[精品]阀门的流量系数和气蚀系数是阀的主要参数

[精品]阀门的流量系数和气蚀系数是阀的主要参数
[精品]阀门的流量系数和气蚀系数是阀的主要参数

[精品]阀门的流量系数和气蚀系数是阀的主要参数,

阀门的流量系数和气蚀系数是阀的重要参数

, 评论:0 浏览:2473 发布时间:2006/11/20

, ,,,,,阀门的流量系数和气蚀系数是阀的重要参数,这在先进工业国家生产的阀门资料中一般均能提供,甚至在样本里也印出。我国生产的阀门基本上没有这方面资料,因为取得这方面的资料需要做实验才能提出,这是我国和世界先进水平的阀门差距的重要表现之一。

,,,,,阀门的流量系数

,,,,,阀门的流量系数是衡量阀门流通能力的指标,流量系数值越大,说明流体流过阀门时的压力损失越小。 {TodayHot}

,,,,,按KV值计算式,,,,,

,,,,,式中:KV—流量系数

,,,,,Q—体积流量m3/h

,,,,,ΔP—阀门的压力损失bar

,,,,,P—流体密度kg/m3

,,,,,阀门的气蚀系数

,,,,,用气蚀系数δ值,来选定用作控制流量时,选择什么样的阀门结构型式。

,,,,,式中:H1—阀后(出口)压力m

,,,,,H2—大气压与其温度相对应的饱和蒸气压力之差m

,,,,,ΔP—阀门前后的压差m

,,,,,各种阀门由于构造不同,因此,允许的气蚀系数δ也不同。如图所示。如计算的气蚀系数大于容许气蚀系数,则说明可用,不会发生气蚀。如蝶阀容许气蚀系数为2.5,则: {HotTag}

,,,,,如δ,2.5,则不会发生气蚀。

,,,,,当2.5,δ,1.5时,会发生轻微气蚀。

,,,,,δ,1.5时,产生振动。

,,,,,δ,0.5的情况继续使用时,则会损伤阀门和下游配管。

,,,,,阀门的基本特性曲线和操作特性曲线,对阀门在什么时候发生气蚀是看不出来的,更指不出来在那个点上达到操作极限。通过上述计算则一目了然。所以产生气蚀,是因为液体加速流动过程中通过一段渐缩断面时,部分液体气化,产生的气泡随后在阀后开阔断面炸裂,其表现有三:

,,,,,(1)发生噪声

,,,,,(2)振动(严重时可造成基础和相关构筑物的破坏,产生疲劳断裂)

,,,,,(3)对材料的破坏(对阀体和管道产生侵蚀)

,,,,,再从上述计算中,不难看出产生气蚀和阀后压强H1有极大关系,加大H1显然会使情况改变,改善方法:

,,,,,a.把阀门安装在管道较低点。

,,,,,b.在阀门后管道上装孔板增加阻力。

,,,,,c.阀门出口开放,直接蓄水池,使气泡炸裂的空间增大,气蚀减小。

,,,,,综合上述四个方面的分析、探讨,归纳起来对闸阀、蝶阀主要特点和参数列表便于选用。

,,,,,阀门标准必须重视

,,,,,现在国务院成立了标准化管理委员会和标准局,标准化问题受到了国家的高度重视,是提高我国产品的重要手段,更是WTO进入的重要的应对措施。

,,,,,目前我国已有国标1.9万余项,地方标准2.3万余项,企标8万余项。其中采用了国际标准的占43.5%,和国际标准等同等效的仅占25%。

,,,,,阀门专业有国标约60项,行业标准180余项,不少的专用、特殊阀门尚没有国家或行业标准,急待制定。在标准制定方面,国家已制定了改革的方针政策,从管理体制、体系、运行机制和工作模式四方面着手。今后标准的制定要以企业为主、开放透明、广泛参与,增强企业领导和社会的广泛重视。

,,,,,给排水工程用阀门应注意的几个问题

,,,,,给排水工程常用的阀门和其他行业一样,以通用阀门为主,如蝶阀、闸阀、止回阀等,但也需要带有专业特点的专

用阀门。如排气阀、缓闭止回阀、调流消能阀、控制阀、消防信号阀、停泵水锤消除阀(水锤消除器),防污染止回阀、消声阀等等。和国外比较,通用阀门的品种较齐全,但专用阀门品种差距较大需要填补。

,,,,,用于给水工程阀门的内壁涂料必须是无毒,并经省以上卫生防疫监督部门认可的才能使用。

,,,,,用于污水工程的阀门应是耐腐蚀不易堵塞的,而用于排泥则更有快速开闭直通道结构型式,如软密封闸阀;使用蝶

阀时紧固螺栓应用奥氏体不锈钢,凸凹部分易挂住纤维,并宜卧装。

,,,,,操作机构宜为蜗轮蜗杆传动,并设计为自锁,即分度园导角λ要小于轮齿间的当量摩擦角φ,而且齿面侧隙要小,不然头部晃动。

,,,,,蝶阀进水管道上设置调节阀或装有水泵时不能离的太近,因为水流呈紊流状态时阀门会振动。

,,,,,阀门前或后弯管太近时,因为受力不平衡,影响阀座的严密封性。

,,,,,水泵吸水管宜装中线形蝶阀,安装偏心蝶阀时应卧装为好,不然双吸离心泵进水不平衡。

,,,,,大口径蝶阀卧装时,扭矩要大0.2倍,配置阀门操作机构需注意。介质不净宜卧装,卧装时阀轴两端轴承受力条件好。

,,,,,蝶阀作为调流阀使用时,15?开度内不宜使用,会产生振动和气蚀,闸阀在小开度时,关闭速度一定要慢,不然会产生关阀水锤。

,,,,,闸阀与蝶阀主要性能参数列表供参考。

,,,,,阀种项目

,,,,,闸阀

,,,,,蝶阀

,,,,,金属阀座

,,,,,整流、梳齿形

,,,,,主要用途

,,,,,切断

,,,,,切断

,,,,,控制、切断

,,,,,切断、控制

,,,,,许用流速(m/s)

,,,,,3,,,,,(6)

,,,,,3,,,,,(6)

,,,,,6

,,,,,6

,,,,,阀座密封性

,,,,,良

,,,,,优

,,,,,有少量泄漏

,,,,,优

,,,,,阀座的耐久性,,,,,优

,,,,,有橡胶剥落缺点,,,,,优

,,,,,良

,,,,,全开时损失系数,,,,,0.1-0.2 ,,,,,0.3

,,,,,0.3

,,,,,0.8

,,,,,许用气蚀系统,,,,,3.0

,,,,,2.5-4.0 ,,,,,1.5-3.5 ,,,,,0.9-3.0 ,,,,,流量控制特性,,,,,不适宜

,,,,,气蚀区以外,,,,,比橡胶座好,,,,,比金属座好,,,,,驱动方式,,,,,手动、电动、水压,,,,,手动、电动、气液压

,,,,,同左

,,,,,同左

,,,,,特点

,,,,,1.使用小口径适宜,,,,,2.全开时压力损失小,,,,,3.全闭时压力损失小,,,,,4.阀体沟槽易积杂物而关不严,,,,,5.开闭时间长

,,,,,6.操作力矩大

,,,,,1.结构简单

,,,,,2.全闭时隔水性好,,,,,3.开闭时间短

,,,,,4.操作力矩小

,,,,,5.体积小重量轻

,,,,,6.气蚀会引起橡胶座剥落,,,,,1.结构简单

,,,,,2.控制特性好

,,,,,3.开闭时间短

,,,,,4.操作力矩小

,,,,,5.体积小重量轻

,,,,,6.阀座耐久性好

,,,,,7.有少量泄漏

,,,,,1.控制特性好

,,,,,2.全闭时隔水性好

,,,,,3.开闭时间短,,,,,4.操作力矩小,,,,,5.体积小

,,,,,6.结构稍复杂,,,,,7.耐气蚀性好。,,,,,

阀门流量流阻系数

阀门流量流阻系数 Revised by BLUE on the afternoon of December 12,2020.

阀门的流量系数与流阻系数 一、阀门的流量系数 流量系数即:CV值(中国工业称为:KV值)是阀门、调节阀等工业阀门的重要工艺参数和技术指标。正确计算和选择CV值是保障管道流量控制系统正常工作的重要步骤。 1、流量系数的定义 是指单位时间内、在测试条件中管道保持恒定的压力,管道介质流经阀门的体积流量,或是质量流量。即阀门的最大流通能力。流量系数值越大说明流体流过阀门时的压力损失越小。阀门的CV值须通过测试和计算确定。 2、阀门流量系数的计算 (1)一般式 C=Q√ρ/Δp 式中C—流量系数; Q—体积流量; ρ—流体密度; Δp—阀门的压力损失 (2)Kv值的计算表 Kv=Q√ρ/Δp 式中Kv—流量系数(m2); Q—体积流量(m3/h); ρ—流体密度(kg/m3);

Δp—阀门的压力损失(bar)。 (3)Cv值的计算表 Cv=Q√G/Δp 式中Cv—流量系数(Usgal/min÷(√1lbf/in2));Q—体积流量(USgal/min); ρ—水的相对密度=1; Δp—阀门的压力损失(lbf/in2)。 (4)Av值的计算表 Kv=Q√ρ/Δp 式中Kv—流量系数(m2); Q—体积流量(m3/s); ρ—流体密度(kg/m3); Δp—阀门的压力损失(Pa)。 (5)流量系数Av、Kv、Cv间的关系 Cv=1.17Kv Cv=10e6/24Av Kv=10e6/28Av 3、单位换算 Kv与Cv值的换算

国外,流量系数常以Cv表示,其定义的条件与国内不同。Cv的定义为:当调节阀全开,阀两端压差ΔP为1磅/英寸²,介质为60℉清水时每分钟流经调节阀的流量数,以加仑/分计。由于Kv与Cv定义不同,试验所测得的数值不同,它们之间的换算关系为:Cv=1.167Kv 二、阀门的流阻系数 流体通过阀门时,其流体阻力损失以阀门前后的流体压力降Δp表示。 对于紊流流态的液体: Δp=ζu2ρ/2 式中Δp—被测阀门的压力损失(Mpa); ζ—阀门的流阻系数; ρ—流体密度(kg/mm3); u—流体在管道内的平均流速(mm/s)。

阀门的流量系数,流体阻力系数,压力损失

阀门的流量系数,流体阻力系数,压力损失 阀门的流量系数、流阻系数、压力损失 一、阀门的流量系数 阀门的流量系数是衡量阀门流通能力的指标,流量系数值越大说明流体流过阀门时的压力损失越小。国外工业发达国家的阀门生产厂家大多把不同压力等级、不同类型和不同公称通径阀门的流量系数值列入产品样本,供设计部门和使用单位选用。流量系数值随阀门的尺寸、形式、结构而变化,不同类型和不同规格的阀门都要分别进行试验,才能确定该种阀门的流量系数值。 1.流量系数的定义 流量系数表示流体流经阀门产生单位压力损失时流体的流量。由于单位的不同,流量系数有几种不同的代号和量值。 2.阀门流量系数的计算 3.流量系数的典型数据及影响流量系数的因素 公称通径DN50mm的各种型式阀门的典型流量系数见表。 流量系数值随阀门的尺寸、形式、结构而变。几种典型阀门的流量系数随直径的变化如图1-9所示。 对于同样结构的阀门,流体流过阀门的方向不同。流量系数值也有变化。这种变化一般是由于压力恢复不同而造成的。如果流体流过阀门使阀瓣趋于打开,那么阀瓣和阀体形成的环形扩散通道能使压力有所恢复。当流体流过阀门使阀瓣趋于关闭时,阀座对压力恢复的影响很大。当阀瓣开度为&#+ 或更小时,阀瓣下游的扩散角使得在两个流动方向上都会有一些压力恢复。 对于图1-11所示的高压角阀,当流体的流动使阀门趋于关闭时流量系数较高,因为此时阀座的扩散锥体使流体的压力恢复。阀门内部的几何形状不同,流量系数的曲线也不同。 阀门内部压力恢复的机理,与文丘里管的收缩和扩散造成的压力损失机理一样。当阀门内部的压降相同时,若阀门内压可以恢复,流量系数值就会较大,流量也就会大些。压力恢复与阀门内腔的几何形状有关,但更主要的是取决于阀瓣、阀座的结构。 二、阀门的流阻系数 流体通过阀门时,其流体阻力损失以阀门前后的流体压力降△p表示。 1. 阀门元件的流体阻力 阀门的流阻系数! 取决于阀门产品的尺寸、结构以及内腔形状等。可以认为,阀门体腔内的每个元件都可以看作为一个产生阻力的元件系统(流体转弯、扩大、缩小、再转弯等)。所以阀门内的压力损失约等于阀门各个元件压力损失的总和。 应该指出,系统中一个元件阻力的变化会引起整个系统中阻力的变化或重新分配,也就是说介质流对各管段是相互影响的。 为了评定各元件对阀门阻力的影响,现引用一些常见的阀门元件的阻力数据,这些数据反映了阀门元件的形状和尺寸与流体阻力间的关系。

阀门流量系数Kv、Cv

阀门流量系数Kv 、Cv调节阀同孔板一样,是一个局部阻力元件。前者,由于节流面积可以由阀芯的移动来改变,因此是一个可变的节流元件;后者只不过孔径不能改变而已。可是,我们把调节阀模拟成孔板节流形式,见图2-1。对不可压流体,代入伯努利方程为: (1) 解出 命图2-1 调节阀节流模拟 再根据连续方程Q= AV,与上面公式连解可得: (2) 这就是调节阀的流量方程,推导中代号及单位为: V1 、V2 ——节流前后速度; V ——平均流速; P1 、P2 ——节流前后压力,100KPa; A ——节流面积,cm; Q ——流量,cm/S; ξ——阻力系数; r ——重度,Kgf/cm; g ——加速度,g = 981cm/s; 如果将上述Q、P1、P2 、r采用工程单位,即:Q ——m/ h;P1 、P2 —— 100KPa;r——gf/cm。于是公式(2)变为: (3) 再令流量Q的系数为Kv,即:Kv = 或(4)这就是流量系数Kv的来历。 从流量系数Kv的来历及含义中,我们可以推论出: (1)Kv值有两个表达式:Kv = 和 (2)用Kv公式可求阀的阻力系数ξ = (5.04A/Kv)×(5.04A/Kv);

(3),可见阀阻力越大Kv值越小; (4);所以,口径越大Kv越大。 在前面不可压流体的流量方程(3)中,令流量Q的系数为Kv,故Kv 称流量系数;另一方面,从公式(4)中知道:Kv∝Q ,即Kv 的大小反映调节阀流量Q的大小。流量系数Kv 国内习惯称为流通能力,现新国际已改称为流量系数。 2.1 流量系数定义 对不可压流体,Kv是Q、△P的函数。不同△P、r时Kv值不同。为反映不同调节阀结构,不同口径流量系数的大小,需要跟调节阀统一一个试验条件,在相同试验条件下,Kv的大小就反映了该调节阀的流量系数的大小。于是调节阀流量系数Kv的定义为:当调节阀全开,阀两端压差△P为 100KPa,流体重度r为lgf/cm (即常温水)时,每小时流经调节阀的流量数(因为此时 ),以m/h 或 t/h计。例如:有一台Kv =50的调节阀,则表示当 阀两端压差为100KPa时,每小时的水量是50m/h。 2.2 Kv与Cv值的换算 国外,流量系数常以Cv表示,其定义的条件与国内不同。Cv的定义为:当调节阀全开,阀两端压差△P为1磅/英寸2,介质为60°F清水时每分钟流经调节阀的流量数,以加仑/分计。 由于Kv与Cv定义不同,试验所测得的数值不同。 它们之间的换算关系:Cv = 1.167Kv (5) 2.3 推论 从定义中我们可以明确在应用中需要注意的两个问题: (1)流量系数Kv不完全表示为阀的流量,唯一在当介质为常温水,压差为100KPa 时,Kv才为流量Q;同样Kv 值下,r、△P不同,通过阀的流量不同。 (2)Kv是流量系数,故没单位。但是许多资料、说明书都错误地带上单位,值得改正。 --------------------------------------------------------------------------------- 根据以上定义,该阀体在同种流体条件不同压差下,可以根据Kv来计算流量Q (Q正比于压差△P的平方根) Q=Kv/sqrt(△P) △P单位为bar,Q单位为立方米/小时

流量系数与流阻系数

阀门的流量系数与流阻系数 (一)阀门的流量系数 阀门的流量系数是衡量阀门流通能力的指标,流量系数值越大,说明流体流过阀门时的压力损失越小。流量系数值随阀门的尺寸、型式、结构而变化,不同类型和不同规格的阀门都要分别进行试验,才能确定该种阀门的流量系数值。 1、流量系数的定义 流量系数表示流体流经阀门产生单位压力损失时的流体的流量。由于单位不同,流量系数有几种不同的代号和量值。 2、阀门流量系数的计算 (1)一般式 C=Q √ρ/Δp 式中C—流量系数; Q—体积流量;ρ—流体密度; Δp—阀门的压力损失 (2)Kv值的计算表 Kv= Q √ρ/Δp 式中Kv—流量系数(m2); Q—体积流量(m3/h);ρ—流体密度(kg/ m3); Δp—阀门的压力损失(bar)。 (3)Cv值的计算表 Cv= Q √G/Δp 式中Cv—流量系数( Usgal/min÷(√1lbf/in2));Q—体积流量(USgal/min);ρ—水的相对密度=1; Δp—阀门的压力损失(lbf/ in2)。

(4)Av值的计算表 Kv= Q √ρ/Δp 式中Kv—流量系数(m2); Q—体积流量(m3/s);ρ—流体密度(kg/ m3);Δp—阀门的压力损失(Pa)。 (5)流量系数Av、Kv、Cv间的关系 Cv=1.17Kv Cv=10e6/24Av Kv=10e6/28Av 3、流量系数的典型数据及影响流量系数的因素 流量系数值随阀门的尺寸、型式、结构而变。对于同样结构的阀门,流体流过阀门的方向不同,流量系数值也有变化。阀门内部的几何形状不同,流量系数的曲线也不同。 阀门内部压力恢复的机理,与文丘里管的收缩和扩散造成的压力损失机理一样。当阀门内部的压降相同时,如阀门内压可以恢复,流量系数值就会较大,流量也就会大些。压力恢复与阀门内腔的几何形状有关,但更主要的是取决于阀塞、阀座的结构。 (二)阀门的流阻系数 流体通过阀门时,其流体阻力损失以阀门前后的流体压力降Δp表示。对于紊流流态的液体: Δp=ζu2ρ/2 式中Δp—被测阀门的压力损失(Mpa); ζ—阀门的流阻系数;ρ—流体密度(kg/mm3); u—流体在管道内的平均流速(mm/s)。

阀门流量系数的速算方法

流量系数的速算方法 在我们的设计工作中经常要进行各式各样的计算,流量系数正是其中之一。阀门的流量系数Cv和Kv值是衡量阀门流动能力的重要参数之一,流量系数的大与小,说明了流体通过阀门时其压力损失的大与小,流量系数越大则压力损失越小阀门的流通能力也就越好。国外的阀门厂通常都把不同类型、不同口径的阀门Cv值列入产品样本中。在我国,许多用户都要求制造方在样图中例明产品的流量系数Cv值或Kv值。在新的API规范6D《管线阀门》第22版明确规定:“制造厂(商)应为买方提供流量系数Kv值”。显然流量系数对管道和阀门设计过程来说是一个非常重要的参数。 阀门的流量系数Cv值最早是由美国流体控制协会在1952年提出的,它的定义是:在通过阀门的压力降每平方英寸1磅(1bf/in2)的标准条件下,温度为15.6℃的水,每分钟流过的美制加仑数(Usgal/min)。 阀门的流量系数Cv随阀门的尺寸、形式、结构而变化,这些变化最终与阀门的压力降有关。 Cv值的计算公式为: Cv=Q(G/ΔP)0.5(1) 式中Cv——流量系数 Q——体积流量(Usgal/min) ΔP——阀门的压力降(1bf/in2) G——水的密度G=1 阀门的流量系数Cv值取决于阀门的结构,而且必须由自身的实际试 验来确定。

DN50阀门的典型流量系数 (表一) 流量系数Cv 值是“英制”的计量单位,人们依据Cv 值的技术定义制定了“米制”计量单位的阀门流量系数Kv 值。Kv 值的定义是:在通过阀门的压力降为1巴(bar )的标准条件下,温度为5-40℃的水每小时流过阀门的立方米体积流量(m 3/h ) Kv 值的计算公式: 形式Cv 截止阀40-60角式截止阀 47Y 形阀门 阀杆与管道中心线夹角为45°72阀杆与管道中心线夹角为60° 65V 形孔旋塞阀 60-80蝶阀 蝶板厚度为通道直径的7%333蝶板厚度为通道直径的35% 154常规闸阀300-310夹管阀360旋启式止回阀76隐蔽式止回阀123球阀(缩径)131球阀(全径) 440

阀门流量计算方法介绍

阀门流量计算方法 如何使用流量系数 How to use Cv 阀门流量系数(Cv)是表示阀门通过流体能力的数值。Cv越大,在给定压降下阀门能够通过的流体就越多。Cv值1表示当通过压降为1 PSI时,阀门每分钟流过1加仑15o C的水。Cv值350表示当通过压降为1 PSI时,阀门每分钟流过350加仑15o C的水。 Valve coefficient (Cv) is a number which represents a valve's ability to pass flow. The bigger the Cv, the more flow a valve can pass with a given pressure drop. A Cv of 1 means a valve will pass 1 gallon per minute (gpm) of 60o F water with a pressure drop (dp) of 1 PSI across the valve. A Cv of 350 means a valve will pass 350 gpm of 60o F water with a dp of 1 PSI. 公式1 FORMULA 1 流速:磅/小时(蒸汽或水) FLOW RATE LBS/HR (Steam or Water) 在此: Where:

dp = 压降,单位:PSI dp = pressure drop in PSI F = 流速,单位:磅/小时 F = flow rate in lbs./hr. = 比容积的平方根,单位:立方英尺/磅 (阀门下游) = square root of a specific volume in ft3/lb. (downstream of valve) 公式2 FORMULA 2 流速:加伦/分钟(水或其它液体) FLOW RATE GPM (Water or other liquids) 在此: Where: dp = 压降,单位:PSI dp = pressure drop in PSI Sg = 比重 Sg = specific gravity Q = 流速,单位:加伦/分钟 Q = flow rate in GPM 局限性 LIMITATIONS 上列公式在下列条件下无效: Above formulas are not valid under the following conditions: a.对于可压缩性流体,如果压降超过进口压力的一半。 For compressible fluids, where pressure drop exceeds half the inlet pressure.

最新调节阀流量系数计算公式和选择数据

1、流量系数计算公式 表示调节阀流量系数的符号有C、Cv、Kv等,它们运算单位不同,定义也有不同。 C-工程单位制(MKS制)的流量系数,在国内长期使用。其定义为:温度5-40℃的水,在1kgf/cm2(0.1MPa)压降下,1小时内流过调节阀的立方米数。 Cv-英制单位的流量系数,其定义为:温度60℃F(15.6℃)的水,在IIb/in(7kpa)压降下,每分钟流过调节阀的美加仑数。 Kv-国际单位制(SI制)的流量系数,其定义为:温度5-40℃的水,在10Pa(0.1MPa)压降下,1小时流过调节阀的立方米数。 注:C、Cv、Kv之间的关系为Cv=1.17Kv,Kv=1.01C 国内调流量系数将由C系列变为Kv系列。 (1)Kv值计算公式(选自《调节阀口径计算指南》) ①不可压缩流体(液体)(表1-1) Kv值计算公式与判别式(液体) 低雷诺数修正:流经调节阀流体雷诺数Rev小于104时,其流量系数Kv需要用

雷诺数修正系数修正,修正后的流量系数为: 在求得雷诺数Rev值后可查曲线图得FR值。 计算调节阀雷诺数Rev公式如下: 对于只有一个流路的调节阀,如单座阀、 套筒阀,球阀等: 对于有五个平行流路调节阀,如双座阀、 蝶阀、偏心施转阀等 文字符号说明: P1--阀入口取压点测得的绝对压力,MPa; P2--阀出口取压点测得的绝对压力,MPa; △P--阀入口和出口间的压差,即(P1-P2),MPa; Pv--阀入口温度饱和蒸汽压(绝压),MPa;

Pc--热力学临界压力(绝压),MPa; F F--液体临界压力比系 数, F R--雷诺数系数,根据ReV值可计算出;F L--液体压力恢复系数 QL--液体体积流量,m3/h P L--液体密度,Kg/cm3 ν--运动粘度,10-5m2/s W L--液体质量流量,kg/h, ②可压缩流体(气体、蒸汽)(表1-2) Kv值计算公式与判别式(气体、蒸气)表1-2 文字符号说明: X-压差与入口绝对压力之比(△P/P1);X T-压差比系数; K-比热比;Qg-体积流量,Nm3/h Wg-质量流量,Kg/h;P1-密度(P1,T1条件), Kg/m3

[精品]阀门的流量系数和气蚀系数是阀的主要参数

[精品]阀门的流量系数和气蚀系数是阀的主要参数, 阀门的流量系数和气蚀系数是阀的重要参数 , 评论:0 浏览:2473 发布时间:2006/11/20 , ,,,,,阀门的流量系数和气蚀系数是阀的重要参数,这在先进工业国家生产的阀门资料中一般均能提供,甚至在样本里也印出。我国生产的阀门基本上没有这方面资料,因为取得这方面的资料需要做实验才能提出,这是我国和世界先进水平的阀门差距的重要表现之一。 ,,,,,阀门的流量系数 ,,,,,阀门的流量系数是衡量阀门流通能力的指标,流量系数值越大,说明流体流过阀门时的压力损失越小。 {TodayHot} ,,,,,按KV值计算式,,,,, ,,,,,式中:KV—流量系数 ,,,,,Q—体积流量m3/h ,,,,,ΔP—阀门的压力损失bar ,,,,,P—流体密度kg/m3 ,,,,,阀门的气蚀系数 ,,,,,用气蚀系数δ值,来选定用作控制流量时,选择什么样的阀门结构型式。 ,,,,,式中:H1—阀后(出口)压力m ,,,,,H2—大气压与其温度相对应的饱和蒸气压力之差m ,,,,,ΔP—阀门前后的压差m

,,,,,各种阀门由于构造不同,因此,允许的气蚀系数δ也不同。如图所示。如计算的气蚀系数大于容许气蚀系数,则说明可用,不会发生气蚀。如蝶阀容许气蚀系数为2.5,则: {HotTag} ,,,,,如δ,2.5,则不会发生气蚀。 ,,,,,当2.5,δ,1.5时,会发生轻微气蚀。 ,,,,,δ,1.5时,产生振动。 ,,,,,δ,0.5的情况继续使用时,则会损伤阀门和下游配管。 ,,,,,阀门的基本特性曲线和操作特性曲线,对阀门在什么时候发生气蚀是看不出来的,更指不出来在那个点上达到操作极限。通过上述计算则一目了然。所以产生气蚀,是因为液体加速流动过程中通过一段渐缩断面时,部分液体气化,产生的气泡随后在阀后开阔断面炸裂,其表现有三: ,,,,,(1)发生噪声 ,,,,,(2)振动(严重时可造成基础和相关构筑物的破坏,产生疲劳断裂) ,,,,,(3)对材料的破坏(对阀体和管道产生侵蚀) ,,,,,再从上述计算中,不难看出产生气蚀和阀后压强H1有极大关系,加大H1显然会使情况改变,改善方法: ,,,,,a.把阀门安装在管道较低点。 ,,,,,b.在阀门后管道上装孔板增加阻力。 ,,,,,c.阀门出口开放,直接蓄水池,使气泡炸裂的空间增大,气蚀减小。 ,,,,,综合上述四个方面的分析、探讨,归纳起来对闸阀、蝶阀主要特点和参数列表便于选用。 ,,,,,阀门标准必须重视 ,,,,,现在国务院成立了标准化管理委员会和标准局,标准化问题受到了国家的高度重视,是提高我国产品的重要手段,更是WTO进入的重要的应对措施。

阀门流量系数Cv值

阀门流量系数Cv 值 阀门流量系数Cv 值字体大小:大| 中| 小2014-08-03 12:53 阅读(839) 评论(0) 分类:流量系数即:C 值(欧美 标准称为Cv 值,国际标准称为:KV 值)是阀门、调节阀等值是保障管道流量控制系统正常工作的重要步骤。是指单位时间内、在测试条件中管道保持恒定的压力,管道介质流经阀门的体积流量,或是质量流量。即阀门的最大流通能力。 工业阀门的重要工艺参数和技术指标。正确计算和选择CV 流量系数值越大说明流体流过阀门时的压力损失越小。阀门的CV 值须通过测试和计算确定。阀门是流量系数是衡量阀门流通能力的指标,流量系数值越大说流体流过阀门时的压 力损失越小.上海申弘阀门有限公司主营阀门有:减压阀(气体减压阀,可调式减压阀,波纹管减压阀,活塞式减压阀,蒸汽 减压阀,先导式减压阀,空气减压阀,氮气减压阀,水用减压阀, 自力式减压阀,比例减压阀)、安全阀、保温阀、低温阀、球 阀、截止阀、闸阀、止回阀、蝶阀、过滤器、放料阀、隔膜阀、旋塞阀、柱塞阀、平衡阀、调节阀、疏水阀、管夹阀、排污阀、排气阀、排泥阀、气动阀门、电动阀门、高压阀门、中压阀门、低压阀门、水力控制阀、真空阀门、衬胶阀门、衬氟阀门。阀门系数的定义:流量系数表示流体流经阀门产生单位压力损失时流体的流量,由于单位的不同,流量系数

有几种不同的代号和量值.一般式C=QVp/PC---流量系数 Q---体积流量p---流体密度P---阀门压力损失概述:流量特性是调节阀的一种重要技术指标和参数。在调节阀应用过程中做出正确的选型具有 非常重要的意义。固有特性(流量特 性):在经过阀门的压力降恒定时,随着截流元件(阀板)从关 闭位置运动到额定行程的过程中流量系数与截流元件(阀板) 行程之间的关系。典型地,这些特性可以绘制在曲线图上, 其水平轴用百分比行程表示,而垂直轴用百分比流量(或Cv 值)表示。由于阀门流量是阀门行程和通过阀门的压力降的函数,在恒定的压力降下进行流量特性测试提供了一种比较阀门特性类型的系统方法。用这种方法测得的典型的阀门特性 有线性、等百分比和快开(图2)。等百分比特性:一种固有流 量特性,额定行程的等量增加会理想地产生流量系数(Cv)的等百分比的改变(图2)。线性特性:一种固有流量特性,可以用一条直线在流量系数(Cv 值)相对于额定行程的长方形 图上表示出来。因此,行程的等量增加提供流量系数(Cv)的 等量增加。图2 快开特性:一种固有流量特性:在截流元件 很小的行程下可以获得很大的流量系数(图2)。额定流量下的 压力降:也是表示气动元件的流量特性之一。气动元件常常在额定流量下工作,故测定额定流量下气动元件上下游的压力降,作为该元件的流量特性指标。显然,此指标也只反映不可压缩流态下的浏览特性。阀门流量系数流量系数

阀门的流量系数

阀门的流量系数是衡量阀门流通能力的指标,流量系数值越大说明流体流过阀门时的压力损失越小。流量系数值随阀门的尺寸、形式、结构而变化,不同类型和不同规格的阀门都要分别进行试验,才能确定该阀门的流量系数值。 1. 流量系数的定义 流量系数表示流体流经阀门产生单位压力损失时流体的流量。由于单位的不同,流量系数有几种不同的代号和量值。 阀门流量系数的计算 1)一般式 p C q V Δ/ρ= 式中 C —流量系数; V q —体积流量; ρ—流体密度; p Δ —阀门的压力损失。 2)V A 值的计算式 p q A V V Δρ= 式中 C —流量系数(2m ); V q —体积流量(s m /3 ); p Δ—阀门的压力损失(Pa ); ρ—流体密度(3/m kg )。 3)V K 值的计算式 p q K V V Δρ= 式中 V K —流量系数(2m ); V q —体积流量(h m /3 ); p Δ—阀门的压力损失(bar ); ρ—流体密度(3/m kg ) 。

4) V C 值的计算式 p G q C V V Δ= 式中 V C —流量系数2/12)/(min /in lbf USgal ; V q —体积流量(Usgal/min ); p Δ—阀门的压力损失(lbf/in 2); G —水的相对密度=1。 5) 流量系数V A 、V K 、V C 间的关系: V C =1.17V K V C v A 24106 = V K =28 106 V A 2.阀门的流阻系数 流体通过阀门时,其流体阻力损失以阀门前后的流体压力降p Δ表示。 对于紊流流态的液体: 2 ρ ζΔ2u p = 式中 p Δ—被测阀门的压力损失(MPa ); ζ—阀门的流阻系数; ρ—流体密度(kg/mm 3); u —流体在管道内的平均流速(mm/s )。

阀门的流量系数以及气蚀系数详解

阀门的流量系数以及气蚀系数详解 阀门的重要参数是阀门的流量系数和气蚀系数,这在先进工业国家生产的阀门资料中一般均能提供,甚至在样本里也印出。我国生产的阀门基本上没有这方面资料,因为取得这方面的资料需要做实验才能提出,这是我国和世界先进水平的阀门差距的重要表现之一。 一、阀门的流量系数 阀门的流量系数是衡量阀门流通能力的指标,流量系数值越大,说明流体流过阀门时的压力损失越小。 按KV值计算式 式中:KV—流量系数Q—体积流量m3/hΔP—阀门的压力损失barP—流体密度kg/m3 二、、阀门的气蚀系数 用气蚀系数δ值,来选定用作控制流量时,选择什么样的阀门结构型式。 式中:H1—阀后(出口)压力mH2—大气压与其温度相对应的饱和蒸气压力之差mΔP—阀门前后的压差m 各种阀门由于构造不同,因此,允许的气蚀系数δ也不同。如图所示。如计算的气蚀系数大于容许气蚀系数,则说明可用,不会发生气蚀。如蝶阀容许气蚀系数为2.5,则:

如δ>2.5,则不会发生气蚀。 当2.5>δ>1.5时,会发生轻微气蚀。 δ<1.5时,产生振动。 δ<0.5的情况继续使用时,则会损伤阀门和下游配管。 阀门的基本特性曲线和操作特性曲线,对阀门在什么时候发生气蚀是看不出来的,更指不出来在那个点上达到操作极限。通过上述计算则一目了然。所以产生气蚀,是因为液体加速流动过程中通过一段渐缩断面时,部分液体气化,产生的气泡随后在阀后开阔断面炸裂,其表现有三: (1)发生噪声 (2)振动(严重时可造成基础和相关构筑物的破坏,产生疲劳断裂) (3)对材料的破坏(对阀体和管道产生侵蚀) 再从上述计算中,不难看出产生气蚀和阀后压强H1有极大关系,加大H1显然会使情况改变,改善方法: a.把阀门安装在管道较低点。 b.在阀门后管道上装孔板增加阻力。 c.阀门出口开放,直接蓄水池,使气泡炸裂的空间增大,气蚀减小。 综合上述四个方面的分析、探讨,归纳起来对闸阀、蝶阀主要特点和参数列表便于选用。两个重要参数在阀门运用中起到举足轻重的作用。

阀门流量系数与流阻系数的计算公式V1.2

阀门流量系数与流阻系数的计算公式 1、流量系数标准公式: )1式()m ( 2---?=p Q C ρ Q :体积流量,单位m 3/h ρ:介质相对水的密度,单位为1 △p :静压力损失,单位bar 2、流量系数计算用公式: )2(式)m ( 1000002水---???=p Q C ρρ Q :体积流量,单位m 3/h ρ:介质密度,单位kg/m 3 ρ水:水的密度,单位kg/m 3 △p :静压力损失,单位Pa 3、流阻系数: )3(式(无量纲) 22---?= v p K ρ △p :静压力损失,单位Pa ρ:介质密度,单位kg/m 3 v :流体速度,单位m/s 4、水头损失: )4(式---(m) g p h ρ?= △p :静压力损失,Pa ρ:介质密度,kg/m 3 g :重力加速度,g=9.80665m/s 2 5、阀门流量系数和流阻系数的关系式: )5(式---360002 ?=K A C

C :流量系数 A :阀门截面积,单位m 2 K :流阻系数 6、流阻系数与当量长度换算公式 )6(式---D L K ? =λ K :流阻系数 λ:沿程阻力系数 L :阀门当量长度,单位m D :阀门直径,单位m 7、沿程阻力系数 )7(式---22v L D h g ????=λ λ:沿程阻力系数,无量纲 g :重力加速度,g=9.80665m/s 2 h :水头损失,单位m D :阀门直径,单位m L :阀门当量长度,单位m v :流体速度,单位m/s 8、功率损失 )8(式---106.36????=Q g h P ρ P :功率损失,单位KW h :水头损失,单位m ρ:介质密度,kg/m 3 g :重力加速度,g=9.80665m/s 2 Q :体积流量,单位m 3/h

阀门的流量系数

阀门的流量系数、流阻系数、压力损失 阀门的流量系数、流阻系数、压力损失 一、阀门的流量系数 阀门的流量系数是衡量阀门流通能力的指标,流量系数值越大说明流体流过阀门时的压力损失越小。国外工业发达国家的阀门生产厂家大多把不同压力等级、不同类型和不同公称通径阀门的流量系数值列入产品样本,供设计部门和使用单位选用。流量系数值随阀门的尺寸、形式、结构而变化,不同类型和不同规格的阀门都要分别进行试验,才能确定该种阀门的流量系数值。 1.流量系数的定义 流量系数表示流体流经阀门产生单位压力损失时流体的流量。由于单位的不同,流量系数有几种不同的代号和量值。 2.阀门流量系数的计算 3.流量系数的典型数据及影响流量系数的因素 公称通径DN50mm的各种型式阀门的典型流量系数见表。 流量系数值随阀门的尺寸、形式、结构而变。几种典型阀门的流量系数随直径的变化如图1-9所示。 对于同样结构的阀门,流体流过阀门的方向不同。流量系数值也有变化。这种变化一般是由于压力恢复不同而造成的。如果流体流过阀门使阀瓣趋于打开,那么阀瓣和阀体形成的环形扩散通道

能使压力有所恢复。当流体流过阀门使阀瓣趋于关闭时,阀座对压力恢复的影响很大。当阀瓣开度为&#+ 或更小时,阀瓣下游的扩散角使得在两个流动方向上都会有一些压力恢复。 对于图1-11所示的高压角阀,当流体的流动使阀门趋于关闭时流量系数较高,因为此时阀座的扩散锥体使流体的压力恢复。阀门内部的几何形状不同,流量系数的曲线也不同。 阀门内部压力恢复的机理,与文丘里管的收缩和扩散造成的压力损失机理一样。当阀门内部的压降相同时,若阀门内压可以恢复,流量系数值就会较大,流量也就会大些。压力恢复与阀门内腔的几何形状有关,但更主要的是取决于阀瓣、阀座的结构。 二、阀门的流阻系数 流体通过阀门时,其流体阻力损失以阀门前后的流体压力降△p 表示。 1. 阀门元件的流体阻力 阀门的流阻系数 ! 取决于阀门产品的尺寸、结构以及内腔形状等。可以认为,阀门体腔内的每个元件都可以看作为一个产生阻力的元件系统(流体转弯、扩大、缩小、再转弯等)。所以阀门内的压力损失约等于阀门各个元件压力损失的总和。 应该指出,系统中一个元件阻力的变化会引起整个系统中阻力的变化或重新分配,也就是说介质流对各管段是相互影响的。

阀门的流量系数

阀门的流量系数 阀门的流量系数、流阻系数、压力损失 点击次数:249 发布时间:2009-10-28 10:22:51 阀门的流量系数、流阻系数、压力损失 一、阀门的流量系数 阀门的流量系数是衡量阀门流通能力的指标,流量系数值越大说明流体流过阀门时的压力损失越小。国外工业发达国家的阀门生产厂家大多把不同压力等级、不同类型和不同公称通径阀门的流量系数值列入产品样本,供设计部门和使用单位选用。流量系数值随阀门的尺寸、形式、结构而变化,不同类型和不同规格的阀门都要分别进行试验,才能确定该种阀门的流量系数值。 1.流量系数的定义流量系数表示流体流经阀门产生单位压力损失时流体的流量。由于单位的不同,流量系数有几种不同的代号和量值。 2.阀门流量系数的计算 3.流量系数的典型数据及影响流量系数的因素 公称通径DN50mm的各种型式阀门的典型流量系数见表。流量系数值随阀门的尺寸、形式、结构而变。几种典型阀门的流量系数随直径的变化如图1-9所示。 对于同样结构的阀门,流体流过阀门的方向不同。流量系数值也有变化。这种变化一般是由于压力恢复不同而造成的。如果流体 流过阀门使阀瓣趋于打开,那么阀瓣和阀体形成的环形扩散通道能使压力有所恢复。当流体流过阀门使阀瓣趋于关闭时,阀座对压力恢复的影响很大。当阀瓣开度为&#+ 或更小时,阀瓣下游的扩散角使得在两个流动方向上都会有一些压力恢复。对于图1-11所示的高压角阀,当流体的流动使阀门趋于关闭时流量系数较高,因为此时阀座的扩散锥体使流体的压力恢复。阀门内部的几何形状不同,流量系数的曲线也不同。

阀门内部压力恢复的机理,与文丘里管的收缩和扩散造成的压力损失机理一样。当阀门内部的压降相同时,若阀门内压可以恢复,流量系数值就会较大,流量也就会大些。压力恢复与阀门内腔的几何形状有关,但更主要的是取决于阀瓣、阀座的结构。二、阀门的流阻系数 流体通过阀门时,其流体阻力损失以阀门前后的流体压力降?p表示。 1. 阀门元件的流体阻力 阀门的流阻系数 ! 取决于阀门产品的尺寸、结构以及内腔形状等。可以认为,阀门体腔内的每个元件都可以看作为一个产生阻力的元件系统( 流体转弯、扩大、缩小、再转弯等)。所以阀门内的压力损失约等于阀门各个元件压力损失的总和。应该指出,系统中一个元件阻力的变化会引起整个系统中阻力的变化或重新分配,也就是说介质流对各管段是相互影响的。为了评定各元件对阀门阻力的影响,现引用一些常见的阀门元件的阻力数据,这些数据反映了阀门元件的形状和尺寸与流体阻力间的关系。 (1)突然扩大会产生很大的压力损失。这时,流体部分速度消耗在形成涡流、流体的搅动和发热等方面。局部阻力系数与扩大前管路截面积A1和扩大后管路截面积A2之比的近似关系可用式(1-9)及式(1-10)表示;阻力系数见表 (2)逐渐扩大当θ,40?时,逐渐扩大的圆管的阻力系数比突然扩大时小,但当θ=50-90?时,阻力系数反而比突然扩大时增大15%- 20%。逐渐扩大的最佳扩张角θ:圆形管θ=5-6.5?,方型管θ=7-8?,矩形管10-12?。 (3)突然缩小 (4)逐渐缩小 (5)平滑均匀转弯 (6)折角转弯折角转弯主要产生在锻造阀门中,因为锻造阀门的介质通道是用钻孔方法加工的。在焊接阀门中也会产生急剧转弯。

阀门系数Cv的确定

阀门系数Cv 值的确定 概述: 通常测定阀门的方法是阀门系数(Cv ),时,使用阀门系数确定阀门尺寸,该阀门可在工艺流体稳定的控制下,能够通过所需要的流量。阀门制造商通常公布各种类型阀门的Cv 值,它是近似值,并能按照管线结构或阀座制造而变动上调10%。 如一个阀门不能正确计算Cv ,通常将削弱在两个方面之一的阀门性能:如果Cv 对所需要的工艺而言太小,则阀门本身或阀内的阀芯尺寸不够,会使工艺系统流量不够。此外,因为阀门的节流会导致上游压力增加,并在阀门导致上游泵或其他上游设备损坏之前产生高的背压。尺寸不够的Cv 也会产生阀内的较高阻力降,它将导致空穴现象或闪蒸。 如果Cv 计算值比系统需要的过高,通常选用一个大的超过尺寸的阀门。显然,一个大尺寸阀门的造价、尺寸及重量是主要的缺点。除此之外,如果阀门是节流操作,控制问题明显会发生。通常闭合元件,如旋塞或阀盘,正位于阀座之外,它有可能产生高压力降和较快流速而产生气穴现象及闪蒸,或阀芯零件的磨损。此外,如果闭合元件在阀座上闭合而操作器又不能够控制在该位置,它将被吸入到阀座。这种现象被称为溶缸闭锁效应。 1. Cv 的定义 一个美国加仑(3.8L )的水在60°F (16℃)时流过阀门,在一分钟内产生1.0psi (0.07bar )的压力降。 2. Cv 值的计算方法 3.1 液体 3.11 基本液体确定尺寸公式 1) 当?P <?Pc=F L 2(P1-Pv):一般流动 Cv=Q P Sg ? 2) ?P ≥?Pc :阻塞流动 当Pv <0.5P1时 ?Pc=F L 2(P1-Pv) 当Pv ≥0.5P1时 ?Pc= F L 2[P-(0.96-0.28 Pc P 1 )Pv ] Cv=Q Pc Sg ? 式中 Cv----阀门流动系数; Q------流量,gal/min ; Sg-----流体比重(流动温度时); ?P----压力降,psia ?Pc---阻塞压力降 psia F L -------压力恢复系数 见表1

阀门流量系数Kv 、Cv

阀门流量系数Kv 、Cv 调节阀同孔板一样,是一个局部阻力元件。前者,由于节流面积可以由阀芯的移动来改变,因此是一个可变的节流元件;后者只不过孔径不能改变而已。可是,我们把调节阀模拟成孔板节流形式,见图2-1。对不可压流体,代入伯努利方程为: (1) 解出 命图2-1 调节阀节流模拟 再根据连续方程Q= AV,与上面公式连解可得: (2) 这就是调节阀的流量方程,推导中代号及单位为: V1 、V2 ——节流前后速度; V ——平均流速; P1 、P2 ——节流前后压力,100KPa; A ——节流面积,cm; Q ——流量,cm/S; ξ——阻力系数; r ——重度,Kgf/cm; g ——加速度,g = 981cm/s; 如果将上述Q、P1、P2 、r采用工程单位,即:Q ——m/ h;P1 、P2 —— 100KPa; r——gf/cm。于是公式(2)变为: (3) 再令流量Q的系数为Kv,即:Kv = 或(4) 这就是流量系数Kv的来历。 从流量系数Kv的来历及含义中,我们可以推论出: (1)Kv值有两个表达式:Kv = 和

(2)用Kv公式可求阀的阻力系数ξ = (5.04A/Kv)×(5.04A/Kv); (3),可见阀阻力越大Kv值越小; (4);所以,口径越大Kv越大。 在前面不可压流体的流量方程(3)中,令流量Q的系数为Kv,故Kv 称流量系数;另一方面,从公式(4)中知道:Kv∝Q ,即Kv 的大小反映调节阀流量Q的大小。流量系数Kv国内习惯称为流通能力,现新国际已改称为流量系数。 2.1 流量系数定义 对不可压流体,Kv是Q、△P的函数。不同△P、r时Kv值不同。为反映不同调节阀结构,不同口径流量系数的大小,需要跟调节阀统一一个试验条件,在相同试验条件下,Kv的大小就反映了该调节阀的流量系数的大小。于是调节阀流量系数Kv的定义为:当调节阀全开,阀两端压差△P为 100KPa,流体重度r为lgf/cm (即常温水)时,每小时流经调节阀的流量数(因为此时 ),以m/h 或 t/h计。 例如:有一台Kv =50的调节阀,则表示当阀两端压差为100KPa时,每小时的水量是50m/h。 2.2 Kv与Cv值的换算 国外,流量系数常以Cv表示,其定义的条件与国内不同。Cv的定义为:当调节阀全开,阀两端压差△P为1磅/英寸2,介质为60°F清水时每分钟流经调节阀的流量数,以加仑/分计。 由于Kv与Cv定义不同,试验所测得的数值不同。 它们之间的换算关系:Cv = 1.167Kv (5) 2.3 推论 从定义中我们可以明确在应用中需要注意的两个问题: (1)流量系数Kv不完全表示为阀的流量,唯一在当介质为常温水,压差为100KPa时,Kv才为流量Q;同样Kv 值下,r、△P不同,通过阀的流量不同。 (2)Kv是流量系数,故没单位。但是许多资料、说明书都错误地带上单位,值得改正。 --------------------------------------------------------------------------------- 根据以上定义,该阀体在同种流体条件不同压差下,可以根据Kv来计算流量Q (Q正比于压差△P的平方根) Q=Kv/sqrt(△P) △P单位为bar,Q单位为立方米/小时

阀门的流量系数,流体阻力系数,压力损失

阀门的流量系数,流体阻力系数,压力损失阀门的流量系数、流阻系数、压力损失 一、阀门的流量系数 阀门的流量系数是衡量阀门流通能力的指标,流量系数值越大说明流体流过阀门时的压力损失越小。国外工业发达国家的阀门生产厂家大多把不同压力等级、不同类型和不同公称通径阀门的流量系数值列入产品样本,供设计部门和使用单位选用。流量系数值随阀门的尺寸、形式、结构而变化,不同类型和不同规格的阀门都要分别进行试验,才能确定该种阀门的流量系数值。 1.流量系数的定义 流量系数表示流体流经阀门产生单位压力损失时流体的流量。由于单位的不同,流量系数有几种不同的代号和量值。 2.阀门流量系数的计算 3.流量系数的典型数据及影响流量系数的因素 公称通径DN50mm的各种型式阀门的典型流量系数见表。 流量系数值随阀门的尺寸、形式、结构而变。几种典型阀门的流量系数随直径的变化如图1-9所示。 对于同样结构的阀门,流体流过阀门的方向不同。流量系数值也有变化。这种变化一般是由于压力恢复不同而造成的。如果流体流过阀门使阀瓣趋于打开,那么阀瓣和阀体形成的环形扩散通道能使压力有所恢复。当流体流过阀门使阀瓣趋于关闭时,阀座对压力恢复的影响很大。当阀瓣开度为&#+或更小时,阀瓣下游的扩散角使得在两个流动方向上都会有一些压力恢复。 对于图1-11所示的高压角阀,当流体的流动使阀门趋于关闭时流量系数较高,因为此时阀座的扩散锥体使流体的压力恢复。阀门内部的几何形状不同,流量系数的曲线也不同。

阀门内部压力恢复的机理,与文丘里管的收缩和扩散造成的压力损失机理一样。 当阀门内部的压降相同时,若阀门内压可以恢复,流量系数值就会较大,流量也就会大些。压力恢复与阀门内腔的几何形状有关,但更主要的是取决于阀瓣、阀座的结构。 二、阀门的流阻系数 流体通过阀门时,其流体阻力损失以阀门前后的流体压力降△p表示。 1.阀门元件的流体阻力 阀门的流阻系数!取决于阀门产品的尺寸、结构以及内腔形状等。可以认为,阀门体腔内的每个元件都可以看作为一个产生阻力的元件系统(流体转弯、扩大、缩小、再转弯等)。所以阀门内的压力损失约等于阀门各个元件压力损失的总和。 应该指出,系统中一个元件阻力的变化会引起整个系统中阻力的变化或重新分配,也就是说介质流对各管段是相互影响的。 为了评定各元件对阀门阻力的影响,现引用一些常见的阀门元件的阻力数据,这些数据反映了阀门元件的形状和尺寸与流体阻力间的关系。(1)突然扩大会产生很大的压力损失。这时,流体部分速度消耗在形成涡流、流体的搅动和发热等方面。局部阻力系数与扩大前管路截面积A1和扩大后管路截面积A2之比的近似关系可用式(1-9)及式(1-10)表示;阻力系数见表(2)逐渐扩大当θ<40℃时,逐渐扩大的圆管的阻力系数比突然扩大时小,但当θ=50-90℃时,阻力系数反而比突然扩大时增大15%- 20%。逐渐扩大的最佳扩张角θ:圆形管θ=5-6.5℃,方型管θ=7-8℃,矩形管10-12℃。 (3)突然缩小 (4)逐渐缩小 (5)平滑均匀转弯

阀门流量系数Cv值

阀门流量系数Cv值 阀门流量系数Cv值字体大小:大| 中| 小2014-08-03 12:53 阅读(839) 评论(0) 分类:流量系数即:C值(欧美标准称为Cv值,国际标准称为:KV值)是阀门、调节阀等工业阀门的重要工艺参数和技术指标。正确计算和选择CV 值是保障管道流量控制系统正常工作的重要步骤。是指单位时间内、在测试条件中管道保持恒定的压力,管道介质流经阀门的体积流量,或是质量流量。即阀门的最大流通能力。流量系数值越大说明流体流过阀门时的压力损失越小。阀门的CV值须通过测试和计算确定。阀门是流量系数是衡量阀门流通能力的指标,流量系数值越大说流体流过阀门时的压 力损失越小.上海申弘阀门有限公司主营阀门有:减压阀(气体减压阀,可调式减压阀,波纹管减压阀,活塞式减压阀,蒸汽 减压阀,先导式减压阀,空气减压阀,氮气减压阀,水用减压阀, 自力式减压阀,比例减压阀)、安全阀、保温阀、低温阀、球阀、截止阀、闸阀、止回阀、蝶阀、过滤器、放料阀、隔膜阀、旋塞阀、柱塞阀、平衡阀、调节阀、疏水阀、管夹阀、排污阀、排气阀、排泥阀、气动阀门、电动阀门、高压阀门、中压阀门、低压阀门、水力控制阀、真空阀门、衬胶阀门、衬氟阀门。阀门系数的定义:流量系数表示流体流经阀门产生单位压力损失时流体的流量,由于单位的不同,流量系数

有几种不同的代号和量值.一般式C=Q√p/PC---流量系数 Q---体积流量p---流体密度P---阀门压力损失概述:流量特性是调节阀的一种重要技术指标和参数。在调节阀应用过程中做出正确的选型具有非常重要的意义。固有特性(流量特性):在经过阀门的压力降恒定时,随着截流元件(阀板)从关闭位置运动到额定行程的过程中流量系数与截流元件(阀板)行程之间的关系。典型地,这些特性可以绘制在曲线图上,其水平轴用百分比行程表示,而垂直轴用百分比流量(或Cv 值)表示。由于阀门流量是阀门行程和通过阀门的压力降的函数,在恒定的压力降下进行流量特性测试提供了一种比较阀门特性类型的系统方法。用这种方法测得的典型的阀门特性有线性、等百分比和快开(图2)。等百分比特性:一种固有流量特性,额定行程的等量增加会理想地产生流量系数(Cv)的等百分比的改变(图2)。线性特性:一种固有流量特性,可以用一条直线在流量系数(Cv 值)相对于额定行程的长方形图上表示出来。因此,行程的等量增加提供流量系数(Cv)的等量增加。图2快开特性:一种固有流量特性:在截流元件很小的行程下可以获得很大的流量系数(图2)。额定流量下的压力降:也是表示气动元件的流量特性之一。气动元件常常在额定流量下工作,故测定额定流量下气动元件上下游的压力降,作为该元件的流量特性指标。显然,此指标也只反映不可压缩流态下的浏览特性。阀门流量系数流量系数

相关文档
最新文档