塑性变形的力学原理

塑性变形的力学原理
塑性变形的力学原理

塑性变形的力学原理

element of mechanics of plasticity

从认定塑性变形体为均质连续体出发,依据宏观的实验结果,研究变形体内的应力、应变以及它们和变形温度、速度等条件之间的关系(见金属塑性变形)。

应力-应变曲线在材料试验中,常用圆棒受拉,短柱受压,薄壁管受扭转,以测定负载和变形的关系;然后分别算出单位面积上的负载(称为应力,常用ζ表示)和单位长度的变形(称为应变,常用ε表示)。材料的ζ和ε间的对应关系称为应力-应变曲线(ζ-ε曲线)。最常用的试验是试样受拉时,由原始长

度l0增加到l,常称比值为工程应变或应变,而称自然对数值l

n (l/l

)为对数应

变或真应变。若在外力P的作用下,受拉试样由原始截面积A

减小到每一瞬间的

值A,则称比值P/A

为习惯应力,P/A为真应力。常见的延性金属的应力-应变曲线,按有无明显的屈服点,分为两类(见金属力学性能的表征)。

对于小变形量,用工程应力-应变曲线即可;而对于大变形量,需用真应力-应变曲线。在一次受拉试验中,我们可以得到材料的特征性的ζ-ε曲线,此外,还可以得到材料的屈服应力(ζs)、断裂应力(ζb)、截面收缩率(ψ%)、延伸率即伸长率(δ%)和弹性模量(E)等特性指标。

常用ζs作为材料塑性变形时的抗力,ψ%和δ%为其承受塑性变形的能力(塑性指标)。但对塑性加工而言,由于变形量大、变形条件复杂,所以上述指标值不能直接应用,而只能表示某个可以单独测定的条件(如温度、变形速率等)对变形抗力和塑性指标的影响。因此我们常用ζ0来表示材料在简单应力状态条件下的变形抗力,用ζ表示在某个复杂条件下的变形抗力;在高变形速率的实验

中,由于ζ

s 和ζ

b

难于分别测定,所以有时也用ζb的变化来代表变形抗力的变

化。

塑性加工总是在复杂的应力状态条件下实现的。早在1911年卡门(T.von Karman)就用实验证明在高流体静压力下,通常认为是“脆性的”花岗岩可以有相当大的塑性变形。但是从一个简单的试验结果出发来定量地描述各种加工条件下的塑性指标,是很困难的;因而必须用接近于加工条件的方式进行实测,测得的数值称为塑性加工性指标(见金属塑性加工)。我们用塑性变形条件来计算应力状态条件对于变形抗力的影响。

复杂应力下的塑性变形有两个论题:如何用最简化的数学语言叙述复杂应力状态?在这样的背景下如何叙述进入塑性变形状态的条件?

应力状态条件取均质连续体内一点(或不考虑力分布的单元体)作受力分析的对象,则可证明存在着一组唯一的三维直角坐标系,不论外部的作用力如何分布,在此系内沿坐标面在单元体上的切应力为零。此坐标系称为主坐标系,垂直于坐标面的正应力称为主应力,常用ζ1、ζ2、ζ3表示。这样,任何复杂的

受力情况总可用图1所示的情况之一来表示。

塑性变形条件设主应力ζ1>ζ2>ζ3,而且材料在简单拉或压之下发生塑性

变形的应力为ζ0,按特雷斯卡(H.Tresca)发生塑性变形的条件为(ζ

1-ζ

3

)/2

=ζ

0/2;而按米泽斯(R.von Mises)则为(ζ

1

-ζ

2

)2+(ζ

2

-ζ

3

)2+

3-ζ

1

)2=2ζ娿。这些条件提供了分析实际塑性变形时的变形方式、工具形状

和摩擦等外部影响变形抗力的理论基础。同时可认为变形材料的化学成分、组织、变形的温度和速率主要是通过影响ζ0而影响变形抗力的。

洛德(W.Lode)于1926年,泰勒(G.I.Taylor)和奎尼(H.Quinney)于1931年,莱塞尔斯(J.M.Lessells)和麦格雷戈(C.W.MacGregor)于1940年以及戴维斯(E.A.Davis)于1945年分别用不同的方法通过实验对上述两种条件进行了验证,证明米泽斯条件更符合实际;同时,二者相差不超过15.5%。由于特雷斯卡条件在数学上比较简单,所以也常被使用。

简单应力下的塑性变形影响变形抗力的因素主要有应变硬化、应变速率和变形温度等。

应变硬化随着塑性变形量的增加,继续变形所需应力增加,这种现象叫做应变硬化或加工硬化,是塑性变形时的重要现象之一。常用变形过程中的每一瞬间的真应力(ζ)和同一时刻的真应变(ε)的函数关系ζ=f(ε),表示应变硬化,有时称ζ=f(ε)为塑性曲线。塑性曲线的形状与材料种类、变形温度有关。在很多情况下,塑性曲线可以用幂函数ζ=Kε

n

近似地表出(图2)。式中K为强度

因数,单位为kgf/mm2,n为应变硬化指数。

若n=0则材料为理想塑性体(即没有应变硬化),n=1则材料为完全弹性体;一般材料0

应变速率(媍) 单位时间内的应变增量,即夊=dε/dt,单位为s-1。夊的通常范围是:静载蠕变为10-8~10-5s-1;材料试验中的静载试验为10-5~10-1

当变形温度升高时,变形抗力升高得更快,如图3所示(由于实验方法的原因,取最大负荷时的真应力为变形抗力)。

变形温度温度变化而不引起材料组织变化时,变形温度升高则变形抗力(ζ)下降,塑性指标(δ%)增加。但这种变化在不同温度范围内的影响程度不同。一般规律是温度越高,则变形温度和速率的变化的影响越大。在热加工范围内,夊升高一倍,可使ζ增加10%~20%(图4)。

参考书目

A.Nadai,Theory of flow and fracture of Solids,McGraw-Hill, New York,1950.

G.Dieter,Mechanical Metallurgy,2nd ed.,McGraw-Hill,New York,1976.

取自"https://www.360docs.net/doc/417588099.html,/wiki/%E5%A1%91%E6%80%A7%E5%8F%98%E5%BD%A2%E7%9A%8 4%E5%8A%9B%E5%AD%A6%E5%8E%9F%E7%90%86"

《金属塑性成形原理》习题答案

《金属塑性成形原理》 习题答案 一、填空题 1. 衡量金属或合金的塑性变形能力的数量指标有伸长率和断面收缩率。 2. 所谓金属的再结晶是指冷变形金属加热到更高的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代金属的冷变形组织的过程。 3. 金属热塑性变形机理主要有:晶内滑移、晶内孪生、晶界滑移和扩散蠕变等。 4. 请将以下应力张量分解为应力球张量和应力偏张量 =+ 5. 对应变张量,请写出其八面体线变与八面体切应变 的表达式。 =; =。

6.1864 年法国工程师屈雷斯加(H.Tresca )根据库伦在土力学中研究成果,并从他自已所做的金属挤压试验,提出材料的屈服与最大切应力有关,如果 采用数学的方式,屈雷斯加屈服条件可表述为。 7. 金属塑性成形过程中影响摩擦系数的因素有很多,归结起来主要有金属的种类和化学成分、工具的表面状态、接触面上的单位压力、变形温度、变形速度等几方面的因素。 8. 变形体处于塑性平面应变状态时,在塑性流动平面上滑移线上任一点的切线方向即为该点的最大切应力方向。对于理想刚塑性材料处于平面应变状态 下,塑性区内各点的应力状态不同其实质只是平均应力不同,而各点处的最大切应力为材料常数。 9. 在众多的静可容应力场和动可容速度场中,必然有一个应力场和与之对应的速度场,它们满足全部的静可容和动可容条件,此唯一的应力场和速度场,称之为真实应力场和真实速度场,由此导出的载荷,即为真实载荷,它是唯一的。 10. 设平面三角形单元内部任意点的位移采用如下的线性多项式来表示: ,则单元内任一点外的应变可表示为=。 11、金属塑性成形有如下特点:、、、。 12、按照成形的特点,一般将塑性成形分为和两大类,按照成形时工件的温度还可以分为、和三类。

弹性理论与塑性理论

弹性理论与塑性理论,弹性材料与塑性材料浅析 经过一学期,弹性与塑性力学这门课程的学习结束了。学习完弹性与塑性力学以后,我对弹性力学与塑性力学,弹性材料与塑性材料的区别与联系的认识进一步加深了。 首先谈一下有关弹性理论的基本知识。 弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中许多定理、公式和结论等,都可以从三大基本规律推导出来。 连续变形规律是指弹性力学在考虑物体的变形时,只考虑经过连续变形后仍为连续的物体,如果物体中本来就有裂纹,则只考虑裂纹不扩展的情况。这里主要使用数学中的几何方程和位移边界条件等方面的知识。求解一个弹性力学问题,就是设法确定弹性体中各点的位移、应变和应力共15个函数。从理论上讲,只有15个函数全部确定后,问题才算解决。但在各种实际问题中,起主要作用的常常只是其中的几个函数,有时甚至只是物体的某些部位的某几个函数。所以常常用实验和数学相结合的方法,就可求解。 数学弹性力学的典型问题主要有一般性理论、柱体扭转和弯曲、平面问题、变截面轴扭转,回转体轴对称变形等方面。 在近代,经典的弹性理论得到了新的发展。例如,把切应力的成对性发展为极性物质弹性力学;把协调方程(保证物体变形后连续,各应变分量必须满足的关系)发展为非协调弹性力学;推广胡克定律,除机械运动本身外,还考虑其他运动形式和各种材科的物理方程称为本构方程。对于弹性体的某一点的本构方程,除考虑该点本身外还要考虑弹性体其他点对该点的影响,发展为非局部弹性力学等。 弹性力学的基本假定如下: 1.假定物体是连续的,就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。 2.假定物体是完全弹性的,就是假定物体完全服从胡克定律——应变与引起该应变的那个应力分量成比例。 3.假定物体是均匀的,就是整个物体是由同一材料组成的。 4.假定物体是各向同性的,就是物体内一点的弹性在所有各个方向都相同。5.假定位移和形变是微小的。 以下是塑性理论的基本知识:

第2章金属塑性变形的物性方程

第2章 金属塑性变形的物性方程 物性方程又称本构方程,是εσ-关系的数学表达形式。弹性变形阶段有广义Hooke 定律,而塑性变形则较为复杂。在单向受力状态下,可由实验测定εσ-曲线来确定塑性本构关系。但在复杂受力情况下实验测定困难,因此只能在一定的实验结果基础上,通过假设、推理,建立塑性本构方程。为了建立塑性本构方程,首先需弄清楚塑性变形的开始条件——屈服,以及进入塑性变形后的加载路径等问题。 §2.1 金属塑性变形过程和力学特点 2.1.1 变形过程与特点 以单向拉伸为例说明塑性变形过程与特 点,如图2-1所示。金属变形分为弹性、均匀 塑性变形、破裂三个阶段。塑性力学视s σ为 弹塑性变形的分界点。当s σσ<时, σ与ε存在统一的关系,即εσE =。 当s σσ≥以后,变形视作塑性阶段。 εσ-是非线性关系。当应力达到b σ之后, 变形转为不均匀塑性变形,呈不稳定状态。 b σ点的力学条件为0d =σ或d P =0。经短暂的不 稳定变形,试样以断裂告终。 若在均匀塑性变形阶段出现卸载现象,一 部分变形得以恢复,另一部分则成为永久变形。卸载阶段εσ-呈线性关系。这说明了塑性变形时,弹性变形依然存在。弹塑性共存与加载卸载过程不同的εσ-关系是塑性变形的两个基本特征。 由于加载、卸载规律不同,导致εσ-关系不唯一。只有知道变形历史,才能得到一一对应的εσ-关系,即塑性变形与变形历史或路径有关。这是第3个重要特征。 事实上,s σσ>以后的点都可以看成是重新加载时的屈服点。以g 点为例,若卸载则εσ-关系为弹性。卸载后再加载,只要g σσ<点,εσ-关系仍为弹性。一旦超过g 点,εσ-呈非线性关系,即g 点也是弹塑性变形的交界点,视作继续屈服点。一般有s g σσ>,这一现象为硬化或强化,是塑性变形的第4个显著特点。 在简单压缩下,忽略摩擦影响,得到的压缩s σ与拉伸s σ基本相同。但是若将拉伸屈服后的试样经卸载并反向加载至屈服,反向屈服一般低于初始屈服。同理,先压后拉也有类似现象。这种正向变形强化导致后继反向变形软化的现象称作Bauschinger 效应。这是金属微观组织变化所致。一般塑性理论分析不考虑Bauschinger 效应。 Bridgman 等人在不同的静水压力容器中做单向拉伸试验。结果表明:静水压力只引起物体的体积弹性变形,在静水压力不很大的情况下(与屈服极限同数量级)所得拉伸曲线图2-1 应力应变曲线

3塑性变形的基本定律

3 塑性变形的基本定律 3.1 体积不变定律及应用 一、 体积不变定律内容 在压力加工过程中,只要金属的密度不发生变化,变形前后金属的体积就不会产生变化。若设变形前金属的体积为0V ,变形后的体积为1V ,则有: 0V =1V =常数 实际上,金属在塑性变形过程中,其体积总有一些变化,这是由于: (1)在轧制过程中,金属内部的缩孔、气泡和疏松被焊合,密度提高,因而改变了金属体积。这就是说除内部有大量存在气泡的沸腾钢锭(或有缩孔及疏松的镇静钢锭、连铸坯)的加工前期外,热加工时,金属的体积是不变的。 (2)在热轧过程中金属因温度变化而发生相变以及冷轧过程中金属组织结构被破坏,也会引起金属体积的变化,不过这种变化都极为微小。例如,冷加工时金属的比重约减少0.1~0.2%。不过这些在体积上引起的变化是微不足道的,况且经过再结晶退火后其比重仍然恢复到原有的数值。 二、 体积不变定律的应用 1、确定轧制后轧件的尺寸 设矩形坯料的高、宽、长分别为L B H 、、,轧制以后的轧件的高、宽、长分别为l b h 、、(如图3-1所示),根据体积不变条件,则 HBL V =1 hbl V =2 即 hbl HBL = 在生产中,—般坯料的尺寸均是已知的,如果轧制以后轧件的高度和宽度也已知时,则轧件轧制后的长度是可求的,即 图3-1 矩形断面工件加工前后的尺寸

hb HBL l = 例题1:轧50×5角钢,原料为连铸方坯,其尺寸为120×120×3000mm ,已知50×5角钢每米理论重3.77kg ,密度为7.85t/m 3,计算轧后长度l 为多少? 解: 坯料体积 V 0=120×120×3000=4.32×107mm 3 50×5角钢每米体积为 3.77/(7.85×103÷109)=480×103mm 3 由体积不变定律可得 4.32×107=480×103×l 轧后长度 l ≈90m 2、根据产品的断面面积和定尺长度,选择合理的坯料尺寸。例题2:某轨梁轧机上轧制50Kg/m 重轨,其理论横截面积为6580mm 2,孔型设计时选定的钢坯断面尺寸为325×280mm 2,要求一根钢坯轧成三根定尺为25m 长的重轨,计算合理的钢坯长度应为多少? 根据生产实践经验,选择加热时的烧损率为2%,轧制后切头、切尾及重轨加工余量共长 1.9m ,根据标准选定由于钢坯断面的圆角损失的体积为2%。由此可得轧后轧件长度应为 =l (3×25+1.9)×103=76900mm 由体积不变定律可得 325×280L (1-2%)(1-2%)=76900×6580 由此可得钢坯长度 L = mm 567398 .02803256580769002=??? 故选择钢坯长度为5.7m 。 3、在连轧生产中,为了保证每架轧机之间不产生堆钢和拉钢,则必须使单位时间内金属从每架轧机间流过的体积保持相等,即 n n v F v F v F ===ΛΛ2211 式中 n F F F ΛΛ21、为每架轧机上轧件出口的断面积, n v v v ΛΛ21、为各架轧机上轧件的出口速度,它比轧辊的线速度稍大,但可看作近似相等。 如果轧制时n F F F ΛΛ21、为已知,只要知道其中某一架轧辊的速度(连轧时,成品机架的轧辊线速度是已知的),则其余的转数均可一一求出。 3.2 最小阻力定律及其应用

最新3塑性变形的基本定律汇总

3塑性变形的基本定 律

3 塑性变形的基本定律 3.1 体积不变定律及应用 一、体积不变定律内容 在压力加工过程中,只要金属的密度不发生变化,变形前后金属的体积就不会产生变化。若设变形前金属的体积为 V,变形后的体积为 1 V,则有: V= 1 V=常数 实际上,金属在塑性变形过程中,其体积总有一些变化,这是由于: (1)在轧制过程中,金属内部的缩孔、气泡和疏松被焊合,密度提高,因而改变了金属体积。这就是说除内部有大量存在气泡的沸腾钢锭(或有缩孔及疏松的镇静钢锭、连铸坯)的加工前期外,热加工时,金属的体积是不变的。 (2)在热轧过程中金属因温度变化而发生相变以及冷轧过程中金属组织结构被破坏,也会引起金属体积的变化,不过这种变化都极为微小。例如,冷加工时金属的比重约减少 0.1~0.2%。不过这些在体积上引起的变化是微不足道的,况且经过再结晶退火后其比重仍然恢复到原有的数值。 二、体积不变定律的应用 1、确定轧制后轧件的尺寸 设矩形坯料的高、宽、长分别为L B H、 、,轧制以后的轧件的高、宽、长分别为l b h、 、(如图3-1所示),根据体积不变条件,则 HBL V= 1 hbl V= 2 即hbl HBL= 在生产中,—般坯料的尺寸均是已知的,如果轧制以后轧件的高度和宽度也已知时,则轧件轧制后的长度是可求的,即 图3-1 矩形断面工件加工前后的尺寸

hb HBL l = 例题1:轧50×5角钢,原料为连铸方坯,其尺寸为120×120×3000mm ,已知50×5角钢每米理论重3.77kg ,密度为7.85t/m 3,计算轧后长度l 为多少? 解: 坯料体积 V 0=120×120×3000=4.32×107mm 3 50×5角钢每米体积为 3.77/(7.85×103÷109)=480×103mm 3 由体积不变定律可得 4.32×107=480×103×l 轧后长度 l ≈90m 2、根据产品的断面面积和定尺长度,选择合理的坯料尺寸。例题2:某轨梁轧机上轧制50Kg/m 重轨,其理论横截面积为6580mm 2,孔型设计时选定的钢坯断面尺寸为325×280mm 2,要求一根钢坯轧成三根定尺为25m 长的重轨,计算合理的钢坯长度应为多少? 根据生产实践经验,选择加热时的烧损率为2%,轧制后切头、切尾及重轨加工余量共长1.9m ,根据标准选定由于钢坯断面的圆角损失的体积为2%。由此可得轧后轧件长度应为 =l (3×25+1.9)×103=76900mm 由体积不变定律可得 325×280L (1-2%)(1-2%)=76900×6580 由此可得钢坯长度 L = mm 567398 .02803256580769002=??? 故选择钢坯长度为5.7m 。 3、在连轧生产中,为了保证每架轧机之间不产生堆钢和拉钢,则必须使单位时间内金属从每架轧机间流过的体积保持相等,即 n n v F v F v F === 2211 式中 n F F F 21、为每架轧机上轧件出口的断面积, n v v v 21、为各架轧机上轧件的出口速度,它比轧辊的线速度稍大,但可看作近似相等。 如果轧制时n F F F 21、为已知,只要知道其中某一架轧辊的速度(连轧时,成品机架的轧辊线速度是已知的),则其余的转数均可一一求出。

塑性变形的力学原理

塑性变形的力学原理 element of mechanics of plasticity 从认定塑性变形体为均质连续体出发,依据宏观的实验结果,研究变形体内的应力、应变以及它们和变形温度、速度等条件之间的关系(见金属塑性变形)。 应力-应变曲线在材料试验中,常用圆棒受拉,短柱受压,薄壁管受扭转,以测定负载和变形的关系;然后分别算出单位面积上的负载(称为应力,常用ζ表示)和单位长度的变形(称为应变,常用ε表示)。材料的ζ和ε间的对应关系称为应力-应变曲线(ζ-ε曲线)。最常用的试验是试样受拉时,由原始长 度l0增加到l,常称比值为工程应变或应变,而称自然对数值l n (l/l )为对数应 变或真应变。若在外力P的作用下,受拉试样由原始截面积A 减小到每一瞬间的 值A,则称比值P/A 为习惯应力,P/A为真应力。常见的延性金属的应力-应变曲线,按有无明显的屈服点,分为两类(见金属力学性能的表征)。 对于小变形量,用工程应力-应变曲线即可;而对于大变形量,需用真应力-应变曲线。在一次受拉试验中,我们可以得到材料的特征性的ζ-ε曲线,此外,还可以得到材料的屈服应力(ζs)、断裂应力(ζb)、截面收缩率(ψ%)、延伸率即伸长率(δ%)和弹性模量(E)等特性指标。 常用ζs作为材料塑性变形时的抗力,ψ%和δ%为其承受塑性变形的能力(塑性指标)。但对塑性加工而言,由于变形量大、变形条件复杂,所以上述指标值不能直接应用,而只能表示某个可以单独测定的条件(如温度、变形速率等)对变形抗力和塑性指标的影响。因此我们常用ζ0来表示材料在简单应力状态条件下的变形抗力,用ζ表示在某个复杂条件下的变形抗力;在高变形速率的实验 中,由于ζ s 和ζ b 难于分别测定,所以有时也用ζb的变化来代表变形抗力的变 化。 塑性加工总是在复杂的应力状态条件下实现的。早在1911年卡门(T.von Karman)就用实验证明在高流体静压力下,通常认为是“脆性的”花岗岩可以有相当大的塑性变形。但是从一个简单的试验结果出发来定量地描述各种加工条件下的塑性指标,是很困难的;因而必须用接近于加工条件的方式进行实测,测得的数值称为塑性加工性指标(见金属塑性加工)。我们用塑性变形条件来计算应力状态条件对于变形抗力的影响。 复杂应力下的塑性变形有两个论题:如何用最简化的数学语言叙述复杂应力状态?在这样的背景下如何叙述进入塑性变形状态的条件? 应力状态条件取均质连续体内一点(或不考虑力分布的单元体)作受力分析的对象,则可证明存在着一组唯一的三维直角坐标系,不论外部的作用力如何分布,在此系内沿坐标面在单元体上的切应力为零。此坐标系称为主坐标系,垂直于坐标面的正应力称为主应力,常用ζ1、ζ2、ζ3表示。这样,任何复杂的

材料成型基本原理(刘全坤)第二版。课后答案

第二篇:材料成型力学原理 第十三章思考与练习 简述滑移和孪生两种塑性变形机理的主要区别。 答:滑移是指晶体在外力的作用下,晶体的一部分沿一定的晶面和晶向相对于另一部分发生相对移动或切变。滑移总是沿着原子密度最大的晶面和晶向发生。 孪生变形时,需要达到一定的临界切应力值方可发生。在多晶体内,孪生变形是极其次要的一种补充变形方式。 设有一简单立方结构的双晶体,如图13-34所示,如果该金属的滑移 系是{100} <100>,试问在应力作用下,该双晶体中哪一个晶体首先发 生滑移?为什么? 答:晶体Ⅰ首先发生滑移,因为Ⅰ受力的方向接近软取向, 而Ⅱ接近硬取向。 试分析多晶体塑性变形的特点。 答:①多晶体塑性变形体现了各晶粒变形的不同时性。 ②多晶体金属的塑性变形还体现出晶粒间变形的相互协调性。 ③多晶体变形的另一个特点还表现出变形的不均匀性。 ④多晶体的晶粒越细,单位体积内晶界越多,塑性变形的抗力大,金属的强度高。金属的塑性越好。 4. 晶粒大小对金属塑性和变形抗力有何影响? 答:晶粒越细,单位体积内晶界越多,塑性变形的抗力大,金属的强度高。金属的塑性越好。 5. 合金的塑性变形有何特点? 答:合金组织有单相固溶体合金、两相或多相合金两大类,它们的塑性变形的特点不相同。 单相固溶体合金的塑性变形是滑移和孪生,变形时主要受固溶强化作用, 多相合金的塑性变形的特点:多相合金除基体相外,还有其它相存在,呈两相或多相合金,合金的塑性变形在很大程度上取决于第二相的数量、形状、大小和分布的形态。但从变形的机理来说,仍然是滑移和孪生。 根据第二相又分为聚合型和弥散型,第二相粒子的尺寸与基体相晶粒尺寸属于同一数量级时,称为聚合型两相合金,只有当第二相为较强相时,才能对合金起到强化作用,当发生塑性变形时,首先在较弱的相中发生。当第二相以细小弥散的微粒均匀分布于基体相时,称为弥散型两相合金,这种弥散型粒子能阻碍位错的运动,对金属产生显著的强化作用,粒子越细,弥散分布越均匀,强化的效果越好。 6. 冷塑性变形对金属组织和性能有何影响? 答:对组织结构的影响:晶粒内部出现滑移带和孪生带; 晶粒的形状发生变化:随变形程度的增加,等轴晶沿变形方向逐步伸长,当变形量很大时,晶粒组织成纤维状; 晶粒的位向发生改变:晶粒在变形的同时,也发生转动,从而使得各晶粒的取向逐渐趋于一致(择优取向),从而形成变形织构。 对金属性能的影响:塑性变形改变了金属内部的组织结构,因而改变了金属的力学性能。 随着变形程度的增加,金属的强度、硬度增加,而塑性和韧性相应下降。即产生了加工硬化。 7. 产生加工硬化的原因是什么?它对金属的塑性和塑性加工有何影响? 答:加工硬化:在常温状态下,金属的流动应力随变形程度的增加而上升。为了使变形继续下去,就需要增加变形外力或变形功。这种现象称为加工硬化。 加工硬化产生的原因主要是由于塑性变形引起位错密度增大,导致位错之间交互作用增强,大量形成缠结、不动位错等障碍,形成高密度的“位错林”,使其余位错运动阻力增大,于是塑性变形抗力提高。 8. 什么是动态回复?动态回复对金属热塑性变形的主要软化机制是什么?

金属塑性变形理论习题集

《金属塑性变形理论》习题集 张贵杰编 河北联合大学 金属材料与加工工程系 2013年10月

前言 《金属塑性变形理论》是关于金属塑性加工学科的基础理论课,也是“金属材料工程”专业大学本科生的主干课程,同时也是报考材料科学与工程专业方向硕士研究生的必考科目。 《金属塑性变形理论》总学时为72,内容上分为两部分,即“金属塑性加工力学”(40学时)和“塑性加工金属学”(32学时)。 为使学生能够学好本课,以奠定扎实的理论基础,提高分析问题和解决问题的能力,编者集20余年的教学经验特编制本习题集,一方面作为学生在学习本课程时的辅导材料,供课下消化课堂内容时使用,另一方面也可供任课教师在授课时参考,此外对报考研究生的学生还具有指导复习的作用。 本“习题集”在编写时,充分考虑了学科内容的系统性、学生学习的连贯性以及与教材顺序的一致性。该“习题集”中具有前后关联的一个个题目,带有由浅入深的启发性,能够引导学生将所学的知识不断深化。教师也可根据教学进程从中选题,作为课外作业指导学生进行练习。所有这些都会有助于学生理解和消化课堂上所学习的内容,从而提高课下的学习效率。 编者 2013年10月

第一部分 金属塑性加工力学 第一章 应力状态分析 1. 金属塑性加工中的外力有哪几种?其意义如何? 2. 为什么应力分量的表达需用双下标?每个下标都表示何物理意义? 3. 已知应力状态如图1-1所示,写出应力分量,并以张量形式表示。 4. 已知应力状态的六个分量7-=x σ,4-=xy τ,0=y σ,4=yz τ, 8-=zx τ,15-=z σ(MPa),画出应力状态图,写出应力张量。 5. 作出单向拉伸、单向压缩、三向等值压缩、平面应力、平面应变、 纯剪切应力状态的应力Mehr 圆。 6. 已知应力状态如图1-2所示,当斜面法线方向与三个坐标轴夹角余 弦31 ===n m l 时,求该斜面上的全应力S 、全应力在坐标轴上的 分量x S 、y S 、z S 及斜面上的法线应力n σ和切应力n τ。 图 1-1 ?? ?? ? ??------ =1548404847σT x y z 图 1-2 x 10

第三章 塑性变形的基本规律

第三章塑性变形的基本规律 1、体积不变定律的概念 在金属压力加工的理论研究和实际计算中,通常认为变形前后金属的体积保持不变,它是变形计算的基本依据之一。若设变形前金属的体积为V0,变形后的体积为V1,则有: V0 = V1 =常数 2、最小阻力定律的内容 实践证明:物体在变形过程中,其质点有向各个方向移动的可能时,则物体内的各质点将是沿着阻力最小的方向移动,这就是通常所讲的最小阻力定律的定义。 3、弹塑性共存定律的概念和实际意义 A 概念 我们把金属塑性变形在加工中一定会有弹性变形存在的情况,称之为弹塑性共存定律。 B 实际意义 弹塑性共存定律在轧钢中具有很重要的实际意义,可用以指导我们生产的实践。 (1)用以选择工具 (2)由于弹塑性共存,轧件的轧后高度总比预先设计的尺寸要大 4、极限状态理论 A 极限状态的类型 第一种极限状态是屈服,第二种极限状态是破坏。屈服是金属由弹性变形转变为塑性变形的转折点,是塑性变形的开端。破坏则是金属塑性变形过程的终结。 B 金属屈服极限σs与金属屈服的概念 (1)金属屈服极限σs的概念:它是在特定条件下测得的,即是在室温下,慢速单向拉伸或单向压缩(线应力状态)时测定的金属发生屈服时的单向拉伸或单向压缩的应力值。 (2)金属的屈服:金属发生塑性变形时所需的外力大,则我们说金属难屈服,它的变形抗力就大,即不容易变形;金属发生塑性变形时所需的外力小,则我们说金属容易屈服,它的变形抗力就小,即容易变形。

C 在线应力状态下由拉伸实验建立的屈服条件 拉伸一试样,当主应力σ1的数值达到该材料的屈服极限(σ1=σs )时,试样开始发生塑性变形。 D 极限状态理论 它是研究弹性变形终了、塑性变形即将开始时主应力与屈服极限间关系的理论。 E 主应力差理论(Tresca 屈服条件) Tresca 屈服条件为: (3-6) F 能量理论(Mises 屈服条件) 其屈服条件表达式为: (3-7) Mises 屈服条件的简化形式: (3-8) 式中的m=1~1.155。 s m σσσ=-31s σσσσσσσ=-+-+-21323222121)()()(s σσσ=-31

燕山大学塑性变形力学基础与轧制原理复习大纲

"塑性变形力学基础与轧制原理" 参考书:"塑性变形力力学基础及轧制及原理"曹鸿德等主编,机械工业出版社。 学生应掌握的主要内容: 点的应力状态的张量性质:已知主方向和主应力,求斜面应力:画出主应力图示;写出主应力平面的方向余弦,主切应力平面的法应力, 主切应力;什么是八面体平面,写出八面体平面法向应力及剪应力分式:写出平衡微分方程式;推导体积应力及不可压缩性条件,画出主应变图示:试述均匀变形的定义和特点,对数应变系数和条件应变系数的关系;试述塑性表面的概念;试述最大剪应力等于常值的塑性条件,写出公式:试述单位弹性形态改变势能等于常值的塑性条件,写出公式:试述两个塑性条件的差别和联系。 试述平面问题的概念,写出平面问题的方程式:如何选定滑移线的参变量和确定滑移线的方向,对简单的实际问题能给出滑移线的正方向:推导汉基积分(4一17)式及(4一18)式:试述滑移线的几何性质;证明汉基第一定理(画图):画出窄锤头冲压厚板时的滑移线场,并求解单位压力 P;试述何为几何可能位移和静力可能的屈服应力状态;求各种典型压力加工情况的上限解。 试述在平面镦粗和轧制时的单位摩擦力的分布规律;推导卡尔曼近似平衡微分方程式(6-46)及单位压力基本平衡微分方程式(4-49)并分析求解此方程式的基本方法;推导奥洛万近似的平衡微分方程式(6 -69);画图说明各种因素对单位压力的影响;导出计算咬入角及变形区 长度的公式;试述中性角的概念;前滑的概念及前滑公式,如何测定前滑系数;写出轧件的工程常用变形系数;试述位移体积的概念及导出其表达式,导出以对数变形系数表示的体积不变条件;简述变形抗力的概念;简述各种因素对变形抗力的影响,了解强化强度,变形速度的概念;试述滑动摩擦的种类及概念,基本滑动摩擦机理;导出斯通公式;阐述轧机传动力矩的组成及概念;画图说明在简单轧制,带张力轧制及单辊传动时金属对轧辊作用力的方向。

金属塑性变形原理

金属塑性变形原理 1、变形和应力 1.1塑性变形与弹性变形 金属晶格在受力时发生歪扭或拉长,当外力未超过原子之间的结合力时,去掉外力之后晶格便会由变形的状态恢复到原始状态,也就是说,未超过金属本身弹性极限的变形叫金属的弹性变形。多晶体发生弹性变形时,各个晶粒的受力状态是不均匀的。 当加在晶体上的外力超过其弹性极限时,去掉外力之后歪扭的晶格和破碎的晶体不能恢复到原始状态,这种永久变形叫金属的塑性变形。金属发生塑性变形必然引起金属晶体组织结构的破坏,使晶格发生歪扭和紊乱,使晶粒破碎并且使晶粒形状发生变化,一般晶粒沿着受力方向被拉长或压缩。 1.2应力和应力集中 塑性变形时,作用于金属上的外力有作用力和反作用力。由于这两种外力的作用,在金属内部将产生与外力大小相平衡的内力。单位面积上的这种内力称为应力,以σ表示。 σ=P/S 式中σ——物体产生的应力,MPa: P——作用于物体的外力,N; S——承受外力作用的物体面积,mm2。 当金属内部存在应力,其表面又有尖角、尖缺口、结疤、折叠、划伤、裂纹等缺陷存在时,应力将在这些缺陷处集中分布,使这些缺陷部位的实际应力比正常应力高数倍。这种现象叫做应力集中。 金属内部的气泡、缩孔、裂纹、夹杂物及残余应力等对应力的反应与物体的表面缺陷相同,在应力作用下,也会发生应力集中。 应力集中在很大程度上提高了金属的变形抗力,降低了金属的塑性,金属的破坏往往最先从应力集中的地方开始。 2、塑性变形基本定律 2.1体积不变定律 钢锭在头几道轧制中因其缩孔、疏松、气泡、裂纹等缺陷受压缩而致密,体积有所减少,此后各轧制道次的金属体积就不再发生变化。这种轧制前后体积不变的客观事实叫做体积不变定律。它是计算轧制变形前后的轧件尺寸的基本依据。 H、B、L——轧制前轧件的高、宽、长;h、b、l——轧制后轧件的高、宽、长。根据体积不变定律,轧件轧制前后体积相等,即 HBL=hbl 2.2最小阻力定律 钢在塑性变形时,金属沿着变形抵抗力最小的方向流动,这就叫做最小阻力定律。根据这个定律,在自由变形的情况下,金属的流动总是取最短的路线,因为最短的路线抵抗变形的阻力最小,这个最短的路线,即是从该动点到断面周界的垂线。

2-2金属塑性变形的机理

金属塑性变形的机理 (3)塑性和变形抗力 1.单晶体塑性变形的主要方式是_______和_______。 2.查阅单晶体滑移变形相关资料,正确连接下图。 弹性变形 未变形

弹塑性变形 塑性变形 3.什么是纤维组织? __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ 4.任取一个微元六面单元体,该单元体上的应力状态沿着六面体的三个空间坐标系可分解为_____个应力分量,其中包括_____个剪应力与3个_____。 5.简述什么是真实应力? __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ 6.塑性变形的基本定律包括________、________、________。 洛氏硬度 7.把下列表格填写完整 金属板料力学性能 性能名称符号表示 σs 屈强比 延伸率 厚向异性系数 Δr

(完整版)弹性与塑性力学第2,3章习题答案

第二章 2.1(曾海斌)物体上某点的应力张量σij 为σij =?? ?? ??????1003100031001000000 (应力单位) 求出: (a )面积单位上应力矢量的大小,该面元上的法线矢量为n =(1/2,1/2,1/2); (b )应力主轴的方位; (c )主应力的大小; (d )八面体应力的大小; (e )最大剪应力的大小。 解答: (a)利用式(2.26)计算应力矢量的分量n T i ,得 n T 1=σ1j n j =σ11n 1+σ12n 2 +σ13n 3 = 0 ;同样 n T 2= j n j =272.47 n T 3=σ3j n j =157.31 所以,应力矢量n T 的大小为 =n T [(n T 1 )2 +(n T 2 )2 +(n T 3)2]1/2=314.62 (b)(c)特征方程:σ3—I 1σ2 + I 2σ—I 3=0 其中I 1 =σij 的对角项之和、I 2 =σij 的对角项余子式之和、I 3 =σij 的行列式。 从一个三次方程的根的特征性可证明: I 1 =σ1+σ2+σ3 I 2=σ1σ2+σ2σ3+σ3σ1 I 3=σ1σ2σ3 其中得,σ1=400、σ2=σ3=0 是特征方程的根。 将σ1、σ2和σ3分别代入(2.43),并使用恒等式n 12+ n 22 + n 32=1 可决定对应于主应力每个值的单位法线n i 的分量(n 1 、n 2 、n 3): n i (1)=(0, ±0.866,±0.5) n i (2)=(0, μ0.5,±0.866) n i (3)=(±1, 0,0) 注意主方向2和3不是唯一的,可以选用与轴1正交的任何两个相互垂直的轴。 (d )由式(2.96),可算 σotc =1/3(0+100+300)=133.3 τotc =1/3(90000+40000+10000+6*30000) 1/2=188.56 (e) 已经求得σ1=400、σ2=σ3=0,则有(2.91)给出的最大剪应力为τmax =200

(完整版)《金属塑性成形原理》习题答案

金属塑性成形原理》 习题答案 一、填空题 1. 衡量金属或合金的塑性变形能力的数量指标有伸长率和断面收缩率。 2. 所谓金属的再结晶是指冷变形金属加热到更高的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代金属的冷变形组织的过程。 3. 金属热塑性变形机理主要有:晶内滑移、晶内孪生、晶界滑移和扩散蠕变等。 4. 请将以下应力张量分解为应力球张量和应力偏张量 5. 对应变张量,请写出其八面体线变与八面体切应变的表达式。 =

6.1864 年法国工程师屈雷斯加( H.Tresca )根据库伦在土力学中研究成果, 并从他自已所做的金属挤压试验,提出材料的屈服与最大切应力有关,如果 采用数学的方式,屈雷斯加屈服条件可表述为 。 7. 金属塑性成形过程中影响摩擦系数的因素有很多, 归结起来主要有 金属的 种类和 化学成分 、 工具的表面状态 、 接触面上的单位压力 、 变形温度 、 变形速度 等几方面的因素。 8. 变形体处于塑性平面应变状态时,在塑性流动平面上滑移线上任一点的切 线方向即 为该点的最大切应力方向。对于理想刚塑性材料处于平面应变状态 下,塑性区内各点的应力状态不同其实质只是 平均应力 不同,而各点处 的 最大切应力 为材料常数。 9. 在众多的静可容应力场和动可容速度场中,必然有一个应力场和与之对应 的速度 场,它们满足全部的静可容和动可容条件,此唯一的应力场和速度场, 称之为 真实 应力场和 真实 速度场,由此导出的载荷,即为 真实 载荷, 它是唯一的。 10. 设平面三角形单元内部任意点的位移采用如下的线性多项式来表示: 11、金属塑性成形有如下特点: 、 、 、 12、按照成形的特点,一般将塑性成形分为 和 两大类,按 照成形时工件的温度还可以分为 、 和 三类。 13、金属的超塑性分为 和 两大类。 14、晶内变形的主要方式和单晶体一样分为 和 。 其中 变形是主要的,而 变形是次要的,一般仅起调节作用。 ,则单元内任一点外的应变可表示为

变形基础

第2章冷冲压变形基础知识 学习目的与要求: 1、掌握塑性变形、塑性、变形抗力、主应力状态、主应变状态等概念; 2、掌握屈服准则、塑性变形时应力应变关系、体积不变条件、硬化规律、卸载弹性恢复规律和反载软化现象、最小阻力定律等冲压成形基本规律; 3、了解冲压成形性能指标,认识常见冲压材料; 重点: 塑性变形、塑性、变形抗力、主应力状态、主应变状态等概念、冲压成形基本规律及应用、冲压成形性能指标、常见冲压材料及其在图纸上的表示; 难点: 冲压成形基本规律、冲压成形性能。 冷冲压成形是金属塑性加工的主要方法之一,冷冲压成形的理论是建立在金属塑性变形理论的基础之上。因此,要掌握冷冲压成形的加工技术,就必须对金属的塑性变形性质、规律及材料的冲压成形性能等有充分的认识。 2.1 塑性变形理论基础 2.1.1 影响金属塑性和变形抗力的因素 1、塑性变形、塑性与变形抗力的概念 塑性变形:物体在外力作用下会产生变形,若外力去除以后,物体并不能完全恢复自己的原有形状和尺寸; 塑性:物体具有塑性变形的能力称为塑性,塑性的好坏用塑性指标来评定。塑性指标是以材料开始破坏时的变形量表示,它可借助于各种试验方法测定。 变形抗力:在一定的变形条件(加载状况、变形温度及速度)下,引起物体塑性变形的单位变形力。变形抗力反映了物体在外力作用下抵抗塑性变形的能力。 塑性和变形抗力是两个不同的概念。通常说某种材料的塑性好坏是指受力后临近破坏时的变形程度的大小,而变形抗力是从力的角度反映塑性变形的难易程度。如奥氏体不锈钢允许的塑性变形程度大,说明它的塑性好,但其变形抗力也大,说明它需要较大的外力才能产生塑性变形。 2、塑性变形对金属组织和性能的影响

塑性力学和弹性力学的区别和联系

塑性力学与弹性力学的区别与联系固体力学就是研究固体材料及其构成的物体结构在外部干扰(荷载、温度变化等)下的力学响应的科学,按其研究对象区分为不同的科学分支。塑性力学、弹性力学正就是固体力学中的两个重要分支。 弹性力学就是研究固体材料及由其构成的物体结构在弹性变形阶段的力学行为,包括在外部干扰下弹性物体的内力(应力)、变形(应变)与位移的分布,以及与之相关的原理、理论与方法;塑性力学则研究它们在塑性变形阶段的力学响应。 大多数材料都同时具有弹性与塑性性质,当外载较小时,材料呈现为弹性的或基本上就是弹性的;当载荷渐增时,材料将进入塑性变形阶段,即材料的行为呈现为塑性的。所谓弹性与塑性,只就是材料力学性质的流变学分类法中两个典型性质或理想模型;同一种材料在不同条件下可以主要表现为弹性的或塑性的。因此,所谓弹性材料或弹性物体就是指在—定条件下主要呈现弹性性态的材料或物体。塑性材料或塑性物体的含义与此相类。如上所述。大多数材料往往都同时具有弹性与塑性性质,特别就是在塑性变形阶段,变形中既有可恢复的弹性变形,又有不可恢复的塑性变形,因此有时又称为弹塑性材料。本书主要介绍分析弹塑性材料与结构在外部干扰下力学响应的基本原理、理论与方法。以及相应的“破坏”准则或失效难则。 塑性力学与弹性力学的区别在于,塑性力学考虑物体内产生的永久变形,而弹性力学不考虑;与流变学的区别在于,塑性力学考虑的永久变形只与应力与应变的历史有关,而不随时间变化,而流变学考虑的永久变形则与时间有关。 一、基本假定 1、弹性力学: (1)假设物体就是连续的。就就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。 (2)假设物体就是线弹性的。就就是说当使物体产生变形的外力被除去以后,物体能够完全恢复原来形状,不留任何残余变形。而且,材料服从虎克定律,应力与应变成正比。 (3)假设物体就是均匀的。就就是说整个物体就是由同一种质地均匀的材料组成的。这样,整个物体的所有部分才具有相同的物理性质,因而物体的弹性模量与泊松比才不随位置坐标而变。 (4)假设物体就是各向同性的。也就就是物体内每一点各个不同方向的物理性质与机械性质都就是相同的。 2、塑性力学: (1)材料就是连续的,均匀的。 (2)平均正应力(静水压力)不影响屈服条件与加载条件。 (3)体积的变化就是弹性的。 (4)不考虑时间因素对材料性质的影响。 二、基本内容 (一)弹性力学 弹性力学问题的求解主要就是基于以下几个理论基础。 1、Newton定律 弹性力学就是一门力学,它服从Newton所提出的三大定律,即惯性定律﹑运动定律,以及作用与反作用定律。质点力学与刚体力学就是从Newton定律演绎出来的,而弹性力学不同于理论力学,它还有新假设与新定律。

弹塑性力学试题

考试科目 :弹塑性力学试题 班号 研 班 姓名 成绩 一、概念题 (1) 最小势能原理等价于弹性力学平衡微分方程和静力边界条件,用最小势能原理求解弹性力学近似解时,仅要求位移函数满足已知位移边界条件。 (2) 最小余能原理等价于 应变协调 方程和 位移 边界条件,用最小余能原理求解弹性力学近似解时,所设的应力分量应预先满足平衡微分方程 和静力边界条件。 (3) 弹性力学问题有位移法和应力法两种基本解法,前者以位移为基本未知量,后者以 应力为基本未知量。 二、已知轴对称的平面应变问题,应力和位移分量的一般解为: ,)11(2)11(10,2,222 2=?? ????--+-+--==+-=+= θθθμμμμμτσσu Cr r A E u C r A C r A r r r 利用上述解答求厚壁圆筒外面套以绝对刚性的外管,厚壁圆筒承受内压p 作用,试求该问题的应力和位移分量的解。 解:边界条件为: a r =时:p r -=σ;0=θτr b r =时:0=r u ;0=θu 。 将上述边界条件代入公式得: ??? ? ???=?????--+-+--=-=+=0)11(2)11(122 2μμμμb C b A E u p C a A b r r 解上述方程组得: ()()()??? ? ???+-- =+---=]21[22121222 2222a b pa C a b b pa A μμμ 则该问题的应力和位移分量的解分别为:

()()()()()()??? ???? ? ? ??? ???=?? ???????? ??---+-???? ??-+-+--==+--+--=+--+---=??011)]21([11)]21([)21(10 21121212112121222222 222 22 222222 22 22222θθθμμμμμμμμτμμμσμμμσu b a pra b a r b pa E u a b pa r a b b pa a b pa r a b b pa r r r 三、已知弹性半平面的o 点受集中力 2 2222 222 2 223 )(2)(2)(2y x y x P y x xy P y x x P xy y x +- =+- =+- =πτπσπσ 利用上述解答求在弹性半平面上作用着n 个集中力i p 构成的力系, 这些力到所设原点的距离分别为i y ,试求应力xy y x τσσ,,的一般表达式。 解:由题设条件知,第i 个力i p 在点(x ,y )处产生的应力将为: y y

金属塑性成型原理部分课后习题答案俞汉清主编

第一章 1.什么是金属的塑性?什么是塑性成形?塑性成形有何特点? 塑性----在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力; 塑性变形----当作用在物体上的外力取消后,物体的变形不能完全恢复而产生的残余变形; 塑性成形----金属材料在一定的外力作用下,利用其塑性而使其成型并获得一定力学性能 的加工方法,也称塑性加工或压力加工; 塑性成形的特点:①组织、性能好②材料利用率高③尺寸精度高④生产效率高2.试述塑性成形的一般分类。 Ⅰ.按成型特点可分为块料成形(也称体积成形)和板料成型两大类 1)块料成型是在塑性成形过程中靠体积转移和分配来实现的。可分为一次成型和二次加工。 一次加工: ①轧制----是将金属坯料通过两个旋转轧辊间的特定空间使其产生塑性变形,以获得一定截面形状材料的塑性成形方法。分纵轧、横轧、斜轧;用于生产型材、板材和管材。 ②挤压----是在大截面坯料的后端施加一定的压力,将金属坯料通过一定形状和尺寸的模孔使其产生塑性变形,以获得符合模孔截面形状的小截面坯料或零件的塑性成形方法。分正挤压、反挤压和复合挤压;适于(低塑性的)型材、管材和零件。 ③拉拔----是在金属坯料的前端施加一定的拉力,将金属坯料通过一定形状、尺

寸的模孔使其产生塑性变形,以获得与模孔形状、尺寸相同的小截面坯料的塑性成形方法。生产棒材、管材和线材。 二次加工: ①自由锻----是在锻锤或水压机上,利用简单的工具将金属锭料或坯料锻成所需的形 状和尺寸的加工方法。精度低,生产率不高,用于单件小批量或大锻件。 ②模锻----是将金属坯料放在与成平形状、尺寸相同的模腔中使其产生塑性变形,从 而获得与模腔形状、尺寸相同的坯料或零件的加工方法。分开式模锻和闭式模锻。2)板料成型一般称为冲压。分为分离工序和成形工序。 分离工序:用于使冲压件与板料沿一定的轮廓线相互分离,如冲裁、剪切等工序;成型工序:用来使坯料在不破坏的条件下发生塑性变形,成为具有要求形状和尺寸的零件,如弯曲、拉深等工序。 Ⅱ.按成型时工件的温度可分为热成形、冷成形和温成形。 第二章 3.试分析多晶体塑性变形的特点。 1)各晶粒变形的不同时性。不同时性是由多晶体的各个晶粒位向不同引起的。2)各晶粒变形的相互协调性。晶粒之间的连续性决定,还要求每个晶粒进行多系滑移;每个晶粒至少要求有 5个独立的滑移系启动才能保证。 3)晶粒与晶粒之间和晶粒内部与晶界附近区域之间的变形的不均匀性。 Add: 4)滑移的传递,必须激发相邻晶粒的位错源。

相关文档
最新文档