极限的求法

极限的求法
极限的求法

一,求极限的方法横向总结:

1带根式的分式或简单根式加减法求极限:1)根式相加减或只有分子带根式:用平方差公式,凑平方(有分式又同时出现未知数的不同次幂:将未知数全部化到分子或分母的位置上)

2)分子分母都带根式:将分母分子同时乘以不同的对应分式凑成完全平方式(常用到

2分子分母都是有界变量与无穷大量加和求极限:分子与分母同时除以该无穷大量凑出无穷小量与有界变量的乘积结果还是无穷小量。

3等差数列与等比数列和求极限:用求和公式。

4分母是乘积分子是相同常数的n项的和求极限:列项求和

5分子分母都是未知数的不同次幂求极限:看未知数的幂数,分子大为无穷大,分子小为无穷小或须先通分。

6运用重要极限求极限(基本)。

7乘除法中用等价无穷小量求极限。

8函数在一点处连续时,函数的极限等于极限的函数。

9常数比0型求极限:先求倒数的极限。

10根号套根号型:约分,注意别约错了。

11三角函数的加减求极限:用三角函数公式,将sin化cos

二,求极限的方法纵向总结:

1未知数趋近于一个常数求极限:分子分母凑出(x-常数)的形式,然后约分(因为x不等于该常数所以可以约分)最后将该常数带入其他式子。

2未知数趋近于0或无穷:1)将x放在相同的位置

2)用无穷小量与有界变量的乘积

3)2个重要极限

4)分式解法(上述)

高数中求极限的16种方法

高数中求极限的16种方法——好东西 首先对极限的总结如下: 极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致 一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种) 二、求极限的方法如下: 1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记(x趋近无穷的时候还原成无穷小) 2.罗比达法则(大题目有时候会有暗示,要你使用这个方法) 首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件 还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0 注意:罗比达法则分为3种情况 0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0) 3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!) E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助 4.面对无穷大比上无穷大形式的解决办法 取大头原则,最大项除分子分母!!!!!!!!!!! 5.无穷小于有界函数的处理办法 面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。 面对非常复杂的函数可能只需要知道它的范围结果就出来了!!! 6.夹逼定理(主要对付数列极限!) 这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。 7.等比等差数列公式应用(对付数列极限,q绝对值符号要小于1) 8.各项的拆分相加(来消掉中间的大多数,对付的还是数列极限) 可以使用待定系数法来拆分化简函数 9.求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn 的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化 10.两个重要极限的应用。第一个是X趋近0时候的sinx与x比值。第二个是趋近无穷大无穷小都有对有对应的形式(第2个实际上是用于函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用第2 个重要极限) 11.还有个方法,非常方便的方法,就是当趋近于无穷大,不同函数趋近于无穷的

求极限的方法总结

学号:0 学年论文 求极限的方法总结 Method of Limit 学院理学院专业班级 学生指导教师(职称) 完成时间年月日至年月日

摘要 极限的概念是高等数学中最重要、最基本的概念之一。许多重要的概念如连续、导数、定积分、无穷级数的和及广义积分等都是用极限来定义的。因此掌握好求极限的方法对学好高等数学是十分重要的。但求极限的方法因题而异,变化多端,有时甚至感到变幻莫测无从下手,通过通过归纳和总结,我们罗列出一些常用的求法。本文主要对了数学分析中求极限的方法进行一定的总结,以供参考。 关键词:极限洛必达法则泰勒展开式定积分无穷小量微分中值定理

Abstract The concept of limit is the most important mathematics,one of the most basic important concepts such as continuity,derivative,definite integral,infinite series and generalized integrals and are defined by the mater the methods the Limit learn mathematics integrals and are defined by the limit varies by title,varied,anf sometimes even impossible to start very unpredictable,and summarized through the adoption,we set out the requirements of some commonly used this paper,the mathematical analysis of the method of seeking a certain limit a summary for reference. Keyword:Limit Hospital's Rule Taylor expansion Definite integral Infinitesimal Mean Value Theorem

高等数学极限计算方法总结

极限计算方法总结 《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可 以用上面的极限严格定义证明,例如: )0,(0lim ≠=∞→a b a an b n 为常数且; 5 )13(lim 2 =-→x x ; ???≥<=∞→时当不存在, 时 当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运 用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条 件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x

(2) e x x x =+→10 ) 1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+ ∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的 等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数)(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且 )(x f ~)(1x f ,)(x g ~)(1x g ,则当) ()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)(x f )()(lim 110 x g x f x x →,即)() (lim 0x g x f x x →=) ()(lim 110x g x f x x →。 5.洛比达法则 定理5 假设当自变量x 趋近于某一定值(或无穷大)时,函数)(x f 和)(x g 满 足:(1))(x f 和)(x g 的极限都是0或都是无穷大; (2))(x f 和)(x g 都可导,且)(x g 的导数不为0; (3)) () (lim x g x f ''存在(或是无穷大);

求极限的方法总结

求极限的几种常用方法 一、 约去零因子求极限 例如求极限limx→1x4-1x-1,本例中当x→1时,x-1→0,表明x 与1无限接近,但x≠1,所以x-1这一因子可以约去。 二、 分子分母同除求极限 求极限limx→∞x3-x23x3+1 ∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 limx→∞x3-x23x3+1=limx→∞1-1x3+1x3=13 三、 分子(母)有理化求极限 例:求极限limx→∞(x3+3-x2+1) 分子或分母有理化求极限,是通过有理化化去无理式。 ()()()()131313lim 13lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x 0132lim 22=+++=+∞→x x x 例:求极限limx→01+tanx -1+sinxx3 30sin 1tan 1lim x x x x +-+→=() x x x x x x sin 1tan 1sin tan lim 30+++-→ =300sin tan lim sin 1tan 11lim x x x x x x x -+++→→= 41sin tan lim 2130=-→x x x x 本题除了使用分子有理化方法外,及时分离极限式中的非零因子是解题的关键。 四、 应用两个重要极限求极限

(2)limx→∞(1+1x)x=limx→0(1+x)1x=e 在这一类型题中,一般也不能直接运用公式,需要恒等变形进行化简后才可以利用公式。 例:求极限limx→∞(x+1x-1)x 第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑1+1x,最后凑指数部分。 limx→∞(x+1x-1)x=limx→∞(1+2x-1)x=limx→∞[1+1x-122x-1(1+ 2x-1)12]2=e2 五、利用无穷小量的性质求极限 无穷小量的性质:无穷小量与有界量的乘积还是无穷小量。这种方法可以处理一个函数极限不存在但有界,和另一个函数的极限是零的极限的乘积的问题。 例:求limx→∞sinxx 因为sinx≤1, limx→∞1x=0,所以limx→∞sinxx=0 六、用等价无穷小量代换求极限 常见等价无穷小有: 当x→0时,x~sinx~tanx~arcsinx~arctanx~ln1+x~ex1, 1-cosx~12x2,(1+ax)b-1~abx 等价无穷小量代换,只能代换极限式中的因式。此方法在各种求极限的方法中应作为首选。 例:limx→0xln(1+x)1-cosx=limx→0xx12x2=2

高数求极限的16种方法(超经典)高彦辉总结

L .+'''+.+'''+. + 天天快乐+ '+. .+' "+.+" 爱 爱爱 爱祝爱 爱愿爱 爱你爱 爱永爱 爱远爱 爱被爱 爱爱爱 爱包爱 爱围爱 爱爱 爱爱 爱爱 爱 漂亮吧!送给你,希望你会幸福一生,梦想成真! 高数中求极限的16种方法 假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面。首先,对极限的总结如下: 极限的保号性很重要,就是说在一定区间内函数的正负与极限一致。 1 .极限分为一般极限,数列极限(区别在于数列极限时发散的,是一般极限的一种) 2.解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???) 1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记(x趋近无穷的时候还原成无穷小) 2 LHopital 法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是X趋近而不是N 趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)必须是0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0LHopital 法则分为3中情况 1 0比0 无穷比无穷时候直接用2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开sina 展开cos 展开ln1+x展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单!!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6夹逼定理(主要对付的是数列极限!) 这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化10 2 个重要极限的应用。这两个很重要!!!!!对第一个而言是X趋近0时候的sinx与x比值。第2个就如果x趋近无穷大无穷小都有对有对应的形式(地2个实际上是用于函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)11 还有个方法,非常方便的方法 就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!x的x次方快于x!快于指数函数快于幂数函数 快于对数函数(画图也能看出速率的快慢)!!!!!!当x趋近无穷的时候他们的比值的极限一眼就能看出来了12 换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换

数学分析中求极限的方法总结

数学分析中求极限的方法 总结 This model paper was revised by the Standardization Office on December 10, 2020

数学分析中求极限的方法总结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理:如果0 x x lim f x =,lim g x =x x →→A B ()() (1)[]0 lim ()()lim ()lim ()x x x x x x f x g x f x g x →→→±=±=A ±B (2)[]0 x x lim f x g x =lim f x)lim ()x x x x g x →→→??=A?B ()()( (3)若B ≠0 (4)0 x lim c ()lim ()x x x f x c f x c →→?=?=A (5)[]00lim ()lim ()n n n x x x x f x f x →→??==A ????(n 为自然数) 上述性质对于,,x x x →∞→+∞→-∞也同样成立i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。 例1. 求225 lim 3x x x →+-的极限 解:由定理中的第三式可以知道 例2. 求3 x →的极限

式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可 例3. 已知 ()1111223 1n x n n = +++ ??-?,求lim n n x →∞ 解: 观察 11=112 2-? 111=2323- ?因此得到 ()1111223 1n x n n = +++ ??-? 所以 1lim lim 11n n n x n →∞→∞ ?? =-= ??? 2 利用导数的定义求极限 导数的定义:函数f(x)在0x 附近有定义,χ??,则 如果 存在, 则此极限值就称函数f(x)在点0x 的导数记为 () 0'f x 。 即 在这种方法的运用过程中,首先要选好f(x)。然后把所求极限都表示成f(x)在定点 x 的导数。

极限的常用求法及技巧.

极限的常用求法及技巧 引言 极限是描述数列和函数在无限过程中的变化趋势的重要概念。极限的方法是微积分中的基本方法,它是人们从有限认识无限,从近似认识精确,从量变认识质变的一种数学方法,极限理论的出现是微积分史上的里程碑,它使微积分理论更加蓬勃地发展起来。 极限如此重要,但是运算题目多,而且技巧性强,灵活多变。极限被称为微积分学习的第一个难关,为此,本文对极限的求法做了一些归纳总结, 我们学过的极限有许多种类型:数列极限、函数极限、积分和的极限(定积分),其中函数极限又分为自变量趋近于有限值的和自变量趋近于无穷的两大类,如果再详细分下去,还有自变量从定点的某一侧趋于这一点的所谓单边极限和双边极限,x 趋于正无穷,x 趋于负无穷。函数的极限等等。本文只对有关数列的极限以及函数的极限进行了比较全面和深入的介绍.我们在解决极限及相关问题时,可以根据题目的不同选择一种或多种方法综合求解,尤其是要发现数列极限与函数极限在求解方法上的区别与联系,以做到能够举一反三,触类旁通 。 1数列极限的常用求法及技巧 数列极限理论是微积分的基础,它贯穿于微积分学的始终,是微积分学的重要研究方法。数列极限是极限理论的重要组成部分,而数列极限的求法可以通过定义法,两边夹方法,单调有界法,施笃兹公式法,等方法进行求解.本章节就着重介绍数列极限的一些求法。 1.1利用定义求数列极限 利用定义法即利用数列极限的定义 设{}n a 为数列。若对任给的正数N ,使得n 大于N 时有 ε<-a a n 则称数列{}n a 收敛于a ,定数a 称为数列{}n a 的极限,并记作,lim n a n a =∞ →或 )(,∞→∞→n a n

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5 )13(lim 2 =-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 利用导数的定义求极限 这种方法要求熟练的掌握导数的定义。 2.极限运算法则 定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3) )0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。 8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→

函数极限的十种求法

函数极限的十种求法

设 f (x )=xsin 1/x + a,x<0,b+1,x=0,x^2-1,x<0,试求: 当a ,b 为何值时,f (x )在x=0处的极限存在? 当a ,b 为何值时,f (x )在x=0处连续? 注:f (x )=xsin 1/x +a, x< 0 b+1, x=0 X^2-1, x>0 解:f(0)=b+1 左极限:lim(x→0-) f(x)=lim(x→0-) (xsin(1/x)+a)=0+a =a 左极限:lim(x→0+) f(x)=lim(x→0+) (x^2-1)=0-1=-1 f(x)在x =0处连续,则lim(x→0-) f(x)=lim(x→0+) f(x)=f(0), 所以a =-1=b+1, 所以a =-1,b =-2 7.利用等价无穷小量代换求极限 例 8 求极限30tan sin lim sin x x x x →-. 解 由于()s i n t a n s i n 1c o s c o s x x x x x -=-,而 ()sin ~0x x x →,()2 1cos ~02 x x x -→,()33sin ~0x x x → 故有 2 3300tan sin 112lim lim sin cos 2 x x x x x x x x x →→?-=?=. 注 在利用等价无穷小量代换求极限时,应注意只有对所求极限式中相乘或相除的因式才能用等价无穷小量替代,而对极限式中的相加或相减部分则不能随意替代,如在例题中,若因有()t a n ~0x x x → ,()s i n ~0x x x →,而推出 3300tan sin lim lim 0sin sin x x x x x x x x →→--==, 则得到的式错误的结果. 附 常见等价无穷小量 ()sin ~0x x x →,()tan ~0x x x →,()2 1cos ~02 x x x -→, ()arcsin ~0x x x →,()arctan ~0x x x →,()1~0x e x x -→, ()()ln 1~0x x x +→,()()11~0x x x α α+-?→. 8 利用洛比达法则求极限 洛比达法则一般被用来求00型不定式极限及∞∞ 型不定式极限.用此种方法求极限要求在

极限计算方法总结(简洁版)

极限计算方法总结(简洁版) 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证 明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且;5)13(lim 2=-→x x ;???≥<=∞→时当不存在, 时当,1||1||0lim q q q n n ; 等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理 1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1) B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+ →1 )1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如: 133sin lim 0=→x x x ,e x x x =--→21 0)21(lim ,e x x x =+∞→3)3 1(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价

求极限的方法总结__小论文

求数列极限的方法总结 数学科学学院数学与应用数学08级汉班 ** 指导教师 **** 摘 要 数列极限的求法一直是数列中一个比较重要的问题,本文通过归纳和总结,从不同的方面罗列了它的几种求法。 关键词 数列极限、定义、泰勒公式、无穷小量 极限一直是数学分析中的一个重点内容,而对数列极限的求法可谓是多种多样,通过归纳和总结,我们罗列出一些常用的求法。求数列极限的最基本的方法还是利用数列极限的定义,也要注意运用两个重要极限,其中,可以利用等量代换,展开、约分,三角代换等方法化成比较好求的数列,也可以利用数列极限的四则运算法则计算。夹逼性定理和单调有界原理是很重要的定理,在求的时候要重点注意运用。泰勒公式、洛必达法则、黎曼引理是针对某些特殊的数列而言的。还有一些比较常用的方法,在本文中都一一列举了。 1.定义法 利用数列极限的定义求出数列的极限.设﹛Xn ﹜是一个数列,a 是实数,如果对任意给定的ε〉0,总存在一个正整数N ,当n 〉N 时,都有a Xn -<ε,我们就称a 是数列{Xn}的极限.记为a Xn n =∞ →lim . 例1: 按定义证明0 ! 1lim =∞ →n n . 解:1/n!=1/n(n-1)(n-2)…1≤1/n 令1/n<ε,则让n>ε 1 即可, 存在N=[ε 1 ],当n>N 时,不等式:1/n!=1/n(n-1)(n-2)…1≤1/n<ε成 立, 所以0 ! 1lim =∞ →n n . 2.利用极限四则运算法则 对和、差、积、商形式的函数求极限,自然会想到极限四则运算法则. 例2: 求n n n b b b a a a ++++++++∞ → 2 211lim ,其中1,1<

数学分析中求极限方法总结

数学分析中求极限的方法总结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理1.1 (1 (2(3)若B ≠ (4(5)[] 0lim ()lim ()n n n x x x x f x f x →→??==A ???? (n 为自然数) i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。 例1. 求225 lim 3 x x x →+-的极限 解:由定理中的第三式可以知道 ()()222 22 lim 55lim 3lim 3x x x x x x x →→→++=-- 22 2 2 2 lim lim5 lim lim3x x x x x x →→→→+= + 2259 23+ ==-- 例2. 求3 x →

33 22 x x →→ = 3 x→ = 1 4 = 式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可例3. 已知() 111 1223 1 n x n n =+++ ??-? 解:观察 11 =1 122 - ? 111 = 2323 - ? 因此得到() 111 12231 n x n n =+++ ??-? 1111111 1 3311 n n n =-+-+-+- -- 所以 1 lim lim 11 n n n x n →∞→∞ ?? =-= ? ?? 2 利用导数的定义求极限 导数的定义:函数f(x) 如果 ()() 00 lim lim x x f x x f x y x x ?→?→ +?- ? = ?? 存在, 则此极限值就称函数f(x) () 'f x。 即

求极限的几种方法

一、求函数极限的方法 1、运用极限的定义 例: 用极限定义证明: 12 23lim 22=-+-→x x x x 证: 由 2 4 4122322-+-= --+-x x x x x x ()2 2 22 -=--= x x x 0>?ε 取 εδ= 则当δ <-<20x 时,就有 ε<--+-12 2 32x x x 由函数极限 δε-定义有: 12 23lim 22=-+-→x x x x 2、利用极限的四则运算性质 若 A x f x x =→)(lim 0 B x g x x =→)(lim 0 (I) []=±→)()(lim 0 x g x f x x )(lim 0 x f x x →±B A x g x x ±=→)(lim 0 (II) []B A x g x f x g x f x x x x x x ?=?=?→→→)(lim )(lim )()(lim 0 (III)若 B ≠0 则: B A x g x f x g x f x x x x x x ==→→→)(lim )(lim )()(lim 0 00 (IV ) cA x f c x f c x x x x =?=?→→)(lim )(lim 0 (c 为常数) 上述性质对于 时也同样成立-∞→+∞→∞→x x x ,,

例:求 4 5 3lim 22+++→x x x x 解: 4 53lim 22+++→x x x x =254252322=++?+ 3、约去零因式(此法适用于 型时0 ,0x x → 例: 求12 16720 16lim 23232+++----→x x x x x x x 解:原式= () () ) 12102(65) 2062(103lim 223 2232 +++++--+---→x x x x x x x x x x x =)65)(2() 103)(2(lim 222+++--+-→x x x x x x x =)65()103(lim 222++---→x x x x x =) 3)(2()2)(5(lim 2+++--→x x x x x =2 lim -→x 73 5 -=+-x x 4、通分法(适用于∞-∞型) 例: 求 )21 44(lim 22x x x ---→ 解: 原式=) 2()2() 2(4lim 2x x x x -?++-→ =) 2)(2() 2(lim 2x x x x -+-→ =4 1 21lim 2=+→x x 5、利用无穷小量性质法(特别是利用无穷小量与有界量之乘积仍为无穷小量的性质) 设函数f(x)、g(x) 满足:

(整理)几种求极限方法的总结

几种求极限方法的总结 摘 要 极限是数学分析中的重要概念,也是数学分析中最基础最重要的内容.通过n s 对求极限的学习和深入研究,我总结出十二种求极限的方法. 关键词 定义 夹逼定理 单调有界 无穷小 洛必达 泰勒公式 数列求和定积分 定积分 数列 []1 根据极限的定义:数列{n x }收敛??a,ε?〉0,?N N ∈+,当n 〉N 时,有n x -a 〈ε. 例1 用定义证明11 lim =+∞→n n n 证明:0,ε?>要使不等式 11-+n n =11n ε<+成立:解得n 11ε>-,取N=?? ????-11ε,于是0,ε?>? N=?? ? ???-11ε,n N ?>,有1,1n n ε-<+即11lim =+∞→n n n 2利用两边夹定理求极限[]1 例2 求极限???? ??+++++++∞ →n n n n n n 22221 31211 1lim 解:设= n c n n n n ++++ +2 2 2 12 11 1 则有:2 n c n n > =+ 同时有: 21 n c n <=+,于是 n c << 1 n n <=+>=. 有 11 n n n c n n <<< < =+ 已知:11lim =+∞→n n n ∴???? ??+++++++∞→n n n n n n 2222131211 1lim =1 3利用函数的单调有界性求极限[]1

实数的连续性定理:单调有界数列必有极限. 例3 设a x =1,a a x +=2, a a a x n +++= (n=1,2, )(0a >),求n n x ∞ →lim 解:显然{}n x 是单调增加的。我们来证明它是有界的.易见 12x a x +=,23x a x += , 1-+=n n x a x , 从而 12 -+=n n x a x ,显然n x 是单调增加的,所以2n n x a x <+ 两段除以n x ,得 1n n a x x < + 1+≤≤?a x a n 这就证明了{}n x 的有界性 设l x n →,对等式12 -+=n n x a x 两边去极限,则有∞ →-∞ →+=n n n n x a x 12 l i m l i m ?a l l +=2解得2 1 4++= a l l 4利用无穷小的性质求极限[]2 关于无穷小的性质有三个,但应用最多的性质是:若函数f(x)(x )a →是无穷小,函数g(x)在U (),ηa 有界,则函数f(x)*g(x)(x )a →是无穷小. 例 求极限)cos 1(cos lim x x x -++∞ → 解4 )2 21sin()221sin( 2cos 1cos x x x x x x -+++-=-+ 2)221sin( 2≤++-x x 而) 1(21 221)221sin( 0x x x x x x ++=-+≤-+≤ 而,0) 1(21 lim =++∞ →x x x 故 02 _1lim =+∞ →x x n 5 应用“两个重要极限”求极限[]2 e x x x x x x =+=∞→→)1 1(lim ,1sin lim

求二元函数极限的几种方法

11 1.二元函数极限概念分析 定义1 设函数f 在2D R ?上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈时,都有 ()f P A ε-<, 则称f 在D 上当0P P →时,以A 为极限,记0 lim ()P P P D f P A →∈=. 上述极限又称为二重极限. 2.二元函数极限的求法 利用二元函数的连续性 命题 若函数(,)f x y 在点00(,)x y 处连续,则 0000(,)(,) lim (,)(,)x y x y f x y f x y →=. 例1 求2 (,)2f x y x xy =+ 在点(1,2)的极限. 解: 因为2 (,)2f x y x xy =+在点(1,2)处连续,所以 12 212 2lim (,) lim(2) 12125.x y x y f x y x xy →→→→=+=+??= 例2 求极限()()2 21,1,21 lim y x y x +→. 解: 因函数在()1,1点的邻域内连续,故可直接代入求极限,即 ()()221,1,21lim y x y x +→=31 .

22 利用恒等变形法 将二元函数进行恒等变形,例如分母或分子有理化等. 例3 求 00 x y →→ 解: 00 x y →→ 00 x y →→= 00 x y →→= 00 1. 4 x y →→==-例4 ()() 2 2220,0,321 )31)(21(lim y x y x y x +-++→. 解: 原式()() ( )) () () ,0,02 211lim 231x y x y →+= + ()( 22 ,0,0lim x y →= + 11022 = +=.

高数-极限求解方法与技巧总结

第一章 极限论 极限可以说是整个高等数学的核心,贯穿高等数学学习的始终。因为有关函数的可积、连续。可导等性质都是用极限来定义的。毫不夸张地说,所谓高数,就是极限。衡量一个人高等数学的水平只需看他对极限的认识水平,对极限认识深刻,有利于高等数学的学习,本章将介绍数列的极限、函数的极限以及极限的求解。重点是求极限。 ??????? ?? ?? ?? 极限的定义数列极限极限的性质 函数极限的定义函数极限函数极限的性质 一、求极限的方法 1.利用单调有界原理 单调有界原理:若数列具有单调性、且有有界性,也即单调递增有上界、单调递减有下界,则该数列的极限一定存在。可以说,整个高等数学是从该结论出发来建立体系的。 利用该定理一般分两步:1、证明极限存在。2、求极限。 说明:对于这类问题,题中均给出了数列的第n 项和第1n +项的关系式,首先用归纳法或作差法或作商法等证明单调性,再证明其有界性(或先证有界、再证单调性),由单调有界得出极限的存在性,在最终取极限。 例1 设0110,0,()0,1,2n n n a a x x x n x +>>=+=,…证{}n x 的极限存在,并求其极限。 分析:本题给出的是数列前后两项的关系,所以应该用单调有界原理求解。 解:由基本不等式,11()2n n n a x x x +=+≥,所以可知数列n x 有下界;下面证单 调性,可知当2n ≥时,有2 111 ()()22n n n n n n n x a x x x x x x +=+≤+=,则n x 单调递减。综 合可得,则n x 单调递减有下界,所以lim n n x →∞ 存在;令lim n n x A →∞ = ,带入等式解得 A = 评注:对于该题,再证明有界性的过程中用到基本不等式;特别是在证明单调性

求极限方法总结

求极限方法总结 为什么第一章如此重要? 各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面 首先对极限的总结如下: 极限的保号性很重要就是说在一定区间内函数的正负与极限一致 1 极限分为一般极限,还有个数列极限,区别在于数列极限时发散的,是一般极限的一种 2解决极限的方法如下:我能列出来的全部列出来了你还能有补充么? 1 等价无穷小的转化,只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在 e的X次方-1 或者 1+x的a次方-1等价于Ax 等等。全部熟记 x趋近无穷的时候还原成无穷小 2落笔他法则大题目有时候会有暗示要你使用这个方法 首先他的使用有严格的使用前提 必须是 X趋近而不是N趋近所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件 还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷 必须是函数的.导数要存在假如告诉你gx, 没告诉你是否可导,直接用无疑于找死 必须是 0比0 无穷大比无穷大 当然还要注意分母不能为0 落笔他法则分为3中情况 1 0比0 无穷比无穷时候直接用 2 0乘以无穷无穷减去无穷应为无穷大于无穷小成倒数的关系所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 30的0次方 1的无穷次方无穷的0次方

对于指数幂数方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0 3泰勒公式含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意E的x展开 sina 展开 cos 展开 ln1+x展开对题目简化有很好帮助 4面对无穷大比上无穷大形式的解决办法 取大头原则最大项除分子分母看上去复杂处理很简单 5无穷小于有界函数的处理办法 面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了 6夹逼定理主要对付的是数列极限 这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。 7等比等差数列公式应用对付数列极限 q绝对值符号要小于1 8各项的拆分相加来消掉中间的大多数对付的还是数列极限 可以使用待定系数法来拆分化简函数 9求左右求极限的方式对付数列极限例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化 10 2 个重要极限的应用。这两个很重要对第一个而言是X趋近0时候的sinx与x 比值。地2个就如果x趋近无穷大无穷小都有对有对应的形式 地2个实际上是用于函数是1的无穷的形式当底数是1 的时候要特别注意可能是用地2 个重要极限 11 还有个方法,非常方便的方法 就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的x的x次方快于 x 快于指数函数快于幂数函数快于对数函数画图也能看出速率的快慢当x趋近无穷的时候他们的比值的极限一眼就能看出来了 12 换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中 13假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的

求极限的方法和例题总结

8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→解:原式 11)32(1)31 (lim 3 =++-= ∞→n n n n 上下同除以 。

3.两个重要极限 (1) 1 sin lim 0=→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 例如:133sin lim 0=→x x x ,e x x x =--→210 ) 21(lim ,e x x x =+∞ →3 )31(lim ;等等。 利用两个重要极限求极限 例5 2 03cos 1lim x x x -→解:原式= 61 )2(122sin 2lim 32sin 2lim 2 2 02 2 0=?=→→x x x x x x 。 注:本题也可以用洛比达法则。 例 6 x x x 2 ) sin 31(lim -→=6 sin 6sin 31 sin 6sin 310 ] ) sin 31[(lim ) sin 31(lim ---→-? -→=-=-e x x x x x x x x x x 例7 n n n n )12(lim +-∞→= 31 331 1 331])131[(lim )131(lim -+--+∞→+-?-+∞→=+-+=+-+ e n n n n n n n n n n 。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2 x - ~ 2x -。 定理4 如果函数)(),(),(),(11x g x f x g x f 都是0 x x →时的无穷小,且)(x f ~ )(1x f ,)(x g ~)(1x g ,则当 ) () (lim 110 x g x f x x →存在时, )() (lim x g x f x x →也存在且等于 ) (x f ) ()(lim 110 x g x f x x →,即 )() (lim x g x f x x →=)()(lim 11 0x g x f x x →。