nF , R1=10k Ω,则计算得。取R3=10k Ω,则R2=3.2k Ω,于是取其临近值3.3k Ω。 部分二是反相比例放大电路,该部分的功能是缩小方波幅值。主要是为了配合部分三的滤波部分,使滤波的幅值不至于过大。 部分三为滤波部分。由上到下分别为基波滤波器(1kHz ),三次谐波滤波器(3kHz ),五次谐波滤波器(5kHz )。三者均采用带通滤波器设计。带通滤波器是只保留频带内的有效信号,而消除高频带和低频带的干扰信号,从而能够实现分理出1k 、3k 、5k 赫兹频率子波的 功能。由放大倍数 ,所以为了使三个滤波器的电压放大倍数相等,取 。从而使每个通频带的带宽都较小,品质因数较高。 由带宽计算公式,可得三者的带宽分别为39.2Hz ,117.6Hz 和196.1Hz 。 以下对滤波器的其他参数分别进行阐释。基波滤波器的中心频率为1kHz ,由,分 别取C2=C3=10nF ,则计算得R ’=R6+R7=15.915k Ω。根据手边电阻,选取R6=15k Ω,R7=910Ω。根据此带通滤波器的特性,选取R8+R9=R ’=15k Ω+910Ω。R11+R12+R13=2R ’=27k Ω+470 1 2 3 4 5

信号的产生分解与合成

东南大学电工电子实验中心 实验报告 课程名称:电子线路实践 第七次实验 实验名称:信号的产生、分解与合成 院(系):电子科学与工程学院专业: 姓名:姜勖学号:06A11315 实验室:104实验组别:27 同组人员:徐媛媛实验时间:年月日 评定成绩:审阅教师: 实验四信号的产生、分解与合成 一、实验内容及要求 设计并安装一个电路使之能够产生方波,并从方波中分离出主要谐波,再将这些谐波合成为原始信号或其他周期信号。 1.基本要求 (1)设计一个方波发生器,要求其频率为1kHz,幅度为5V; (2)设计合适的滤波器,从方波中提取出基波和3次谐波; (3)设计一个加法器电路,将基波和3次谐波信号按一定规律相加,将合成后的信号与原始信号比较,分析它们的区别及原因。 2.提高要求 设计5次谐波滤波器或设计移相电路,调整各次谐波的幅度和相位,将合成后的信号与原始信号比较,并与基本要求部分作对比,分析它们的区别及原因。 3.创新要求 用类似方式合成其他周期信号,如三角波、锯齿波等。 分析项目的功能与性能指标: 功能:通过振荡电路产生一个方波,并将其通过滤波得到1、3、5次谐波,最后通过加法电路合成新的波形。 性能指标: (1)方波:频率1KHz,幅度5V。 (2)滤波器:基础要求从方波中提取基波和三次谐波,提高要求提取五次谐波。 (3)移相电路:通过移相电路调节滤出来的1、3、5次谐波相位,使得其与原方波相位差近似为0。

(4)加法器电路:将基波和3次谐波和5次谐波信号按一定规律相加。 1、信号的产生 通过震荡电路产生1kHz ,幅度为5V 的方波信号。 2、滤波器的设计 根据方波的傅里叶展开式: 可知原信号分解只包含奇次谐波分量。因此设计不同中心频率的带通滤波器,可将各次谐波滤出。 3、相位校正电路 由于滤波器用到了对不同频率有不同响应的储能元件,对于滤除的波形会产生附加相位。若要让各次谐波叠加出原有信号,必须调节其相位使之同相。用全通滤波器可在不影响相对幅度的前提下改变相位。 4、加法电路 将滤除的基波、3次谐波、5次谐波相加,得到近似的方波信号。对于滤波器对不同频率分量不成比例的衰减,可在加法电路中选择合适的比例给予响应的补偿。 二、电路设计(预习要求) (1) 电路设计思想(请将基本要求、提高要求、创新要求分别表述): 1、信号发生电路: 利用运放和RC 回路构成振荡电路,通过分别调节正反向RC 回路的时间常数和运放同相输入端的参考电压来调节震荡电路的频率以及占空比。用一对稳压二极管限制输出电压幅度,并对稳压管导通压降进行一定的补偿。 2、有源带通滤波器: 根据实验要求,设计有源带通滤波器,将所需频率的信号以尽量小的衰减输出,同时对其它频率有非常大的衰减。因此需要增加滤波器的阶数。初步选择采用二阶有源带通滤波器,通过理论计算,调节其中一个电阻来改变中心频率。根据实际搭出的电路效果,可尝试使用四阶有源带通滤波器,以求获得更好的滤波效果。 3、相移电路: 由于滤波器难免对滤出的谐波分量产生附加相位,需要在选频电路之后加一全通网络校正相位,抵消相位差。移向电路有两种,分为正向移向和反向移向。 4、加法电路 将所得到的各次谐波分量叠加,得到近似的方波。同时,加法电路可对滤波对原信号分量的衰减进行补偿。 (2) 电路结构框图(请将基本要求、提高要求、创新要求分别画出): 基础要求:因基础要求与提高要求相比,除缺少5次滤波与移相电路外,其余部分均相同,其结构框图已包含在提高要求的框图中,故不单独列出。 提高要求: (3)电路原理图(各单元电路结构、工作原理、参数计算和元器件选择说明): 分工:徐媛媛(滤波电路的设计、搭建和调试);姜勖(方波产生、相移及加法电路设计搭建和调试) 方波振荡及鉴幅电路: 采用迟滞比较及RC 反馈回路以及比较器鉴幅电路,总电路图如下: 设从输出端的对输入端的负反馈电阻分别为1f R 和2f R ,则前部分方波的振荡周期为111222 ln(12)ln(12)f f R R T R C R C R R =+++,通过电位器分别调节1f R 和2f R 的阻值使方波的频率为1kHz ,占空比为50%。

信号分解与合成实验报告

实验二信号分解与合成 --谢格斯110701336 聂楚飞110701324 一、实验目的 1、观察电信号的分解。 2、掌握带通滤波器的有关特性测试方法。 3、观测基波和其谐波的合成。 二、实验内容 1、观察信号分解的过程及信号中所包含的各次谐波。 2、观察由各次谐波合成的信号。 三、预备知识 1、了解李沙育图相关知识。 2、课前务必认真阅读教材中周期信号傅里叶级数的分解以及如何将各次谐波进行叠加等相关内容。 四、实验仪器 1、信号与系统实验箱一台(主板)。 2、电信号分解与合成模块一块。 3、20M双踪示波器一台。 五、实验原理 任何电信号都是由各种不同频率、幅度和初相的正弦波迭加而成的。对周期信号由它的 傅里叶级数展开式可知,各次谐波为基波频率的整数倍。而非周期信号包含了从零到无穷大的所有频率成份,每一频率成份的幅度均趋向无限小,但其相对大小是不同的。 通过一个选频网络可以将电信号中所包含的某一频率成份提取出来。本实验采用性能较 佳的有源带通滤波器作为选频网络,因此对周期信号波形分解的实验方案如图2-3-1所示。 将被测方波信号加到分别调谐于其基波和各次奇谐波频率的一系列有源带通滤波器电路上。从每一有源带通滤波器的输出端可以用示波器观察到相应频率的正弦波。本实验所用 的被测信号是 1 53Hz左右的周期信号,而用作选频网络的五种有源带通滤波器的输出 频率分别是「2 2、3 3、4 4、5 5,因而能从各有源带通滤波器的两端观察到基波和各 次谐波。其中,在理想情况下,如方波的偶次谐波应该无输出信号,始终为零电平,而奇次谐波则具有很好的幅度收敛性,理想情况下奇次谐波中一、三、五、七、九次谐波的幅度比应为1: (1/3):(1/5):(1/7):(1/9)。但实际上因输入方波的占空比较难控制在50%,且方 波可能有少量失真以及滤波器本身滤波特性的有限性都会使得偶次谐波分量不能达到理想零的情况。 六、实验步骤 1、把系统时域与频域分析模块插在主板上,用导线接通此模块“电源接入”和主板上 的电源(看清标识,防止接错,带保护电路),并打开此模块的电源开关。 2、调节函数信号发生器,使其输出53Hz左右(其中在50Hz ~ 56Hz之间进行选择,

信号分解与合成实验

深圳大学实验报告课程名称:信号与系统 实验项目名称:信号的分解与合成实验 学院:信息工程工程学院 专业: 电子信息工程 指导教师: 报告人:学号:班级: 实验时间: 实验报告提交时间: 教务处制

电位器W01、W02、W03可以将基波,三次谐波,五次谐波,七次谐波的幅度调节成1:1/3 : 1/5 : 1/7,通过导线将其连接至信号的合成的输入插座IN01、IN02、IN03、IN04J ,通过测试勾可以观察到合成后的波形。 2、验证三次谐波与基波之间的相位差是否为180,五次谐波与基波之间的相位差是否为0.可用李沙育图形法进行测量,其测量方法如下:用导线将函数发生器的方便输出端与带通滤波器输入端连接起来,即把方波信号分先后送入各带通滤波器,如图(1)所示. 具体方法:基波与各高次谐波相位比较(李沙育频率测试法) 把BFP-1ω处的基波送入示波器的X 轴,再分别把BFP-31ω、BFP-51ω处的高次谐波送入Y 轴,示波器采用X —Y 方式显示,观察李沙育图。 当基波与三次谐波相位差为0、90、180时,波形分别如图所示. 以上是三次谐波与基波产生的典型的李沙育图,通过图形上下端及两旁的波峰个数,确定频率比.

五、实验步骤与相应实验结果: 1、把电信号分解与合成模块插在主板上,用导线接通此模块“电源插入”和主板上的电源,并打开此模块的电源开关. 2、调节函数信号发生器,使其输出10KHz左右的方波,占空比为50%,峰峰值为6V左右,如图(2)所示。将其接至该实验模块的“输入端",用示波器观察各次谐波的输出即各次谐波,分别如图(3)、图(4)、图(5)、图(6)所示. 图(2)输出方波信号 图(3)基次谐波图(4)三次谐波 图(5)五次谐波图(6)七次谐波

周期信号分解与合成

信号与线性系统课程设计报告课题1 周期信号分解与合成 班级: 姓名: 学号: 组号及同组人: 成绩: 指导教师: 日期:

题目:周期信号分解与合成 摘要:本文主要利用多反馈带通滤波器的设计方法,设计五中不同中心频率的带通滤波器,分别对应于输入信号利用傅里叶级数展开后的基波分量频率、二次谐波分量频率、三次谐波分量频率、四次谐波分量频率、五次谐波分量频率,通过带通滤波器对原输入信号进行滤波将各个分量分开,实现信号的分解,利用加法器实现信号的合成,在设计时先采用Multisim 软件进行模拟电路设计及仿真,然后根据仿真结果进行元件参数的修改,当仿真结果比较理想后,进行硬件电路的调试。 关键词:周期信号,分解,合成,带通滤波器,加法器 1课程设计的目的、意义 本课题主要研究周期信号分解与合成的软硬件实现方法以及相关滤波器的设计及应用。通过本课题的设计,主要达到以下几个目的: 1.了解周期信号分解与合成电路的原理及实现方法。 2.深入理解信号频谱和信号滤波的概念,理解滤波器幅频响应和相频响应对信号的影响以及无失真传输的概念。 3.掌握模拟带通滤波器的原理与设计方法。 4.掌握利用Multisim软件进行模拟电路设计及仿真的方法。 5.了解周期信号分解与合成硬件电路的设计、制作、调试过程及步骤。 6.掌握新一代信号与系统实验系统及虚拟示波器、虚拟信号发生器的操作使用方法。 7.培养运用所学知识分析和解决实际问题的能力。 2 设计任务及技术指标 本课题的任务包括周期信号分解与合成电路设计、电路(系统)仿真分析、电路板焊接、电路调试与测试、仿真和测试结果分析等内容,主要工作有: 1. 采用有源带通滤波器,选择适当的滤波器参数,设计一个能分解出周期信号(周期信

典型信号的合成和分解

实验指导书 实验项目名称:典型信号的合成和分解 实验项目性质:普 通 所属课程名称:工程测试技术 实验计划学时:2 一.实验目的 通过本实验熟悉信号的合成、分解原理,了解信号频谱的含义和特点。 二.实验内容和要求 1.周期信号的合成和分解 在有限区间内,凡满足狄里赫利条件的周期信号x(t)都可以展开傅里叶三角函数级数。 001001 ()(cos sin )2 cos()(1,2,3,)2n n n n n n n a x t a n t b n t a A n t n ωωω?∞=∞==++=+-=∑∑ 式中 0a ——常值分量 00/20/202()T T a x t dt T -=? n a ——余弦分量的幅值

00/20/202()cos T n T a x t n tdt T ω-=? n b ——正弦分量的幅值 00/20/202()sin T n T b x t n tdt T ω-=? n A ——n 次谐波的振幅,是n 的偶函数 n A = n ?——n 次谐波的相角,是n 的奇函数 arctan n n n a b ?= 可见,周期信号是由周期信号是由一个或几个、乃至无穷多个不同频率的谐波叠加而成的。也就是说,复杂周期信号是由几个乃至无穷多个简单的周期信号组成的,这些组成的周期信号的频率具有公约数,周期具有公共的周期。 因此,周期信号可以分解成多个乃至无穷多个谐波信号。反过来说,我们可以用一组谐波信号来合 成任意形状的周期信号。 例如对于如右图所示的方 波,其时域描述表达式为 000()()02()02x t x t nT T A t x t T A t =+????<

信号分解与合成实验报告

实验二 信号分解与合成 --谢格斯 110701336 聂楚飞110701324 一、实验目的 1、观察电信号的分解。 2、掌握带通滤波器的有关特性测试方法。 3、观测基波和其谐波的合成. 二、实验内容 1、观察信号分解的过程及信号中所包含的各次谐波。 2、观察由各次谐波合成的信号。 三、预备知识 1、了解李沙育图相关知识. 2、课前务必认真阅读教材中周期信号傅里叶级数的分解以及如何将各次谐波进行叠加等相关内容. 四、实验仪器 1、信号与系统实验箱一台(主板)。 2、电信号分解与合成模块一块。 3、20M双踪示波器一台. 五、实验原理 任何电信号都是由各种不同频率、幅度和初相的正弦波迭加而成的。对周期信号由它的傅里叶级数展开式可知,各次谐波为基波频率的整数倍。而非周期信号包含了从零到无穷大的所有频率成份,每一频率成份的幅度均趋向无限小,但其相对大小是不同的. 通过一个选频网络可以将电信号中所包含的某一频率成份提取出来。本实验采用性能较佳的有源带通滤波器作为选频网络,因此对周期信号波形分解的实验方案如图2-3—1所示。 将被测方波信号加到分别调谐于其基波和各次奇谐波频率的一系列有源带通滤波器电路上。从每一有源带通滤波器的输出端可以用示波器观察到相应频率的正弦波。本实验所用的被测信号是Hz 531=ω左右的周期信号,而用作选频网络的五种有源带通滤波器的输出频 率分别是543215432ωωωωω、、、、 ,因而能从各有源带通滤波器的两端观察到基波和各次谐波.其中,在理想情况下,如方波的偶次谐波应该无输出信号,始终为零电平,而奇次谐波则具有很好的幅度收敛性,理想情况下奇次谐波中一、三、五、七、九次谐波的幅度比应为1:(1/3):(1/5):(1/7):(1/9)。但实际上因输入方波的占空比较难控制在50%,且方波可能有少量失真以及滤波器本身滤波特性的有限性都会使得偶次谐波分量不能达到理想零的情况。 六、实验步骤 1、把系统时域与频域分析模块插在主板上,用导线接通此模块“电源接入"和主板上的电源(看清标识,防止接错,带保护电路),并打开此模块的电源开关. 2、调节函数信号发生器,使其输出Hz 53左右(其中在Hz Hz 56~50之间进行选择,

周期矩形脉冲的分解与合成

周期矩形脉冲的分解与合成

本科实验报告 实验名称:周期矩形脉冲的分解与合成

一、实验目的和要求 ? 进一步了解波形分解与合成原理。 ? 进一步掌握用傅里叶级数进行谐波分析的方法。 ? 分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成。 ? 观察矩形脉冲信号通过多个数字滤波器后,分解出各谐波分量的情况。 ? 观察相位对波形合成中的作用。 二、实验内容和原理 2.1 信号的时域特性与频域特性 时域特性和频域特性是信号的两种不同的描述方式。一个时域上的周期信号,只要满足荻里赫勒(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里叶级数。由于三角形式的傅里叶级数物理含义比较明确,所以本实验利用三角形式实现对周期信号的分解。 一个周期为T 的时域周期信号()x t ,可以在任意00(,)t t T +区间,精确分解为以下三角形式傅里叶级数,即 0001()(cos sin ) k k k x t a a k t b k t ωω∞ ==++∑ 2.2 矩形脉冲信号的幅度谱 一般利用指数形式的傅里叶级数计算周期信号的幅度谱。 0()jk t k k x t X e ω∞ =-∞ = ∑ (3) 式中0/2 /2 1()T jk t k T X x t e dt T ω--= ? 。计算出指数形式的复振幅k X 后,再利用单边幅 度谱和双边幅度谱的关系:0 2,0 ,0k k X k C X k ?≠?=?=??,即可求出第k 次谐波对应的振

幅。 内容: (1)方波信号的分解。调整“信号源及频率计模块”各主要器件,通过TP1~TP8观察500Hz方波信号的各次谐波,并记录各次谐波的峰峰值。 (2)矩形波信号的分解。将矩形脉冲信号的占空比变为25%,再通过TP1~TP8观察500Hz矩形脉冲信号的各次谐波,并记录各次谐波的峰峰值。 (3)方波的合成。将矩形脉冲信号的占空比再变为50%,通过调节8位拨码开关,观察不同组合的方波信号各次谐波的合成情况,并记录实验结果。 (4)相位对矩形波合成的影响。将SW1调节到“0110”,通过调节8位拨码开关,观察不同组合的方波信号各次谐波的合成情况,并记录实验结果。 三、实验项目 周期矩形脉冲的分解与合成 四、实验器材 信号与系统实验箱一台 双踪示波器一台 五、实验步骤 5.1 方波信号的分解 ①连接“信号源与频率计模块”的模拟输出端口P2与“数字信号处理模块”的模拟输入端口P9; ②将“信号源及频率计模块”的模式切换开关S2置信号源方式,扫频开关S3置off,利用波形切换按钮S4产生矩形波(默认方波,即占空比为50%),利用频率调节按钮ROL1保证信号频率为500Hz; ③将“数字信号处理模块”模块的8位拨码开关调节为“00000000”; ④打开信号实验箱总电源(右侧边),打开S2、S4 两模块供电开关; ⑤用示波器分别观察测试点“TP1~TP7”输出的一次谐波至七次谐波的波形及TP8处输出的七次以上谐波的波形; ⑥根据表1,记录输入信号参数及测试结果。 5.2 矩形波信号的分解 ①按下“信号源及频率计模块”的频率调节按钮ROL1约1秒钟后,数码

信号的产生分解与合成

信号的产生分解与合成 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

东南大学电工电子实验中心 实验报告 课程名称:电子线路实践 第七次实验 实验名称:信号的产生、分解与合成 院(系):电子科学与工程学院专业: 姓名:姜勖学号:06A11315 实验室:104实验组别:27 同组人员:徐媛媛实验时间:年月日 评定成绩:审阅教师: 实验四信号的产生、分解与合成 一、实验内容及要求 设计并安装一个电路使之能够产生方波,并从方波中分离出主要谐波,再将这些谐波合成为原始信号或其他周期信号。 1.基本要求 (1)设计一个方波发生器,要求其频率为1kHz,幅度为5V; (2)设计合适的滤波器,从方波中提取出基波和3次谐波; (3)设计一个加法器电路,将基波和3次谐波信号按一定规律相加,将合成后的信号与原始信号比较,分析它们的区别及原因。 2.提高要求 设计5次谐波滤波器或设计移相电路,调整各次谐波的幅度和相位,将合成后的信号与原始信号比较,并与基本要求部分作对比,分析它们的区别及原因。 3.创新要求 用类似方式合成其他周期信号,如三角波、锯齿波等。 分析项目的功能与性能指标: 功能:通过振荡电路产生一个方波,并将其通过滤波得到1、3、5次谐波,最后通过加法电路合成新的波形。 性能指标: (1)方波:频率1KHz,幅度5V。 (2)滤波器:基础要求从方波中提取基波和三次谐波,提高要求提取五次谐波。 (3)移相电路:通过移相电路调节滤出来的1、3、5次谐波相位,使得其与原方波相位差近似为0。

(4)加法器电路:将基波和3次谐波和5次谐波信号按一定规律相加。 1、信号的产生 通过震荡电路产生1kHz ,幅度为5V 的方波信号。 2、滤波器的设计 根据方波的傅里叶展开式: 可知原信号分解只包含奇次谐波分量。因此设计不同中心频率的带通滤波器,可将各次谐波滤出。 3、相位校正电路 由于滤波器用到了对不同频率有不同响应的储能元件,对于滤除的波形会产生附加相位。若要让各次谐波叠加出原有信号,必须调节其相位使之同相。用全通滤波器可在不影响相对幅度的前提下改变相位。 4、加法电路 将滤除的基波、3次谐波、5次谐波相加,得到近似的方波信号。对于滤波器对不同频率分量不成比例的衰减,可在加法电路中选择合适的比例给予响应的补偿。 二、电路设计(预习要求) (1) 电路设计思想(请将基本要求、提高要求、创新要求分别表述): 1、信号发生电路: 利用运放和RC 回路构成振荡电路,通过分别调节正反向RC 回路的时间常数和运 放同相输入端的参考电压来调节震荡电路的频率以及占空比。用一对稳压二极管限制输出电压幅度,并对稳压管导通压降进行一定的补偿。 2、有源带通滤波器: 根据实验要求,设计有源带通滤波器,将所需频率的信号以尽量小的衰减输出,同时对其它频率有非常大的衰减。因此需要增加滤波器的阶数。初步选择采用二阶有源带通滤波器,通过理论计算,调节其中一个电阻来改变中心频率。根据实际搭出的电路效果,可尝试使用四阶有源带通滤波器,以求获得更好的滤波效果。 3、相移电路: 由于滤波器难免对滤出的谐波分量产生附加相位,需要在选频电路之后加一全通 网络校正相位,抵消相位差。移向电路有两种,分为正向移向和反向移向。 4、加法电路 将所得到的各次谐波分量叠加,得到近似的方波。同时,加法电路可对滤波对原 信号分量的衰减进行补偿。 (2) 电路结构框图(请将基本要求、提高要求、创新要求分别画出): 基础要求:因基础要求与提高要求相比,除缺少5次滤波与移相电路外,其余部分均相同,其结构框图已包含在提高要求的框图中,故不单独列出。 提高要求: (3)电路原理图(各单元电路结构、工作原理、参数计算和元器件选择说明): 分工:徐媛媛(滤波电路的设计、搭建和调试);姜勖(方波产生、相移及加法电路设计搭建和调试) 方波振荡及鉴幅电路: 采用迟滞比较及RC 反馈回路以及比较器鉴幅电路,总电路图如下: 设从输出端的对输入端的负反馈电阻分别为1f R 和2f R ,则前部分方波的振荡 周期为111222 ln(12)ln(12)f f R R T R C R C R R =+++,通过电位器分别调节1f R 和2f R 的阻值使方波的频率为1kHz ,占空比为50%。

实验二、 波形合成与分解

实验二 波形合成与分解 1.实验目的 在理论学习的基础上,通过本实验熟悉信号的合成、分解原理,了解信号频谱的含义,加深对傅里叶变换性质和作用的理解。 2.实验原理 根据傅里叶分析的原理,任何周期信号都可以用一组三角函数)}cos();{sin(00t n t n ωω的组合表示,即: )2sin()2cos()sin()cos()(020201010t b t a t b t a a t x ωωωω++++= 即可以用一组正弦波和余弦波来合成任意形状的周期信号。 3.实验内容 (1) 方波的合成 图示方波是一个奇谐信号,由傅里叶级数可知,它是由无穷个奇次谐波分量 合成的,本实验用图形的方式来表示它的合成。方波信号可以分解为: ,9,7,5,3,1,1)2sin(2)(10=?=∑∞ =n n t nf A t x n ππ 用前5项谐波近似合成50Hz,幅值为3的方波,写出实验步骤。 a.只考察从 0=t s 到10=t s 这段时间内的信号。 b.画出基波分量)sin()(t t y =。 c.将三次谐波加到基波之上,并画出结果,并显示。 3/)*3sin()sin()(t t t y += d.再将一次、三次、五次、七次和九次谐波加在一起。 9/)*9sin(7/)*7sin(5/)*5sin(3/)*3sin()sin()(t t t t t t y ++++= e.合并从基波到十九次谐波的各奇次谐波分量。 f.将上述波形分别画在一幅图中,可以看出它们逼近方波的过程。注意“吉布斯现象”。周期信号傅里叶级数在信号的连续点收于该信号,在不连续点收敛于信号左右极限的平均值。如果我们用周期信号傅里叶级数的部分和来近似周期信号,在不连续点附近将会出现起伏和超量。在实际中,如果应用这种近似,就应该选择足够大的N ,以保证这些起伏拥有的能量可以忽略。 (2) 设计谐波合成三角波的实验,写出实验步骤,并完成实验。

信号的分解与合成

实验十三 信号分解及合成 一、 实验目的 1、 了解和熟悉波形分解与合成原理。 2、 了解和掌握用傅里叶级数进行谐波分析的方法。 二、 实验仪器 1、 双踪示波器 2、 数字万用表 3、 信号源及频率计模块S2 4、 数字信号处理模块S4 三、 实验原理 (一)信号的频谱与测量 信号的时域特性和频域特性是对信号的两种不同的描述方式。对于一个时域的周期信号 ()f t ,只要满足狄利克菜(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里 叶级数。 例如,对于一个周期为T 的时域周期信号()f t ,可以用三角形式的傅里叶级数求出它的 各次分量,在区间11(,)t t T +内表示为 () 01 ()cos sin 41,3,5,7,n n n f t a a n t b n t A k Tk ω ∞ ==+Ω+Ω=??? ∑ ()01 ()cos sin n n n f t a a n t b n t ∞ ==+Ω+Ω∑ 即将信号分解成直流分量及许多余弦分量和正弦分量,研究其频谱分布情况。 图1 c a

信号的时域特性和频域特性 信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图13-1来形象地表示。其中图(a)是信号在幅度—时间—频率三维坐标系统中的图形;图(b)是信号在幅度一时间坐标系统中的图形即波形图:把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。反映各频率分量幅度的频谱称为振幅频谱。图(c)是信号在幅度—频率坐标系统中的图形即振幅频谱图。反映各分量相位的频谱称为相位频谱。在本实验中只研究信号振幅频谱。周期信号的振幅频谱有三个性质:离散性、谐波性、收敛性。测量时利用了这些性质。从振幅频谱图上,可以直观地看出各频率分量所占的比重。测量方法有同时分析法和顺序分析法。 同时分析法的基本工作原理是利用多个滤波器,把它们的中心频率分别调到被测信号的各个频率分量上。当被测信号同时加到所有滤波器上,中心频率与信号所包含的某次谐波分景频率-致的滤波器便有输出。在被测信号发生的实际时间内可以同时测得信号所包含的各频率分量。在本实验中采用同时分析法进行频谱分析,如图132所示。 (二)方波的分解 我们以下图的方波为例:占空比为50% 方波在一个周期内的解析式为:0()2 A t T f t T A t T <≤?? =? -<≤?? 故有 () 01 ()cos sin 41,3,5,7,n n n f t a a n t b n t A k Tk ω ∞ ==+Ω+Ω=??? ∑ 于是,所求级数 b

信号的分解与合成实验报告

竭诚为您提供优质文档/双击可除信号的分解与合成实验报告 篇一:实验报告二.信号的分解与合成 实验二信号的分解与合成 时间:第星期课号: 院系专业: 姓名:学号:座号: =================================================== ========================================= 一、实验目的 1、观察信号波形的分解与合成,加深对信号频谱的理解; 2、学会用软件multisim进行信号的分解和合成; 二、实验预习 1、方波信号是周期性信号,对周期信号进行傅里叶级数分解,(如果方波信号的频率是f)分解后基波信号的频率为多少?各次谐波频率是多少?各次谐波频率与基波频率的关系?。

2、方波信号有偶次谐波吗?为什么? 3、熟悉实验指导书第18页图1-24信号分解与合成电路。参考指导书50Khz方波信号的分解与合成的例子,设计一个30Khz方波信号的分解与合成的电路。30Khz方波信号的分解与合成的电路参数的要求: (1)五个滤波器的电容值c1?c2?c3?c4?c5?1?F (2)根据公式f?1 2?Lc计算出 ,,。并画出电路图。 三、实验内容 1.设计30Khz方波信号分解与合成电路:将30Khz的方波信号分解出一、三、五次谐波;首先在电子工作台上画出待分析的电路。(电路参考实验指导书第18页图1-24信号分解与合成电路)注意:函数信号发生器的设置:波形选择:方波;频率:30Khz;占空比:50%;信号幅度:1V。 再用示波器分别观测方波信号波形、一、三、五次谐波波形,合成波波形,测量周期,幅度。 2.画波形图:分别画出方波信号波形、一、三、五次谐波波形,合成波五个信号的波形图(时间轴对应),标明周期,幅度。(注意实验过程中在下面空白处记录波形图,课后把数据整理在坐标纸上并粘贴在此处)

信号分解与合成

非正弦周期信号分解与合成实验板设计 摘要 对于非正弦周期信号的分解与合成的研究,虽然可以利用作图将不同频率正弦量进行叠加,合成非正弦周期量,但是不够准确和直观,利用数学知识将非正弦周期两分解成不同频率正弦量的叠加的讲解有一些难度,但是通过设计实验板,可以让人直观地了解非正弦周期信号的分解与合成。 本论文采用Multisim2001进行实验仿真,设计非正弦周期信号分解与合成实验板,对非正弦周期信号-方波、三角波进行分解与合成。本论文首先介绍实验板的构成及其设计原理,然后对其内部构造一一进行介绍。还有对其各个元件的电路设计、仿真,最后介绍用设计好的实验板电路进行方波、三角波的分解与合成,得到仿真波形和数据,验证了本设计的可行性。 关键词:Multisim2001;非正弦周期信号;函数信号发生器;滤波器

Design of Non-sinusoidal periodic signal decomposition and synthetic experimental board ABSTRACT For a non-sinusoidal periodic signal decomposition and synthetic study, although can use different frequency sine drawing are united, synthesis of a non sinusoidal periodic quantity, but was not accurate enough and intuitive; Using mathematical knowledge of a non-sinusoidal periodic two down into different-frequency sine superposition explains some difficulties, but it can be achieved easily in the design of experimental board. This let a person be intuitive understanding of a non-sinusoidal periodic signal decomposition and synthesis. This paper by using Multisim2001 simulation experiments, the design of a non-sinusoidal periodic signal decomposition and synthetic experimental board, non-sinusoidal periodic signals of square wave, triangle wave-decomposition and composition. This paper firstly introduces the constitution and its experimental plate design principle, then one of its internal structure is introduced and its circuit design, simulation. It introduces using bread-board designs board circuit of square wave, triangle decomposition and synthesis, generating a simulation waveform and data and verifies the feasibility of this design. Keywords:Multisim2001;Non-sinusoidal periodic signals;Function signal generator;Filter 2

信号分解与合成实验报告

实验二 信号分解与合成 --谢格斯 110701336 聂楚飞110701324 一、实验目的 1、观察电信号的分解。 2、掌握带通滤波器的有关特性测试方法。 3、观测基波和其谐波的合成。 二、实验内容 1、观察信号分解的过程及信号中所包含的各次谐波。 2、观察由各次谐波合成的信号。 三、预备知识 1、了解李沙育图相关知识。 2、课前务必认真阅读教材中周期信号傅里叶级数的分解以及如何将各次谐波进行叠加 等相关内容。 四、实验仪器 1、信号与系统实验箱一台(主板)。 2、电信号分解与合成模块一块。 3、20M 双踪示波器一台。 五、实验原理 任何电信号都是由各种不同频率、幅度和初相的正弦波迭加而成的。对周期信号由它的 傅里叶级数展开式可知,各次谐波为基波频率的整数倍。而非周期信号包含了从零到无穷大的所有频率成份,每一频率成份的幅度均趋向无限小,但其相对大小是不同的。 通过一个选频网络可以将电信号中所包含的某一频率成份提取出来。本实验采用性能较 佳的有源带通滤波器作为选频网络,因此对周期信号波形分解的实验方案如图2-3-1所示。 将被测方波信号加到分别调谐于其基波和各次奇谐波频率的一系列有源带通滤波器电 路上。从每一有源带通滤波器的输出端可以用示波器观察到相应频率的正弦波。本实验所用的被测信号是Hz 531=ω左右的周期信号,而用作选频网络的五种有源带通滤波器的输出 频率分别是543215432ωωωωω、、、、 ,因而能从各有源带通滤波器的两端观察到基波和各次谐波。其中,在理想情况下,如方波的偶次谐波应该无输出信号,始终为零电平,而奇次谐波则具有很好的幅度收敛性,理想情况下奇次谐波中一、三、五、七、九次谐波的幅度比应为1:(1/3):(1/5):(1/7):(1/9)。但实际上因输入方波的占空比较难控制在50%,且方波可能有少量失真以及滤波器本身滤波特性的有限性都会使得偶次谐波分量不能达到理想零的情况。

信号的产生、分解与合成 ()

实验四信号的产生、分解与合成 【实验内容】 设计并安装一个电路使之能够产生方波,并从方波中分离出主要谐波,再将这些谐波合成为原始信号或其他周期信号。 1.基本要求 (1)设计一个方波发生器,要求其频率为1kHz,幅度为5V; (2)设计合适的滤波器,从方波中提取出基波和3次谐波; (3)设计一个加法器电路,将基波和3次谐波信号按一定规律相加,将合成后的信号与原始信号比较,分析它们的区别及原因。 2.提高要求 设计5次谐波滤波器或设计移相电路,调整各次谐波的幅度和相位,将合成后的信号与原始信号比较,并与基本要求部分作对比,分析它们的区别及原因。 3. 其他部分 用类似方式合成其他周期信号,如三角波、锯齿波等。 【实验目的】 1.掌握方波信号产生的基本原理和基本分析方法,电路参数的计算方法,各参数对电路性能的影响; 2.掌握滤波器的基本原理、设计方法及参数选择; 3.了解实验过程:学习、设计、实现、分析、总结。 4.系统、综合地应用已学到的电路、电子电路基础等知识,在单元电路设计的基础上,利用multisim和FilterPro等软件工具设计出具有一定工程意义和实用价值的电子电路。 5.掌握多级电路的安装调试技巧,掌握常用的频率测量方法。 6.本实验三人一组,每人完成一个功能电路,发挥团队合作优势,完成实验要求。 【实验要求】 1.实验要求: (1)根据实验内容、技术指标及实验室现有条件,自选方案设计出原理图,分析工作原 理,计算元件参数。 (2)利用EDA软件进行仿真,并优化设计。 (3)实际搭试所设计电路,使之达到设计要求。 (4)按照设计要求对调试好的硬件电路进行测试,记录测试数据,分析电路性能指标。 (5)撰写实验报告。 2.说明 要求先用软件设计并仿真,然后硬件实现。 【教学指导】 实验分成原理解析、功能电路设计和仿真、系统设计及仿真、连接电路并调试、实验电路测试验收、撰写研究报告等几个阶段进行。通过对设计任务中性能指标的理解,由学生自行设计电路和实验方案,经仿真研究后提交实验预习报告(课前准备),教师审核并对关键电路、参数、测量线路进行方案论证后,进入实验室搭试功能电路,并完成实验参数的测量、作品验收。 1.实验前理论知识准备

信号及系统中信号分解及合成实验报告

信号与系统实验报告 非正弦周期信号的分解与合成 专业: 班级: 姓名: 学号: 用同时分析法观测50H z非正弦周期信号的分解与合成 一、实验目的 1、用同时分析法观测50Hz非正弦周期信号的频谱,并与其傅立叶级数各项的频率与系数作比较。 2、观测基波和其谐波的合成。 二、实验设备 1、信号与系统实验箱:THKSS-A型或THKSS-B型或THKSS-C型。 2、双踪示波器,数字万用表。 三、实验原理 1、一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其它成分则根据其频率为基波频率的 2、 3、 4、…、n等倍数分别称二次、三次、四次、…、n次谐波,其幅度将随谐波次数的增加而减小,直至无穷小。 2、不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分。 3、一个非正弦周期函数可用傅立叶级数来表示,级数各项系数之间的关系可用一个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表2-1,方波频谱图如图2-1表示 方波频谱图 各种不同波形的傅立叶级数表达式

1、方波 2、三角波 3、半波 4、全波 5、矩形波 实验装置的结构如下图所示 信号分解与合成实验装置结构框图, 图中LPF 为低通滤波器,可分解出非正弦周期函数的直流分量。1BPF ~6BPF 为调谐在基波和各次谐波上的带通滤波器,加法器用于信号的合成。 四、实验步骤 1、将50Hz 的方波信号,并将其接至信号分解实验模块BPF 的输入端,将各带通滤波器的输出分别接至示波器,观测各次谐波的频率和幅值,并列表记录之。 2、将方波分解所得的基波和三次谐波分量接至加法器的相应输入端,观测加法器的输出波形,并记录之。 3、在2的基础上,再将五次谐波分量加到加法器的输入端,观测相加后的波形,记录之。 4、分别将50Hz 单相正弦半波、全波、矩形波和三角波的输出信号接至50HZ 电信号分解与合成模块输入端、观测基波及各次谐波的频率和幅度,记录之。 5、将50Hz 单相正弦半波、全波、矩形波、三角波的基波和谐波分量接至加法器的相应的输入端,观测求和器的输出波形,并记录之。

相关文档
最新文档