第二章随机变量及其分布

第二章随机变量及其分布
第二章随机变量及其分布

第二章 随机变量及其概率分布

§2.1 一维离散型随机变量

一、基本概念

★知识点精讲

1.一维离散型随机变量的分布及分布律

(1)离散型随机变量:若随机变量X 只取有限多个或可列无限多个值,则称X 为离散型随机变量。

(2)分布律: ,2,1,}{===k p x X P k k

(3)性质:

① ,2,1,0=≥k p k ②∑∞

==11k k p

2.常用的离散型分布 (1)0-1分布),1(p B

分布律 :

X 0 1 P p -1 p 其中 p 为事件A 出现的概率,0

在n 重伯努利试验中,每次试验事件A 出现的概率为p ,X 表示在n 次试验中事件A 出现的次数,X 的分布律为:

n k p p C k X P k n k k

n

,,2,1,0,)1(}{ =-==- 当n 充足大时,随机变量X 也服从np =λ的泊松分布。 (3)泊松分布)(λP 分布律为: ,2,1,0,!

}{==

=-k e k k X P k

λλ

3.离散型随机变量函数的分布

设X 为离散型随机变量,其概率分布为

则)(X f Y =的概率分布为:

(1)当),2,1)(( ==i x f y i i 的各值i y 互不相等时,Y 的概率分布为:

(2)当),2,1)(( ==i x f y i i 的各值i y 不是互不相等时,应把相等的值分别合并,并相对应地将其概率相加。例如j i y y =,则Y 的概率分布为:

★ 题型归纳及解题技巧

例1.设随机变量X

则k=( ) A.0.1 B.0.2 C.0.3

D.0.4 解:选D。

因为∑==1

1k k p ,故11.03.02.0=+++k ,得4.0=k 。

例2.设离散型随机变量X 的分布律为 (关于离散型随机变量概率求法)

则P{-1

A .0.3

B .0.4

C .0.6

D .0.7

解:选A

P{-1

例3.已知随机变量X 的分布律为

A.0.2

B.0.7

C.0.55

D.0.8 解:选B。

例4

A .P (X =3)=0

B .P (X =0)=0

C .P (X>-1)=l

D .P (X<4)=l 解:选A 。

其他选项准确的结果应为:B .P (X =0)=0.2;C .P (X>-1)=0.9 D .P (X<4)=0.6 例5.掷一枚均匀的骰子,记X 为出现的点数,则P {2

P {2

(1,1),(1,2)(1,3)(1,4)(1,5)(1,6) (2,1),(2,2)(2,3)(2,4)(2,5)(2,6) (3,1),(3,2)(3,3)(3,4)(3,5)(3,6) (4,1),(4,2)(4,3)(4,4)(4,5)(4,6) (5,1),(5,2)(5,3)(5,4)(5,5)(5,6) (6,1),(6,2)(6,3)(6,4)(6,5)(6,6)

以X 表示两次出现的最小点数,X 的所有可能取值为{1,2,3,4,5,6} X

例7.抛一枚质地不均匀的硬币,每次出现正面的概率为

3

2

,连续抛掷8次,以X 表示出现正面的次数,求X 的分布律。(关于求离散型随机变量的分布律)

解:8次抛硬币,每次出现正面的概率为32

,能够看成是8次伯努利试验,X 表

示出现正面的次数,则X 服从n=8,p=3

2

二项分布,故X 的分布律为:

8,,1,0,)3

1

()32(}{88 ===-k C k X P k k k

例8.设随机变量X ~B(3,0.4),则P{X≥1}=( ) (关于二项分布) A.0.352 B.0.432 C.0.784 D.0.936

解:)4.0,3(~B X ,则3.2,1,0,)6.0()4.0(}{33===-k C k X P k k k ,

784.0216.01)4.01(1}0{1}1{3=-=--==-=≥X P X P

例9.在时间[0,T]内通过某交通路口的汽车数X 服从泊松分布,且已知P (X =4)=3P (X =3),则在时间[0,T]内至少有一辆汽车通过的概率为_________. (关于泊松分布)

解:若)(~λP X ,则X 的分布律为 ,2,1,0,!

}{==

=-k e k k X P k

λλ

P (X =4)=3P (X =3),

λ

λ-e

!

44

=λλ-e !

33

3

,则12=λ

则在时间[0,T]内至少有一辆汽车通过的概率为12}0{1-==-e X P 。

例10.设随机变量X 服从参数为3的泊松分布,则P{X=2}=____(关于泊松分布)

解:)3(~P X ,则X 的分布律为 ,2,1,0,!3}{3

===-k e k k X P k

则3

322

9!23}2{--===e e X P 。

例11.设袋中有依次标着-2,-1,1,2,3,3数字的6个球,现从中任取一球,记随机变量X

为取得的球标有的数字,求:

(1)X 的概率分布;(2)Y =X 2的概率分布. (关于离散型随机变量函数的分布) 解:(1)X 的分布律为

(2)Y 的分布律为

例12.设随机变量X

记Y =X 2,则P {Y =4}=_________.(关于离散型随机变量函数的分布) 解:P {Y =4}= P {X =-2}+P{X=2}=0.1+0.3=0.4

§2.2分布函数

★知识点精讲 1.分布函数定义

随机变量X 的分布函数+∞<<-∞≤=x x X P x F },{?)( 性质:(1)1)(0≤≤x F

(2))(,)()(2121x x x F x F <≤

(3)0)(,1)(=-∞=+∞F F x x (4))()0(x F x F =+(右连续) 2.用分布函数表示区间上的概率 (1))(}{b F b X P =≤

(2))()(}{a F b F b X a P -=≤<,其中b a < (3))(1}{b F b X P -=> 3.离散型随机变量的分布函数

∑≤=

x

x k

k p

x F )(

★ 题型归纳及解题技巧

例1.下列函数中可作为随机变量分布函数的是( )(分布函数的性质)

A .???≤≤=.,0;10,1)(1其他x x F

B .???

??≥<≤<-=.1,1;10,;0,

1)(2x x x x x F

C .??

?

??≥<≤<=.1,1;10,;0,0)(3x x x x x F

D .??

?

??≥<≤<=.1,2;10,;00,0)(4x x x x F

解:选C 。可用排除法。

由分布函数的取值范围,可排除B ,D 。 由分布函数的单调不减性质,可排除A 。

例2.设随机变量X~B (1,0.8)(二项分布),则X 的分布函数为___________. (离散型随机变量的分布函数) 解:)8.0,1(~B X ,X 的分布律为

X 0 1

P 0.2 0.8

则X 的分布函数为??

?

??≥<≤<=1,110,2.00,0)(x x x x F

例3. 设随机变量X 的分布律为

求X 的分布函数。(离散型随机变量的分布函数)

解: X 的分布函数为????

???≥<≤<≤<=3

,132,5.021,2.01

,0)(x x x x x F

例4.设随机变量X 的分布函数为F (x ),已知F (2)=0.5,F (-3)=0.1,

则P{X ≤-3}= P {-32}= (利用分布函数求概率)

解:P{X ≤-3}= F(-3)=0.1

P {-32} =1- F(2)=0.5

例5.设随机变量X 的分布函数为+∞<<∞-+=x x b a x F ,arctan )(

求:(1)常数a,b;(2)P {-1

12

arctan lim )(=?

+=+=+∞+∞

→π

b a x b a F x 02

arctan lim )(=?

-=+=-∞-∞

→π

b a x b a F x

可得21=

a ,π

1

=b ,+∞<<∞-+=x x x F ,arctan 121)(π (2) P {-1

1

§2.3 一维连续型随机变量

一、基本概念

1.连续型随机变量的分布及概率密度 ★知识点精讲

(1)概率密度)(,)(+∞<<-∞x x f (2)性质

①0)(≥x f ②1)(=?+∞

∞-dx x f

③}{}{)(}{2121212

1

x x x P x x x P dx x f x x x P x x <<=≤≤==≤

(对于任意的x ,0}{==x X P )

④x x f x F ),()(='为)(x f 的连续点, 其中分布函数?∞

-=≤=x

dx x f x X P x F )(}{)(

1x 2x

★ 题型归纳及解题技巧

例1.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是( ) (密度函数性质) A. f (x )=-e -x B. f (x )=e -x C. f (x )=||-e 2

1x D. f (x )=||-e x

解: 选C。

A .0<--x e 不满足密度函数性质 因为1)(=?+∞

-dx x f ,B 选项∞=-=+∞∞

--+∞

--?x

x e dx e

C选项1212210

00|||

|=-===+∞-+∞-+∞-+∞∞--???

x x x x e dx e dx e dx e

D选项2220

||||=-===+∞-+∞

-+∞

-+∞

--???x

x x x e dx e dx e dx e

例2.设X 是连续型随机变量,则P {X =5}=_________.(密度函数性质) 解因为X 连续型随机变量,在任意点的概率都为0,故P {X =5}=0.

例3.设随机变量X 的概率密度为f(x)=???≤≤,,

0,

c x 0,x 242其他则常数c=___________.

(求连续型随机变量密度函数中的未知数) 解:因为1)(=?+∞

∞-dx x f

2

1

18824)(30

30

2

=

?====??

+∞

-c c x

dx x dx x f c c

: 例4.设随机变量X 的概率密度为f (x )=??

???

≤≤-+, ,0 ,

01,2

1其他x cx 则常数c =( ) (求连续型随机变量密度函数中的未知数) 解:因为1)(=?+∞

∞-dx x f

112121212

1

21)(0

120

1=?=-=??????+=+=--∞

+∞

-??

c c x cx dx cx dx x f

例5.设随机变量X 的概率密度为f (x )=???≤≤,

,0,10 ,2其他x x 则P {0≤X ≤}21

=( )

(连续型随机变量的概率计算)

解: }2

1

0{≤≤X P

4

12)(210

221021

0=

===??x xdx dx x f

例6. 设某种晶体管的寿命X (以小时计)的概率密度为

f(x)=?????≤>.100x ,

0,

100x ,x 100

2

(1)若一个晶体管在使用150小时后仍完好,那么该晶体管使用时间不到200小时的概率是多少?

(2)若一个电子仪器中装有3个独立工作的这种晶体管,在使用150小时内恰有一个晶体管损坏的概率是多少?

(连续型随机变量的概率计算) 解:设A={晶体管使用时间超过150小时} B={晶体管使用时间不到200小时}

AB={晶体管使用时间超过150小时不到200小时} (1)所求概率为P{B|A}。

213

161

100100100100)()(}|{150100200

150

1501002

200

1502==--

===??x x dx x dx

x A P AB P A B P (2)晶体管使用时间不超过150小时的概率为:

3

2

311)(1)(=-=-=A P A P

3个独立工作的晶体管中恰有一个150小时损坏的概率为:

9231322

13=??

? ?????? ??C

2.常用的连续型分布 ★知识点精讲

(1)均匀分布),(~b a U X

①概率密度函数???

??≤≤-=其他,0

,1

)(b x a a b x f

②概率的计算方法:若b d c a ≤<≤,则a

b c

d d X c P --=<<}{ (2)指数分布)(~λE X

①概率密度函数???>=-其他

,00

,)(x e x f x λλ

②概率的计算方法:?=<

c

dx x f d X c P )(}{

(3)正态分布

①一般正态分布),(~2σμN X 概率密度函数+∞<<-∞=

--

x e

x x ,21)(2

22)(σμσ

π?

其中μσ,0>和σ均为常数。

y

μ

σ

π21x

O

②标准正态分布)1,0(~N X 概率密度函数+∞<<-∞=

-

x e

x x ,21)(2

?

③若),(~2σμN X , σ

μ

-=X Y ,则)1,0(~N Y 是标准正态分布。

④概率的计算方法:

)1,0(~N X 时,可查标准正态分布表}{21)(2

2x X P dx e

x x

x ≤==Φ?

--

π

0>x 时,可直接查表;

0

),(~2σμN X 时,X 的分布函数)(

)(σ

μ

-Φ=x x F

特别μ=x 时,5.0)(=μF

()

y x ?=

★ 题型归纳及解题技巧

例7.已知连续型随机变量X 服从区间[a ,b ]上的均匀分布,则概率

=????

??

+<32b a X P ( )(均匀分布)

A .0

B .3

1

C .3

2

D .1

解:选B 。

因为b b

b b a a a a =+≤+≤+≤3

23232,所以

3133232=--=--+=????

??+

b a b a

b a b a X P

例8.设随机变量X ~N (1,4),F (x )为X 的分布函数,Φ(x )为标准正态分布函数,则F (3)=( ) (正态分布) A.Φ(0.5) B.Φ(0.75) C.Φ(1)

D.Φ(3)

解:选C 。)1()2

1

3(

)3(Φ=-Φ=F 例9.设随机变量X ~N (1,32),则P{-2≤ X ≤4}=______.(附:)1(Φ=0.8413) (正态分布)

解:)3

1

2()314(

)2()4(}42{--Φ--Φ=--=≤≤-F F x p 6826.01)1(2)]1(1[)1()1()1(=-Φ=Φ--Φ=-Φ-Φ=

例10.设随机变量X ~N (10,2σ),已知P (10

(正态分布)

解:由正态分布的对称性,可知P (0

.0)10

(21)10-20()10()20(}2010{-Φ=-Φ=-=<<σ

σF F X P 5.0)10()10(121)10-0(21)0()10(}100{=Φ=??????Φ--=Φ-=

-=<<σ

σσF F X P

例11.设随机变量X~N(0,42),且P{X >1}=0.4013,(x)为标准正态分布函数,则(0.25)=_____. (正态分布)

解:4013.0)25.0(1)40

1(1)1(1}1{=Φ-=-Φ-=-=>F X P

所以5987.04013.01)25.0(=-=Φ

例12.设随机变量X 的分布函数为F (x )=?

??<≥--,0 ,0,

0,e 1x x x 则当x >0时,X 的概率密度

f (x )=_________. (已知F(x),求f(x))

解:???<≥='=-0

,00

,)()(x x e x F x f x

故当x >0时,X 的概率密度f (x )=x e -.

例13.设连续型随机变量X 的概率密度为?

?

?≤≤=,,0;

10,1)(其他x x f 则当10≤≤x 时,X

的分布函数F (x )= ______.(已知f(x),求F(x)) 解:当10≤≤x 时,X 的分布函数

F (x )=x dx dx x f dx x f dx x f x

x

x

==+=????∞

-∞

-0

1)()()(

例14.设随机变量X 的概率密度为f(x),且f(-x)=f(x),F(x)是X 的分布函数,则对任意的实数a ,有( )(分布函数) A.F(-a)=1-?a

0dx )x (f

B.F(-a)=?-a

dx )x (f 2

1

C.F(-a)=F(a)

D.F(-a)=2F(a)-1

解:选B 。

由f(-x)=f(x),随机变量X 的概率密度为f(x)关于y 轴对称,

例15.设随机变量X 的概率密度函数为

(1),11,()0,k x x f x +-<

其它.

求(1)求知参数k ;

(2)概率P (X >0);

(3)写出随机变量X 的分布函数.(综合) 解:(1)2

1

12)1(2

1)1(1)(1

1

2

1

1=

?==+?=+?=--∞+∞

-??

k k x k

dx x k dx x f (2)4

3

)1(4

1

)1(21)(}0{1

2

1

00

=

+=+==>??∞

+x dx x dx x f X P (3)?

-=x

dx x f x F )()(

1-≤x 时,0)(=x F ; 1≥x 时,1)(=x F 11≤≤-x 时,x x dx x dx x f x F x x

2

141)1(21)()(20

+=+==?

?∞-

3.连续型随机变量函数的分布 (1)方法一(公式法)

设X 为连续型随机变量,概率密度为)(x f X ,又)(x g y =是一严格单调的可导函数,其值域为],[βα,且0)(≠'x g ,记)(y h x =为)(x g y =的反函数,则

)(X g Y =的概率密度为???<<'?=其他,0|,)(|))(()(β

αy y h y h f y f X Y

特别,当+∞=-∞=βα,时,+∞<<-∞'?=y y h y h f y f X Y |,)(|))(()(

(2)方法二(分布函数法)

①先求出Y 的分布函数}{})({}{)(S X P y X g P y Y P y F ∈=≤=≤=

S X ∈为所有使y X g ≤)(成立的x 值的集合。 ②再求)(X g Y =的概率密度为)()(y F y f Y '=

题型归纳及解题技巧

例15.设随机变量X 的概率密度为:

?????<<=其他,

,011-2

3)(2

x x x f X ,求Y=2X-1的概率密度函数。 解:解法一:12)(-==x x g y ,值域为),(+∞-∞

)(x g y =反函数为)1(21)(+=

=y y h x ,2

1

)(='y h

故Y 的概率密度为

?????<<-+=??

???<+<-??

????+='?=其他其他,01

3,)1(83,01)1(211,)1(2123|)(|))(()(2

2

y y y y y h y h f y f X Y 解法二:

Y 的分布函数)}1(2

1

{}12{}{)(+≤=≤-=≤=y X P y X P y Y P y F ?

+∞

-=)1(21

)(y X dx x f

1)1(2

1

1<+<-y 时,?+=)1(2

1

0223)(y dx x y F 1)1(21

≥+y 时,1)(=y F 1)1(2

1

-≤+y 时,0)(=y F 故?????<<-+=??

???<+<-??

????+='=其他其他,013,)1(83,01)1(211,)1(2123)()(2

2

y y y y y F y f Y 例16.设随机变量X 服从[0,1]上的均匀分布,Y =2X -1,则Y 的概率密度为

()

A.

1

,11,

()2

0,,

Y

y

f y

?

-≤≤

?

=?

??其他

B.1,11,

()

0,,

Y

y

f y

-≤≤

?

=?

?其他

C.

1

,01,

()2

0,,

Y

y

f y

?

≤≤

?

=?

??其他

D.1,01,

()

0,,

Y

y

f y

≤≤

?

=?

?其他

解:选C。

随机变量及其分布列概念公式总结

随机变量及其分布总结 1、定义:随着试验结果变化而变化的变量称为随机变量 .随机变量常用字母 X , Y ,ξ,η,… 表示. 2、定义:所有取值可以一一列出的随机变量,称为离散型随机变量 3、分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质: (1)P i ≥0,i =1,2,…; (2)P 1+P 2+…=1. 5.求离散型随机变量ξ的概率分布的步骤: (1)确定随机变量的所有可能的值x i (2)求出各取值的概率p(ξ=x i )=p i (3)画出表格 6.两点分布列: 7超几何分布列: 一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品 数,则事件 {X=k }发生的概率为(),0,1,2,,k n k M N M n N C C P X k k m C --=== ,其中mi n {,} m M n =,且,,,,n N M N n M N N *≤≤∈.称分布列 为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X

服从超几何分布 8.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下: ξ 1 … k … n P n n q p C 00 111-n n q p C … k n k k n q p C - … q p C n n n 称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数。 9.离散型随机变量的均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为 则称 =ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 10.离散型随机变量的均值或数学期望的性质: (1)若ξ服从两点分布,则=ξE p . (2)若ξ~B (n ,p ),则=ξE np . (3)()c c E =,c 为常数 (4)ξ~N (μ,2σ),则=ξE μ (5)b aE b a E +=+ξξ)( 11.方差: 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…, 且取这些值的概率分别是1p ,2p ,…,n p ,…,那么, ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+n n p E x ?-2)(ξ+…

第三章--多维随机变量及其分布总结

第三章--多维随机变量及其分布总结

第三章 多维随机变量及其分布 第一节 二维随机变量 一、二维随机变量的分布函数 设E 是一个随机试验, 它的样本空间是S . 设X 、Y 是定义在S 上的随机变量, 则由它们构成的一个向量(X , Y )称为二维随机向量或二维随机变量. 一般地, (X , Y )的性质不仅与X 有关, 与Y 有关, 而且还依赖于X 、Y 的相互关系, 因此必须把(X , Y )作为一个整体来研究. 首先引入(X , Y )的分布函数的概念. 定义 设(X , Y )为二维随机变量, 对于任意实数x 、y , 二元函数 F (x , y ) = P {(X ≤ x )∩(Y ≤ y )}= P {X ≤ x , Y ≤ y } 称为二维随机变量(X , Y )的分布函数, 或称为随机变量X 和y 的联合分布函数. 分布函数F (x , y )表示事件(X ≤ x )与事件(Y ≤ y )同时发生的概率. 如果把(X , Y )看成平面上具有随机坐标(X , Y )的点, 则分布函数F (x , y )在(x , y )处的函数值就是随机点(X , Y )落在平面上的以(x , y )为顶点而位于该点左下方的无限矩形内的概率.. 由上面的几何解释, 容易得到随机点(X , Y )落在矩形区域{x 1 < X ≤ x 2, y 1 < Y ≤ y 2}的概率为 P {x 1 < X ≤ x 2, y 1 < Y ≤ y 2} = F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) (1) 与二元函数类似, 二元分布函数F (x , y )也具有如下一些性质: 1? F (x , y )是变量x 和y 的单调不减函数, 即当x 1 < x 2时, F (x 1, y ) ≤ F (x 2, y ); 当y 1 < y 2时, F (x , y 1) ≤ F (x , y 2). 2? 0 ≤ F (x , y ) ≤ 1, 且F (-∞, y ) = 0, F (x , -∞) = 0, F (-∞,-∞) = 0, F (+∞,+∞) = 1.(凡含-∞的概率分布为0) 3? F (x , y )关于x 和y 都是右连续的, 即F (x + 0, y ) = F (x , y ), F (x , y + 0) = F (x , y ). 4? 对任意的(x 1, y 1)、(x 2, y 2), x 1 < x 2, y 1 < y 2, 有F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) ≥ 0. 注: 二元分布函数具有性质1?~ 4?, 其逆也成立(2?中0 ≤ F (x , y ) ≤ 1可去), 即若二元实值函数F (x , y )(x ∈ R , y ∈ R )满足1?~ 4?, 则F (x , y )必是某二维随机变量的(X , Y )的分布函数. 其中4?是必不可少的, 即它不能由1?~ 3?推出(除去0 ≤ F (x , y ) ≤ 1). 二、二维离散型随机变量 如果二维随机变量(X , Y )的所有可能取的值是有限对或可列无限多对, 则称(X , Y )是二维离散型随机变量. 设二维离散型随机变量(X , Y )所有可能取的值为(x i , y j ) (i , j = 1, 2, 3, …). 记P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)则由概率定义有 p ij ≥ 0; 111 =∑∑∞=∞ =i j ij p . 我们称P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)为二维离散型随机变量(X , Y )的分布律(概率分布)或随机变量X 和Y 的联合分布律, (X , Y )的分布律也可用表格表示. 其分布函数为 = ),(y x F ∑∑≤≤==x x y y j i i j y Y x X P },{=∑∑≤≤x x y y ij i j p 这里 ∑∑ ≤≤x x y y i j 表示对一切x i ≤ x , y j ≤ y 的那些指标i 、j 求和. 例1 一个口袋中有三个球, 依次标有1、2、2, 从中任取一个, 不放回袋中, 再任取一个. 设每次取球时, 各球被取到的可能性相等, 以X 、Y 分别记第一次和第二次取到的球上标有的数字, 求X 、Y 的联合分布律与分布函数.. 解: (X , Y )的可能取值为(1, 2)、(2, 1)、(2, 2). P {X = 1, Y = 2}= P {X = 1}P {Y = 2 / X = 1}= 3 12231=?.

随机变量及其分布知识点汇总

随机变量及其分布知识点汇总 知识点一 离散型随机变量及其分布列 (一)、离散型随机变量的分布列 一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ??????,X 取每一个值 (1,2,,)i x i n =???的概率()i i P X x p ==,则称以下表格 为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1,2,,i P i n =???≥ (2)121n p p p ++???+= 1.两点分布 如果随机变量X 的分布列为 则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为: (),0,1,2,3,...,k n k M N M n N C C P X k k m C --=== 则随机变量X 的概率分布列如下: {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。 注意:超几何分布的模型是不放回抽样

知识点二 条件概率与事件的独立性 (一)、条件概率 一般地,设A,B 为两个事件,且()0P A >,称() (|)() P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤ 如果B 和C 互斥,那么[()|](|)(|)P B C A P B A P C A =+ (二)、相互独立事件 设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即 ()()()P AB P A P B =),则称事件A 与事件B 相互独立。 ()()()A B P AB P A P B ?=即、相互独立 一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212(...)()()...()n n P A A A P A P A P A =. 注意:(1)互斥事件:指同一次试验中的两个事件不可能同时发生; (2)相互独立事件:指在不同试验下的两个事件互不影响. (三)、n 次独立重复试验 1.一般地,在相同条件下,重复做的n 次试验称为n 次独立重复试验. 在n 次独立重复试验中,记i A 是“第i 次试验的结果”,显然, 1212()()()()n n P A A A P A P A P A ???=??? “相同条件下”等价于各次试验的结果不会受其他试验的影响 注意: 独立重复试验模型满足以下三方面特征 第一:每次试验是在同样条件下进行; 第二:各次试验中的事件是相互独立的; 第三:每次试验都只有两种结果,即事件要么发生,要么不发生. 2.n 次独立重复试验的公式: n A X A p n A k 一般地,在次独立重复试验中,设事件发生的次数为,在每次试验中事件发生的概率为,那么在次独立重复试验中,事件恰好发生次的概率为 ()(1),0,1,2,...,.(1)k k n k k k n k n n P X k C p p C p q k n q p --==-===-其中,而称p 为成功

随机变量及其分布考点总结

第二章 随机变量及其分布 复习 一、随机变量. 1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验. 2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量. 3、分布列:设离散型随机变量ξ可能取的值为:ΛΛ,,,,21i x x x ξ取每一个值),2,1(Λ=i x 的概率p x P ==)(,则表称为随机变量ξ的概率分布,简称ξ的分布列. 121i 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数. 典型例题: 1、随机变量ξ的分布列为(),1,2,3(1) c P k k k k ξ== =+……,则P(13)____ξ≤≤= 2、袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为1 7 ,现在甲乙两人从袋中轮流摸去一 球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时终止,用ξ表示取球的次数。(1)求ξ的分布列(2)求甲取到白球的的概率 3、5封不同的信,放入三个不同的信箱,且每封信投入每个信箱的机会均等,X 表示三哥信箱中放有信件树木的最大值,求X 的分布列。 4 已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为5 . (1)请将上面的列联表补充完整; (2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由; (3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,,还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率. (参考公式:2 ()()()()() n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)

随机变量及其分布函数

随机变量及其分布函数 将随机事件以数量来标识,即用随机变量描述随机现象的研究方法,它是定义在样本空间上具有某种可预测性的实值函数。 分布函数则完整的表述了随机变量。 一、 随机变量与分布函数 (1) 随机变量: 取值依赖于某个随机试验的结果(样本空间),并随着试验结果不同而变化的变量,称之为随机变量。 分布函数: [1] 定义: 设X 是一个随机变量,对任意实数x ,记作 (){}F x P X x ≤=,称()F x 为随机变量X 的分 布函数,又称随机变量X 服从分布()F x ,显然,函数 ()F x 的定义域为(),-∞+∞,值域为[0,1]。 [2] 性质: ?()F x 单调非降。 ?()0F -∞=、()1F +∞=。 ?()(0)F x F x =+,即()F x 一定是右连续的。 ?对于任意两个实数a b <, {}()()P a X b F b F a <≤=- ?对于任意实数0x ,

00 0{}()()P X x F x F x ==-- ?000{}1{}1()P X x P X x F x >=-≤=- ?000{}{)lim }(x x P X x P X x x F →- =≤<=- ?000{}1{}1()P X x P X x F x ≥=-<=-- 二、 离散型随机变量与连续型随机变量 (1) 离散型随机变量 [1] 概念:设X 是一个随机变量,如果X 的取值是有限个或者 无穷可列个,则称X 为离散型随机变量。其相应的概率()i i P X x p ==(12)i =、……称为X 的概率分布或分布律,表格表示形式如下: [2] 性质: ?0i p ≥ ? 1 1n i i p ==∑ ?分布函数()i i x x F x p ==∑ ?1{}()()i i i P X x F x F x -==- (2) 连续型随机变量 [1] 概念:如果对于随机变量的分布函数()F x ,存在非 负的函数 ()f x ,使得对于任意实数x ,均有:

随机变量的函数的分布

8.随机变量的函数的分布 【教学容】:高等教育大学盛骤,式千,承毅编的《概率论与数理统计》 第二章第五节的随机变量的函数的分布 【教材分析】:本节课主要是在学生学习了随机变量的概念和随机变量的分布的基础上进行的教学;本节从随机变量的分布入手引入随机变量的函数的随机性特征, 即由自变量X 的统计规律性出发研究因变量Y 的统计性规律的问题;本节课的教学先讲授离散型随机变量的函数的分布接着讲连续型随机变量的函数的分布。让学生掌握两种不同的随机变量的分布的求解方法。其中,离散型随机变量的函数的分布是比较容易求得而连续型随机变量的函数的分布学生往往束手无策,因此,我在本次教学中,先复习分布函数和概率密度函数的关系,后通过简单例子来讲解,最后归纳总结 ,再研究连续型随机变量的函数的一种特殊情形的分布问题。最后导出一个重要的定理。 【学情分析】: 1、知识经验分析 学生具有一定的随机变量及其分布相关理论知识及微分学相关知识,通过前两次课的学习已具备一定的解题方法,本节课通过让学生观察、思考,教师启发、引导等教学方式,让学生自然过渡到随机变量的函数的分布的学习中。 2、学习能力分析 学生虽然具备一定的微积分的知识和随机变量的理论基础,但概念理解不透彻,解决问题的能力不高,方法应用不熟练,知识没有融会贯通。 【教学目标】:掌握随机变量的函数的概率分布的求法。 【教学重点、难点】: 重点:离散型随机变量的函数的分布;连续型随机变量的函数的分布。 难点:连续型随机变量的函数的分布。 【教学方法】:讲授法 启发式教学法 【教学课时】:1个课时 【教学过程】: 一、问题引入 在实际中,人们常常对随机变量 X 的函数()Y g X =所表示的随机变量Y 更感兴趣。

随机变量及其分布小结与复习

复习课: 随机变量及其分布列 教学目标 重点:理解随机变量及其分布的概念,期望与方差等的概念;超几何分布,二项分布,正态分布等的特点;会求条件概率,相互独立事件的概率,独立重复试验的概率等. 难点:理清事件之间的关系,并用其解决一些具体的实际问题. 能力点:分类整合的能力,运算求解能力,分析问题解决问题的能力. 教育点:提高学生的认知水平,为学生塑造良好的数学认识结构. 自主探究点:例题及变式的解题思路的探寻. 易错点:容易出现事件之间的关系混乱,没能理解问题的实际意义. 学法与教具 1.学法:讲授法、讨论法. 2.教具:投影仪. 一、【知识结构】 二、【知识梳理】 1.随机变量 ⑴随机变量定义:在随机试验中,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量.简单说,随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.常用希腊字母x、y、ξ、η等表示. ⑵如果随机变量可能取的值可以按次序一一列出(可以是无限个)这样的随机变量叫做离散型随机变量.

⑶如果随机变量可能取的值是某个区间的一切值,这样的随机变量叫做连续型随机变量. 2.概率分布定义(分布列) 设离散型随机变量ξ可能取的值为123,,,,i x x x x L L ,ξ取每一个值(1,2,)i x i =L 的概率 ()i i P x p ξ==,则称表 ξ 1x 2x L i x L P 1P 2P L i P L 称为随机变量ξ的概率分布列,简称ξ的分布列. 注:1.离散型随机变量的分布列具有下述两个性质: (1)0,123≥,,,i p i =L ;123(2)1p p p +++=L 3.常见的分布列 ⑴二项分布:在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰发生k 次的概 率为()(1)k k n k n p X k C p p -==-,显然x 是一个随机变量.随机变量x 的概率分布如下: x 1 L k L n P 00n n C p q 111 n n C p q - L k k n k n C p q - L n n n C p q 我们称这样的随机变量x 服从二项分布,记作~(,)X B n p ⑵两点分布列:如果随机变量ξ的分布列为: ξ 0 1 P 1P - P 这样的分布列称为两点分布列,称随机变量服从两点分布,而称(1)p P ξ==为成功概率.两点分布是特殊的二项分布(1)p ξ~B , ⑶超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有x 件次品数,则事件{} x k =发生的概率为(),0,1,2,3,,k N k M N M n N C C P X k k m C --===L .其中{}min ,m M n =,且*,,,,n N M N n M N N ≤≤∈,则称分布列

“随机变量及其分布”简介

“随机变量及其分布”简介 北京师范大学数学科学院李勇 随机变量是研究随机现象的重要工具之一,他建立了连接随机现象和实数空间的一座桥梁,使得我们可以借助于有关实数的数学工具来研究随机现象的本质,从而可以建立起应用到不同领域的概率模型,如二项分布模型、超几何分布模型、正态分布模型等。 在本章中将通过具体实例,帮助学生理解取有限值的离散型随机变量及其分布列、均值、方差的概念,理解超几何分布和二项分布的模型并能解决简单的实际问题,使学生认识分布列对于刻画随机现象的重要性,认识正态分布曲线的特点及曲线所表示的意义。 一、内容与要求 1. 随机变量及其分布的概念。 通过具体实例使学生理解随机变量及其分布列的概念,认识随机变量及其分布对于刻画随机现象的重要性。要求学生会用随机变量表达简单的随机事件,并会用分布列来计算这类事件的概率。 2.超几何分布模型及其应用。 通过实例,理解超几何分布及其导出过程,并能进行简单的应用。 3. 二项分布模型及其应用。 通过具体实例使学生了解条件概率和两个事件相互独立的概念,理解n次独立重复试验和二项分布模型,并能解决一些简单的实际问题。 4.离散随机变量的均值与方差。 通过实例使学生理解离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题。 5.正态分布模型。 借助直观使学生认识正态分布曲线的特点及含义。 二、内容安排及说明 1.全章共安排了4个小节,教学约需12课时,具体内容和课时分配如下(仅供参考): 2.1 离散型随机变量及其分布列约3课时 2.2 二项分布及其应用约4课时

2.3 离散型随机变量的均值与方差约3课时 2.4 正态分布约1课时 小结约1课时 2. 本章知识框图 3.对内容安排的说明。 研究一个随机现象,可以借助于随机变量,而分布描述了随机变量取值的概率分布规律。二项分布和超几何分布是两个应用广泛的概率模型.为了使学生能够更好地理解它们,并能用来解决一些实际问题,教科书在内容安排上作了如下考虑: (1) 为学生把注意力集中在随机变量的基本概念和方法的理解上,通过取有限个不同 值的随机变量为载体介绍这些概念,以便他们能更好的应用这些概念解决实际问 题。例如,如何定义随机变量来描述所感兴趣的随机事件;一个具体的随机变量都 能表达什么样的事件,如何表达这些事件;如何用分布列来表达随机事件发生的概 率等。 (2) 介绍超几何分布模型及其应用,其目的是 i. 让学生了解它的广泛应用背景,并使学生能够应用该分布设计一些能够丰富学生课外

随机变量及其分布知识点总结

圆梦教育中心 随机变量及其分布知识点整理 一、离散型随机变量的分布列 一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ??????,X 取每一个值(1,2,,)i x i n =???的概率 ()i i P X x p ==,则称以下表格 为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1,2,,i P i n =???≥ (2)121n p p p ++???+= 1.两点分布 则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为: (),0,1,2,3,...,k n k M N M n N C C P X k k m C --=== {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。 注:超几何分布的模型是不放回抽样 二、条件概率 一般地,设A,B 为两个事件,且()0P A >,称() (|)() P AB P B A P A = 为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤ 如果B 和C 互斥,那么[()|](|)(|)P B C A P B A P C A =+U 三、相互独立事件 设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事件A 与事件B 相互独立。()()()A B P AB P A P B ?=即、相互独立 一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212(...)()()...()n n P A A A P A P A P A =.

选修2-3第二章随机变量及其分布知识点总结

第二章概率总结 一、知识点 1.随机试验的特点: ①试验可以在相同的情形下重复进行; ②试验的所有可能结果是明确可知的,并且不止一个 ③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会 出现哪一个结果. 2.分类 随机变量 (如果随机试验可能出现的结果可以用一个变量X来表示,并且X是随着试验的结 果的不同而变化,那么这样的变量叫做随机变量.随机变量常用大写字母X、Y等 或希腊字母ξ、η等表示。) 离散型随机变量:连续型随机变量: 3.离散型随机变量的分布列 一般的,设离散型随机变量X可能取的值为x1, x2, ,x i , ,x n X取每一个值xi(i=1,2,)的概率P(ξ=x i)=P i,则称表 为离散型随机变量X 的概率分布,简称分布列 性质:①---------------------------------------------- ②-------------------------------------------------. 二点分布 如果随机变量X的分布列为: 其中0

一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n(n ≤N)件, 这n 件中所含这类物品件数X 是一个离散型随机变量, 则它取值为k 时的概率为()(0,1,2,,)k n k M N M n N C C P X k k m C --===,其中 则称随机变量X 的分布列 , 为超几何分布列,且称随机变量X 服从参数N 、M 、n 的超几何分布 注意:(1)超几何分布的模型是不放回抽样; (2)超几何分布中的参数是N 、M 、n ,其意义分别是总体中的个体总数、N 中一类的 总数、样本容量 条件概率 1.定义:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率, 叫做条件概率.记作P(B|A),读作A 发生的条件下B 的概率 2.事件的交(积):由事件A 和事件B 同时发生所构成的事件D ,称为事件A 与事件B 的交(或积).记作D=A ∩B 或D=AB 3.条件概率计算公式: 例题、10个产品中有7个正品、3个次品,从中不放回地抽取两个,已知第一个取到次品, 求第二个又取到次品的概率. 相互独立事件 1.定义:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件 叫做相互独立事件 2.相互独立事件同时发生的概率公式 两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。则有 如果事件A1,A2,…An 相互独立,那么这n 个事件同时发生的概率, 等于每个事件发生的概率的积。即: P (A1·A2·…·An )=P (A1)·P (A2)·…·P(An) 3解题步骤 说明(1)判断两事件A 、B 是否为相互独立事件,关键是看A (或B )发生与否对B (或A )发生的概率是否影响,若两种状况下概率不变,则为相互独立. (2)互斥事件是指不可能同时发生的两个事件;相互独立事件是指一事件的发生与否对另一事件发生的概率没影响. (3)如果A 、B 是相互独立事件,则A 的补集与B 的补集、A 与B 的补集、A 的补集与B 也都相互独立.

选修2-3随机变量及其分布知识点总结典型例题

2-3随机变量及其分布 -- HW) T数字特征11 …. --- L-W Array「(两点分布〕 5店殊分布列)--憊几何分祠 -(二项分利 十[并件相互独立性)一価立重复试劇 5J ~(条件概率) ”、r<正态分布密度曲绚 f正态分布)一 要点归纳 一、离散型随机变量及其分布列 1.⑴随机变量:在随机试验中,我们确定了一个对应关 系,使得每一个试验结果都用一个确定的数字表示?在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量?通常用字母X, Y, E, n等表示. (2) 离散型随机变量:所有取值可以一一列出的随机变量称为离散型随 机变量. (3) 离散型随机变量的分布列: 一般地,若离散型随机变量 X可能取的不同值为X i, X2…,X i,…X n,X取每一个值X i(i = 1,2,…,n)的概率 P(X= X)= p i,以表格的形式表示如下: X的分布列.有时为了简单起见,也用等式P(X = X i) = p i, i = 1,2,…,n表示X的分布列. (4)离散型随机变量的分布列的性质: ①P i>0,i = 1,2,…,n; n ②P i = 1. i = 1

(5)常见的分布列: 两点分布:如果随机变量X 的分布列具有下表的形式,则 称X 服从两点分布,并称p = P(X = 1)为成功概率. 两点分布又称 0- 1分布,伯努利分布. 超几何分布:一般地,在含有 M 件次品的N 件产品中,任取 X 件次品,则事件{X = k }发生的概率为 P(X = 其中 m= min { M , n },且 n W N , M < N , n , M , N € N *.如 果随机变量X 的分布列具有上表的形式,则称随机变量 X 服从超几何分布. 2 .二项分布及其应用 (1)条件概率:一般地,设 A 和B 是两个事件,且 P(A)>0, p / AB) 称P(BA) = P ((A )为在事件A 发生的条件下,事件B 发生 的条件概率.P(B|A)读作A 发生的条件下B 发生的概率. ⑵条件概率的性质: ① 0 < P(BA)< 1; ② 必然事件的条件概率为1,不可能事件的条件概率为0; ③ 如果 B 和C 是两个互斥事件,则 P(B U C|A)= P(B|A) + P(C|A). (3) 事件的相互独立性:设 A, B 为两个事件,如果 P(AB)= P(A)P(B),则 称事件 A 与事件B 相互独立?如果事件 A 与B 相互独立,那么 A 与-,-与B ,-与-也都相互独立. (4) 独立重复试验:一般地,在相同条件下重复做的 n 次试 验称为n 次独立重复试验. c M c N-/i c N k = 0, 1, 2, ,m,即 n 件,其中恰有 k)=

随机变量及其分布知识点整理

随机变量及其分布知识点整理 一、离散型随机变量的分布列 一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ??????,X取每一个值(1,2,,)i x i n =???的概率()i i P X x p ==,则称以下表格 为随机变量X 的概率分布列,简称X 的分布列、 离散型随机变量的分布列具有下述两个性质: (1)0,1,2,,i P i n =???≥ (2)121n p p p ++???+= 1、两点分布 则称X服从两点分布,并称=P(X=1)p 为成功概率、 2、超几何分布 一般地,在含有M件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为: (),0,1,2,3,...,k n k M N M n N C C P X k k m C --=== {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。 注:超几何分布的模型就是不放回抽样 二、条件概率 一般地,设A,B为两个事件,且()0P A >,称()(|)() P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率、 0(|)1P B A ≤≤ 如果B 与C 互斥,那么[()|](|)(|)P B C A P B A P C A =+ 三、相互独立事件 设A,B两个事件,如果事件A 就是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事

件A 与事件B 相互独立。()()()A B P AB P A P B ?=即、相互独立 一般地,如果事件A1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212(...)()()...()n n P A A A P A P A P A =. 注:(1)互斥事件:指同一次试验中的两个事件不可能同时发生; (2)相互独立事件:指在不同试验下的两个事件互不影响、 四、n 次独立重复试验 一般地,在相同条件下,重复做的n 次试验称为n次独立重复试验、 在n 次独立重复试验中,记i A 就是“第i 次试验的结果”,显然,1212()()()()n n P A A A P A P A P A ???=??? “相同条件下”等价于各次试验的结果不会受其她试验的影响 注: 独立重复试验模型满足以下三方面特征 第一:每次试验就是在同样条件下进行; 第二:各次试验中的事件就是相互独立的; 第三:每次试验都只有两种结果,即事件要么发生,要么不发生、 n 次独立重复试验的公式: n A X A p n A k 一般地,在次独立重复试验中,设事件发生的次数为,在每次试验中事件发生的概率为,那么在次独立重复试验中,事件恰好发生次的概率为 ()(1),0,1,2,...,.(1)k k n k k k n k n n P X k C p p C p q k n q p --==-===-其中,而称p 为成功概率、 五、二项分布 一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则 ()(1)0,1,2,,k k n k n P X k C p p k n -==-=???, 此时称随机变量X服从二项分布,记作~(,)X B n p ,并称p为成功概率、 六、离散随机变量的均值(数学期望) 则称1122()i i n n E X x p x p x p x p =+++++ 为X 的数学期望或均值,简称为期望.它反映了离散型随机变量取值的平均水平. 则()EY aE X b =+,即()()E aX b aE X b +=+ 2.一般地,如果随机变量X 服从两点分布,那么

第三章__多维随机变量及其分布总结

第三章 多维随机变量及其分布 第一节 二维随机变量 一、二维随机变量的分布函数 设E 是一个随机试验, 它的样本空间是S . 设X 、Y 是定义在S 上的随机变量, 则由它们构成的一个向量(X , Y )称为二维随机向量或二维随机变量. 一般地, (X , Y )的性质不仅与X 有关, 与Y 有关, 而且还依赖于X 、Y 的相互关系, 因此必须把(X , Y )作为一个整体来研究. 首先引入(X , Y )的分布函数的概念. 定义 设(X , Y )为二维随机变量, 对于任意实数x 、y , 二元函数 F (x , y ) = P {(X ≤ x )∩(Y ≤ y )}= P {X ≤ x , Y ≤ y } 称为二维随机变量(X , Y )的分布函数, 或称为随机变量X 和y 的联合分布函数. 分布函数F (x , y )表示事件(X ≤ x )与事件(Y ≤ y )同时发生的概率. 如果把(X , Y )看成平面上具有随机坐标(X , Y )的点, 则分布函数F (x , y )在(x , y )处的函数值就是随机点(X , Y )落在平面上的以(x , y )为顶点而位于该点左下方的无限矩形内的概率.. 由上面的几何解释, 容易得到随机点(X , Y )落在矩形区域{x 1 < X ≤ x 2, y 1 < Y ≤ y 2}的概率为 P {x 1 < X ≤ x 2, y 1 < Y ≤ y 2} = F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) (1) 与二元函数类似, 二元分布函数F (x , y )也具有如下一些性质: 1? F (x , y )是变量x 和y 的单调不减函数, 即当x 1 < x 2时, F (x 1, y ) ≤ F (x 2, y ); 当y 1 < y 2时, F (x , y 1) ≤ F (x , y 2). 2? 0 ≤ F (x , y ) ≤ 1, 且F (-∞, y ) = 0, F (x , -∞) = 0, F (-∞,-∞) = 0, F (+∞,+∞) = 1.(凡含-∞的概率分布为0) 3? F (x , y )关于x 和y 都是右连续的, 即F (x + 0, y ) = F (x , y ), F (x , y + 0) = F (x , y ). 4? 对任意的(x 1, y 1)、(x 2, y 2), x 1 < x 2, y 1 < y 2, 有F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) ≥ 0. 注: 二元分布函数具有性质1?~ 4?, 其逆也成立(2?中0 ≤ F (x , y ) ≤ 1可去), 即若二元实值函数F (x , y )(x ∈ R , y ∈ R )满足1?~ 4?, 则F (x , y )必是某二维随机变量的(X , Y )的分布函数. 其中4?是必不可少的, 即它不能由1?~ 3?推出(除去0 ≤ F (x , y ) ≤ 1). 二、二维离散型随机变量 如果二维随机变量(X , Y )的所有可能取的值是有限对或可列无限多对, 则称(X , Y )是二维离散型随机变量. 设二维离散型随机变量(X , Y )所有可能取的值为(x i , y j ) (i , j = 1, 2, 3, …). 记P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)则由概率定义有 p ij ≥ 0; 111 =∑∑∞=∞ =i j ij p . 我们称P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)为二维离散型随机变量(X , Y )的分布律(概率分布)或随机变量X 和Y 的联合分布律, (X , Y )的分布律也可用表格表示. 其分布函数为 = ),(y x F ∑∑≤≤==x x y y j i i j y Y x X P },{= ∑∑≤≤x x y y ij i j p 这里 ∑∑ ≤≤x x y y i j 表示对一切x i ≤ x , y j ≤ y 的那些指标i 、j 求和. 例1 一个口袋中有三个球, 依次标有1、2、2, 从中任取一个, 不放回袋中, 再任取一个. 设每次取球时, 各球被取到的可能性相等, 以X 、Y 分别记第一次和第二次取到的球上标有的数字, 求X 、Y 的联合分布律与分布函数.. 解: (X , Y )的可能取值为(1, 2)、(2, 1)、(2, 2). P {X = 1, Y = 2}= P {X = 1}P {Y = 2 / X = 1}= 3 12231=?.

§4随机变量函数的分布

§3.4 随机变量函数的分布 对离散型随机变量,我们讨论过随机变量函数的分布问题,对一般的随机变量当然也存在同样的问题。例如,若ξ是N (2 ,σμ)分布的随机变量,为了解决计算中的查表问题, 在中曾经引入变换 η=σ ξa - 这个新出现的随机变量η就是原来的随机变量ξ的一个函数。现在来讨论连续型随机变量函数的分布问题,先介绍一个便于应用的定理。 定理3.1 设ξ是一个连续型随机变量,其密度函数为p (x),又y =)(x f 严格单调,其反函数)(x h 有连续导数,则=η)(ξf 也是一个连续型随机变量,且其密度函数为 ? ? ?<<*=其他,0|],)(|)([)('β α?y y h y h p y (3.51) 其中 α=min{)(-∞f ,)(+∞f } β=min{)(-∞f ,)(+∞f } (证明 略) 例3.11(略) 例3.12(略) 2χ—分布 我们先给出下述一个式子: p (x,y)=? ? ???≤>Γ-0,00,)2(212x x x n y n 我们通常把以上述(3.53)式(其中n 是参数)为密度函数的分布称为是自由度为n 的 2χ—分布(2χ读作“卡方”),并记作)(2 n χ,它是数理统计中一个重要的分布。 (一)和的分布 设),(ηξ是一个二维连续型随机变量,密度函数为p (x,y),现在来求ηξζ+=的分布,按定义为 F ζ(y)= P (ζ

F ζ(y)= ??<+y x x dx dx x x p 2121 2 1 ),( = dx dx x x p )),((221?? ∞∞ -∞ ∞ - (3.54) 如果ξ与η是独立的,由(3.48)知P ξ(x)·P η(y)是(ηξ,)的密度函数,用P ξ(x)·P η(y)代替(3.54)式中的p (x 1,x 2)便得 F ζ(y) = dx dx x p x p ))()((221?? ∞∞ -∞ ∞-ηξ =dx dz x z p x p y ))()((11? ?∞ ∞-∞--ηξ = dz dx x z p x p y ))()((11?? ∞ -∞∞ --ηξ 由此可得 ζ 的密度函数为 F ζ(y)= F ' ξ(y)= dx x y p x p ? ∞ ∞ --)()(ηξ (3.55) 由对称性还可得 F ζ(y)= dx x p x y p ? ∞ ∞ --)()(ηξ (3.56) 由(3.55)或(3.56)式给出的运算称为卷积,通常简单地记作 P ζ=P ξ* P η 例3.13(略) 我们已经知道某些分布具有可加性,其实还有一些其它分布,也具有可加性,其中2 χ—分布的可加性在数理统计中颇为重要,我们这里顺便证明这个结论。为此,可以讨论更一般形式的一个分布—Γ分布。如果随机变量ξ具有密度函数为 p (x,y)=?? ???≤>Γ--0,00 ,)(1x x e x x βαααβ (3.57) (其中α>0, β>0为两个常数),这时称ξ是参数为(α,β)的Γ分布的随机变量,相应的分布称作参数为(α,β)的Γ分布,并记作Γ(α,β). 例3.14(略) (二)商的分布 设),(ηξ是一个二维连续型随机变量,密度函数为p (x 1,x 2),现在来求η ξ ζ= 的分

随机变量及其分布考点总结

随机变量及其分布考点总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第二章 随机变量及其分布 复习 一、随机变量. 1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验. 2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量. 3、分布列:设离散型随机变量ξ可能取的值为: ,,,,21i x x x ),2,1( =i x 的概率p x P ==)(ξ. ,2,1,01=≥i p 121=++++ i p p p 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数. 典型例题: 1、随机变量ξ的分布列为(),1,2,3(1) c P k k k k ξ===+……,则P(13)____ξ≤≤= 2、袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为1 7 ,现在甲乙两人从袋 中轮流摸去一球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时终止,用ξ表示取球的次数。(1)求ξ的分布列(2)求甲取到白球的的概率 3、5封不同的信,放入三个不同的信箱,且每封信投入每个信箱的机会均等,X 表示三哥信箱中放有信件树木的最大值,求X 的分布列。 4、为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的 已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为5 . (1)请将上面的列联表补充完整; (2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由; (3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,,还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率.

相关文档
最新文档