现代设计方法

现代设计方法
现代设计方法

机械设计方法实验报告

姓名:

学号:

成绩:

指导教师:

进退试算法实验报告

一、实验目的

1.加深对进退试算法的基本理论和算法步骤的理解。

2.培养独立编制、调试计算机程序的能力。

3.掌握常用优化程序的使用方法。

4.培养灵活运用优化设计方法解决工程实际问题的能力。

二、实验要求

1.明确进退试算法基本原理及程序框图。

2.编制进退试算法程序。

三.实验内容

计算实例:用进退试算法求函数())2

t

f的搜索区间。

(+

=t t

①.进退试算法基本原理简述

进退试算法的基本思想是:按照一定的规律给出若干试算点,一次比较各试算点的函数值的大小,直到找出相邻的三点的函数值按“高——低——高”变化的单峰区间为止。

②、程序的流程图

③.编制进退试算法程序

#include

#include

#define f(t) (t*(t+2))

void sb(double *a,double *b)

{

double t0,t1,t,h,alpha,f0,f1;

int k=0;

printf("请输入初始点t0=");

scanf("%lf",&t0);

printf("\n请输入初始步长h=");

scanf("%lf",&h);

printf("\n请输入加步系数alpha(需大于1)=");

scanf("%lf",&alpha);

f0=f(t0);

t1=t0+h;

f1=f(t1);

while(1)

{

printf("\nf1=%lf,f2=%lf,t0=%lf,t=%lf,h=%lf,k=%d",f0,f1,t0,t1,h,k);

if(f1

{

h=alpha*h;

t=t0;

t0=t1;

f0=f1;

k++;

}

else

{

if(k==0)

{h=-h;t=t1;}

else

{

*a=t

*b=t>t1?t:t1;

break;

}

}

t1=t0+h;

f1=f(t1);

}

}

main()

{

double a=0,b=0;

double *c,*d;

c=&a,d=&b;

sb(c,d);

printf("\na=%lf,b=%lf",a,b); }

④.程序运行结果

鲍威尔共轭方向法实验报告

一、实验目的

5. 加深对鲍威尔法的基本理论和算法步骤的理解。

6. 培养独立编制、调试计算机程序的能力。

7. 掌握常用优化程序的使用方法。

8. 培养灵活运用优化设计方法解决工程实际问题的能力。

二、实验要求

3. 明确鲍威尔法基本原理及程序框图。

4. 编制鲍威尔法程序。

三.实验内容

计算实例:用鲍威尔法求函数()212

221212141060,x x x x x x x x f -++--=的极

小值。

①.鲍威尔法基本原理简述

任选一初始点X 0,再选两个线性无关的向量。从X 0出发,顺

次沿e 1、e 2作一维搜索得01X 、02X ,两点连线得一新方向d 1,用d

1代替e 1形成两个线性无关向量e 2、d 1,作为下一轮搜索方向。再从02

X 出发,沿d 1作一维搜索得点01X ,作为下一轮迭代的初始点。从X 1出发,顺次沿e 2、d 1作一维搜索,得到点11X 、12X ,两点的连线得一新方向d 2。10X 、12X 两点是从不同点X 0、11X 出发,分别沿d 1方向进

行一维搜索而得到的极小点。再从12X 出发,沿d 2作一维搜索得点X 2,即是二维问题的极小点X *。

③.编制鲍威尔法程序

#include "stdio.h"

#include "stdlib.h"

#include "math.h"

double objf(double x[])

{double ff;

ff=60-10*x[0]-4*x[1]+x[0]*x[0]+x[1]*x[1]-x[0]*x[1];

return(ff);

}

void jtf(double x0[],double h0,double s[],int n,double a[],double b[]) {int i;

double *x[3],h,f1,f2,f3;

for(i=0;i<3;i++)

x[i]=(double *)malloc(n*sizeof(double));

h=h0;

for(i=0;i

*(x[0]+i)=x0[i];

f1=objf(x[0]);

for(i=0;i

*(x[1]+i)=*(x[0]+i)+h*s[i];

f2=objf(x[1]);

if(f2>=f1)

{ h=-h0;

for(i=0;i

*(x[2]+i)=*(x[0]+i);

f3=f1;

for(i=0;i

{*(x[0]+i)=*(x[1]+i);

*(x[1]+i)=*(x[2]+i);

}

f1=f2;

f2=f3;

}

for(;;)

{h=2*h;

for(i=0;i

*(x[2]+i)=*(x[1]+i)+h*s[i];

f3=objf(x[2]);

if(f2

else

{ for(i=0;i

{*(x[0]+i)=*(x[1]+i);

*(x[1]+i)=*(x[2]+i);

f1=f2;

f2=f3;

}

}

if(h<0)

for(i=0;i

{a[i]=*(x[2]+i);

b[i]=*(x[0]+i);

}

else

for(i=0;i

{a[i]=*(x[0]+i);

b[i]=*(x[2]+i);

}

for(i=0;i<3;i++)

free(x[i]);

}

double gold(double a[],double b[],double eps,int n,double xx[]) {int i;

double f1,f2,*x[2],ff,q,w;

for(i=0;i<2;i++)

x[i]=(double *)malloc(n*sizeof(double));

for(i=0;i

{*(x[0]+i)=a[i]+0.618*(b[i]-a[i]);

*(x[1]+i)=a[i]+0.382*(b[i]-a[i]);

}

f1=objf(x[0]);

f2=objf(x[1]);

do

{if(f1>f2)

{for(i=0;i

{b[i]=*(x[0]+i);

*(x[0]+i)=*(x[1]+i);

}

f1=f2;

for(i=0;i

*(x[1]+i)=a[i]+0.382*(b[i]-a[i]);

f2=objf(x[1]);

}

else

{ for(i=0;i

{a[i]=*(x[1]+i);

*(x[1]+i)=*(x[0]+i);}

for(i=0;i

*(x[0]+i)=a[i]+0.618*(b[i]-a[i]);

f1=objf(x[0]);

}

q=0;

for(i=0;i

q=q+(b[i]-a[i])*(b[i]-a[i]);

w=sqrt(q);

}while(w>eps);

for(i=0;i

xx[i]=0.5*(a[i]+b[i]);

ff=objf(xx);

for(i=0;i<2;i++)

free(x[i]);

return(ff);

}

double oneoptim(double x0[],double s[],double h0,double epsg,int n,double x[]) {double *a,*b,ff;

a=(double *)malloc(n*sizeof(double));

b=(double *)malloc(n*sizeof(double));

jtf(x0,h0,s,n,a,b);

ff=gold(a,b,epsg,n,x);

free(a);

free(b);

return (ff);

}

double powell(double p[],double h0,double eps,double epsg,int n,double x[]) {int i,j,m;

double *xx[4],*ss,*s;

double f,f0,f1,f2,f3,fx,dlt,df,sdx,q,d;

ss=(double *)malloc(n*(n+1)*sizeof(double));

s=(double *)malloc(n*sizeof(double));

for(i=0;i

{for(j=0;j<=n;j++)

*(ss+i*(n+1)+j)=0;

*(ss+i*(n+1)+i)=1;

}

for(i=0;i<4;i++)

xx[i]=(double *)malloc(n*sizeof(double));

for(i=0;i

*(xx[0]+i)=p[i];

for(;;)

{for(i=0;i

{*(xx[1]+i)=*(xx[0]+i);

x[i]=*(xx[1]+i);

}

f0=f1=objf(x);

dlt=-1;

for(j=0;j

{for(i=0;i

{*(xx[0]+i)=x[i];

*(s+i)=*(ss+i*(n+1)+j);

}

f=oneoptim(xx[0],s,h0,epsg,n,x);

df=f0-f;

if(df>dlt)

{dlt=df;

m=j;

}

}

sdx=0;

for(i=0;i

sdx=sdx+fabs(x[i]-(*(xx[1]+i)));

if(sdx

{free(ss);

free(s);

for(i=0;i<4;i++)

free(xx[i]);

return(f);

}

for(i=0;i

*(xx[2]+i)=x[i];

f2=f;

for(i=0;i

{*(xx[3]+i)=2*(*(xx[2]+i)-(*(xx[1]+i))); x[i]=*(xx[3]+i);

}

fx=objf(x);

f3=fx;

q=(f1-2*f2+f3)*(f1-f2-dlt)*(f1-f2-dlt); d=0.5*dlt*(f1-f3)*(f1-f3);

if((f3

{if(f2<=f3)

for(i=0;i

*(xx[0]+i)=*(xx[2]+i);

else

for(i=0;i

*(xx[0]+i)=*(xx[3]+i);

}

else

{for(i=0;i

{*(ss+(i+1)*(n+1))=x[i]-(*(xx[1]+i));

*(s+i)=*(ss+(i+1)*(n+1));

}

f=oneoptim(xx[0],s,h0,epsg,n,x);

for(i=0;i

*(xx[0]+i)=x[i];

for(j=m+1;j<=n;j++)

for(i=0;i

*(ss+i*(n+1)+j-1)=*(ss+i*(n+1)+j);

}

}

}

void main()

{

double p[]={0,0};

double ff,x[2];

ff=powell(p,0.002,0.000001,0.00000001,2,x);

printf("\n所求函数是:f(x)=60-10*x[0]-4*x[1]+x[0]*x[0]+x[1]*x[1]-x[0]*x[1]");

printf("\n使用鲍威尔法时的迭代初始点为:p(0,0)");

printf("\n鲍威尔法的精度为:0.000001");

printf("\n外推法的初始步长:ho为0.002");

printf("\n黄金分割法的精度为:0.00000001");

printf("\n求得极值点坐标为:x[0]=%f,x[1]=%f;极小值是:f(%f,%f)=%f\n",x[0],x[1],x[0],x[1],ff);

}

④.程序运行结果

惩罚函数法实验报告

一、实验目的

1.掌握并能建立最优化基本类型问题的数学模型。

2.掌握最优化方法的基本概念、基本理论和基本方法,奠定最优化的理论基础。

3.能够熟练编制和调试最优化方法的程序,奠定解决实际中的优化问题的基础。

二、实验要求

1.明确惩罚函数法基本原理及程序框图。

2.编制惩罚函数法程序。

三.实验内容

计算实例:用惩罚函数法求函数()1212

22121422,x x x x x x x f --+=的极小值。

①.惩罚函数法基本原理简述

②、程序的流程图

③.编制惩罚函数法程序

#include "stdio.h"

#include "stdlib.h"

#include "math.h"

double objf(double x[])

{double ff;

ff=x[0]*x[0]+2*x[1]*x[1]-4*x[0]-2*x[0]*x[1];

return(ff);

}

void jtf(double x0[],double h0,double s[],int n,double a[],double b[]) {int i;

double *x[3],h,f1,f2,f3;

for(i=0;i<3;i++)

x[i]=(double *)malloc(n*sizeof(double));

h=h0;

for(i=0;i

*(x[0]+i)=x0[i];

f1=objf(x[0]);

for(i=0;i

*(x[1]+i)=*(x[0]+i)+h*s[i];

f2=objf(x[1]);

if(f2>=f1)

{ h=-h0;

for(i=0;i

*(x[2]+i)=*(x[0]+i);

f3=f1;

for(i=0;i

{*(x[0]+i)=*(x[1]+i);

*(x[1]+i)=*(x[2]+i);

}

f1=f2;

f2=f3;

}

for(;;)

{h=2*h;

for(i=0;i

*(x[2]+i)=*(x[1]+i)+h*s[i];

f3=objf(x[2]);

if(f2

else

{ for(i=0;i

{*(x[0]+i)=*(x[1]+i);

*(x[1]+i)=*(x[2]+i);

f1=f2;

f2=f3;

}

}

if(h<0)

for(i=0;i

{a[i]=*(x[2]+i);

b[i]=*(x[0]+i);

}

else

for(i=0;i

{a[i]=*(x[0]+i);

b[i]=*(x[2]+i);

}

for(i=0;i<3;i++)

free(x[i]);

}

double gold(double a[],double b[],double eps,int n,double xx[]) {int i;

double f1,f2,*x[2],ff,q,w;

for(i=0;i<2;i++)

x[i]=(double *)malloc(n*sizeof(double));

for(i=0;i

{*(x[0]+i)=a[i]+0.618*(b[i]-a[i]);

*(x[1]+i)=a[i]+0.382*(b[i]-a[i]);

}

f1=objf(x[0]);

f2=objf(x[1]);

do

{if(f1>f2)

{for(i=0;i

{b[i]=*(x[0]+i);

*(x[0]+i)=*(x[1]+i);

}

f1=f2;

for(i=0;i

*(x[1]+i)=a[i]+0.382*(b[i]-a[i]);

f2=objf(x[1]);

}

else

{ for(i=0;i

{a[i]=*(x[1]+i);

*(x[1]+i)=*(x[0]+i);}

for(i=0;i

*(x[0]+i)=a[i]+0.618*(b[i]-a[i]);

f1=objf(x[0]);

}

q=0;

for(i=0;i

q=q+(b[i]-a[i])*(b[i]-a[i]);

w=sqrt(q);

}while(w>eps);

for(i=0;i

xx[i]=0.5*(a[i]+b[i]);

ff=objf(xx);

for(i=0;i<2;i++)

free(x[i]);

return(ff);

}

double oneoptim(double x0[],double s[],double h0,double epsg,int n,double x[]) {double *a,*b,ff;

a=(double *)malloc(n*sizeof(double));

b=(double *)malloc(n*sizeof(double));

jtf(x0,h0,s,n,a,b);

ff=gold(a,b,epsg,n,x);

free(a);

free(b);

return (ff);

}

double powell(double p[],double h0,double eps,double epsg,int n,double x[]) {int i,j,m;

double *xx[4],*ss,*s;

double f,f0,f1,f2,f3,fx,dlt,df,sdx,q,d;

ss=(double *)malloc(n*(n+1)*sizeof(double));

s=(double *)malloc(n*sizeof(double));

for(i=0;i

{for(j=0;j<=n;j++)

*(ss+i*(n+1)+j)=0;

*(ss+i*(n+1)+i)=1;

}

for(i=0;i<4;i++)

xx[i]=(double *)malloc(n*sizeof(double));

for(i=0;i

*(xx[0]+i)=p[i];

for(;;)

{for(i=0;i

{*(xx[1]+i)=*(xx[0]+i);

x[i]=*(xx[1]+i);

}

f0=f1=objf(x);

dlt=-1;

for(j=0;j

{for(i=0;i

{*(xx[0]+i)=x[i];

*(s+i)=*(ss+i*(n+1)+j);

}

f=oneoptim(xx[0],s,h0,epsg,n,x);

df=f0-f;

if(df>dlt)

{dlt=df;

m=j;

}

}

sdx=0;

for(i=0;i

sdx=sdx+fabs(x[i]-(*(xx[1]+i)));

if(sdx

{free(ss);

free(s);

for(i=0;i<4;i++)

free(xx[i]);

return(f);

}

for(i=0;i

*(xx[2]+i)=x[i];

f2=f;

for(i=0;i

{*(xx[3]+i)=2*(*(xx[2]+i)-(*(xx[1]+i))); x[i]=*(xx[3]+i);

}

fx=objf(x);

f3=fx;

q=(f1-2*f2+f3)*(f1-f2-dlt)*(f1-f2-dlt); d=0.5*dlt*(f1-f3)*(f1-f3);

if((f3

{if(f2<=f3)

for(i=0;i

*(xx[0]+i)=*(xx[2]+i);

else

for(i=0;i

*(xx[0]+i)=*(xx[3]+i);

}

else

{for(i=0;i

{*(ss+(i+1)*(n+1))=x[i]-(*(xx[1]+i));

*(s+i)=*(ss+(i+1)*(n+1));

}

f=oneoptim(xx[0],s,h0,epsg,n,x);

for(i=0;i

*(xx[0]+i)=x[i];

for(j=m+1;j<=n;j++)

for(i=0;i

*(ss+i*(n+1)+j-1)=*(ss+i*(n+1)+j);

}

}

}

void main()

{

double p[]={1,1};

double ff,x[2];

ff=powell(p,0.3,0.001,0.0001,2,x);

printf("\n所求函数是:f(x)=x1^2+2*x2^2-4*x1-2*x1*x2");

printf("\n使用鲍威尔法时的迭代初始点为:p(1,1)");

printf("\n鲍威尔法的精度为:0.3");

printf("\n外推法的初始步长:ho为0.001");

printf("\n黄金分割法的精度为:0.0001");

printf("\n求得极值点坐标为:x[0]=%f,x[1]=%f;极小值是:f(%f,%f)=%f\n",x[0],x[1],x[0],x[1],ff);

}

④.程序运行结果

现代设计方法与传统设计方法区别

现代设计方法与传统设计方法区别 (1)直觉设计阶段古代的设计是一种直觉设计。当时人们或是从自然现象中直接得到启示,或是全凭人的直观感觉来设计制作工具。设计方案存在于手工艺人头脑之中,无法记录表达,产品也是比较简单的。直觉设计阶段在人类历史中经历了一个很长的时期,17世纪以前基本都属于这一阶段。 (2)经验设计阶段随着生产的发展,单个手工艺人的经验或其头脑中的构思已很难满足这些要求。于是,手工艺人联合起来,互相协作。一部分经验丰富的手工艺人将自己的经验或构思用图纸表达出来,然后根据图纸组织生产。图纸的出现,即可使具有丰富经验的手工艺人通过图纸将其经验或构思记录下来,传与他人,便于用图纸对产品进行分析、改进和提高,推动设计工作向前发展;还可满足更多的人同时参加同一产品的生产活动,满足社会对产品的需求及提高生产率的要求。因此,利用图纸进行设计,使人类设计活动由直觉设计阶段进入到经验设计阶段。 (3)半理论半经验设计阶段 20世纪以来,由于科学和技术的发展与进步,设计的基础理论研究和实验研究得到加强,随着理论研究的深入、实验数据及设计经验的积累,已形成了一套半经验半理论的设计方法。这种方法以理论计算和长期设计实践而形成的经验、公式、图表、设计手册等作为设计的依据,通过经验公式、近似系数或类比等方法进行设计。依据这套方法进行机电产品设计,称为传统设计。所谓“传统”是指这套设计方法已延用了很长时间,直到现在仍被广泛地采用着。传统设计又称常规设计。 (3)现代设计阶段近30年来,由于科学和技术迅速发展,对客观世界的认识不断深入,设计工作所需的理论基础和手段有了很大进步,特别是电子计算机技术的发展及应用,对设计工作产生了革命性的突变,为设计工作提供了实现设计自动或和精密计算的条件。例如CAD技术能得出所需要的设计计算结果资料、生产图纸和数字化模型,一体化的CAD/CAM 技术更可直接输出加工零件的数控代码程序,直接加工出所需要的零件,从而使人类设计工作步入现代设计阶段。此外,步入现代设计阶段的另一个特点就是,对产品的设计已不是仅考虑产品本身,并且还要考虑对系统和环境的影响;不仅要考虑技术领域,还要考虑经济、社会效益;不仅考虑当前,还需考虑长远发展。例如,汽车设计,不仅要考虑汽车本身的有关技术问题,还需考虑使用者的安全、舒适、操作方便等。此外,还需考虑汽车的燃料供应和污染、车辆存放、道路发展等问题。 传统设计是以经验总结为基础,运用长期设计实践和理论计算而形成的经验、公式、图表、设计手册等作为设计的依据,通过经验公式、近似系数或类比等方法进行设计。传

现代设计方法

考试科目:《现代设计方法》 (总分100分) 时间:90分钟 __________学习中心(教学点) 批次: 层次: 专业: 学号: 身份证号: 姓名: 得分: 一、单项选择题(每小题1.5分,共27分) 1.试判别矩阵1111???? ? ?,它是( ) A 、单位矩阵 B 、正定矩阵 C 、负定矩阵 D 、不定矩阵 2.约束极值点的库恩——塔克条件为:-?=?=∑F X g X i i q i ()()* * λ1 ,当约束函数是g i (X)≤0和 λi >0时,则q 应为( ) A 、等式约束数目 B 、不等式约束数目 C 、起作用的等式约束数目 D 、起作用的不等式约束数目 3.在图示极小化的约束优化问题中,最优点为( ) A 、A B 、B C 、C D 、D 4.下列优化方法中,不需计算迭代点一阶导数和二阶导数的是( ) A 、可行方向法 B 、复合形法 C 、DFP 法 D 、BFGS 法 5.内点罚函数Φ(X,r (k))=F(X)-r (k) 1 01g X g X u u u m () ,(())≤=∑,在其无约束极值点X ·(r (k))逼近原 目标函数的约束最优点时,惩罚项中( ) A 、r (k)趋向零, 11 g X u u m ()=∑ 不趋向零 B 、r (k) 趋向零,11g X u u m ()=∑ 趋向零 C 、r (k)不趋向零, 11 g X u u m ()=∑ 趋向零 D 、④r (k) 不趋向零,11g X u u m ()=∑ 不趋向零 6.0.618法在迭代运算的过程中,区间的缩短率是( )

A 、不变的 B 、任意变化的 C 、逐渐变大 D 、逐渐变小 7.对于目标函数F(X)受约束于g u (X)≥0(u=1,2,…,m)的最优化设计问题,外点法惩罚函数的表 达式是( ) A 、Φ(X,M (k) )=F(X)+M (k) {max[(),]},() g X M u u m k 01 2=∑为递增正数序列 B 、Φ(X,M (k))=F(X)+M (k){max[(),]},() g X M u u m k 01 2 =∑为递减正数序列 C 、Φ(X,M (k))=F(X)+M (k) {min[(),]},()g x M u u m k 01 2 =∑为递增正数序列 D 、Φ(X,M (k))=F(X)+M (k){min[(),]},() g x M u u m k 01 2 =∑为递减正数序列 8.标准正态分布的均值和标准离差为( ) A 、μ=1,σ=0 B 、μ=1,σ=1 C 、μ=0,σ=0 D 、μ=0,σ=1 9.在约束优化方法中,容易处理含等式约束条件的优化设计方法是( ) A 、可行方向法 B 、复合形法 C 、内点罚函数法 D 、外点罚函数法 10.若组成系统的诸零件的失效相互独立,但只有某一个零件处于工作状态,当它出现故障后, 其它处于待命状态的零件立即转入工作状态。这种系统称为( ) A 、串联系统 B 、工作冗余系统 C 、非工作冗余系统 D 、r/n 表决系统 11.对于二次函数F(X)=1 2 X T AX+b T X+c,若X *为其驻点,则▽F(X *)为( ) A 、零 B 、无穷大 C 、正值 D 、负值 12.平面应力问题中(Z 轴与该平面垂直),所有非零应力分量均位于( ) A 、XY 平面内 B 、XZ 平面内 C 、YZ 平面内 D 、XYZ 空间内 13当选线长度l ,弹性模量E 及密度ρ为三个基本量时,用量纲分析法求出包含振幅A 在内的 相似判据为(E 的量纲为( )[ML -1T -2] A 、A=l E 1 1212 -ρ B 、A=l E -- 1 1212 ρ C 、A=l E 100ρ D 、A l E =-11 12ρ 14.平面三角形单元内任意点的位移可表示为三个节点位移的( ) A 、算术平均值 B 、代数和车员 C 、矢量和 D 、线性组合 15.已知F(X)=(x 1-2)2+x 22,则在点X (0)=00???? ??处的梯度为( ) A 、?=?????? F X ()()000 B 、?=-?????? F X ()() 020

现代设计理论与方法

第一章 1现代设计理论与方法是一门基于思维科学、信息科学、系统工程、计算机技术等学科,研究产品设计规律、设计技术和工具、设计实施方法的工程技术科学。 2设计的概念,广义概念是指对发展过程的安排,包括发展的方向、程序、细节及达到的目标。狭义概念是指将客观需求转化为满足需求的技术系统(或技术过程)的活动。 3设计的含义:为了满足人类与社会的功能要求,将预定的目标通过人们创造性思维,经过一系列规划、分析和决策,产生载有相应的文字、数据、图形等信息的技术文件,以取得最满意的社会与经济效益,这就是设计。 4设计的特征:需求特征、创造性特征、程序特征、时代特征。 5设计的四个发展阶段:直觉设计阶段、经验设计阶段、半理论半经验设计阶、现代设计阶6现代设计与传统设计的区别: 传统设计:以经验总结为基础,运用力学和数学而形成的经验、公式、图表、设计手册等作为设计的依据,通过经验公式、近似系数或类比等方法进行设计。传统设计方法基本上是一种以静态分析、近似计算、经验设计、手工劳动为特征的设计方法。 现代设计:是一种基于知识的,以动态分析、精确计算、优化设计和CAD为特征的设计方法。 7现代设计方法与传统设计方法相比,主要完成了以下几方面的转变: 1)产品结构分析的定量化;2)产品工况分析的动态化;3)产品质量分析的可靠性化;4)产品设计结果的最优化;5)产品设计过程的高效化和自动化。 8现代产品设计按其创新程度可分为:开发性设计、适应性设计、变形设计三种类型。 第二章 1功能分析组合方法:求总功能(黑箱法)分功能求解方法(调查分析法、创造性方法、设计目录法)原理解组合(形态分析法) 第三章 1创造技法:(一)集体激智法:(专题会议法,德尔菲法,635法)通过多人的集体讨论和书面交流,互相启迪,并发灵感,进而引起创造性思维的连锁反应,形成综合创新思路的一种创新技法。(二)提问追溯法:(奥斯本提问法,阿诺尔特提问法,5W-1H提问法)是通过对问题进行分析和推理来扩展思路,或将复杂的问题加以分解,找到各种影响因素,从而扎到问题的解决方案的一种创造性技法。(三)联想类比法:(联想发明发,类比发明发,仿生法,综摄法)通过启发、联想、类比、综合等手段,创造出新的想法,这种创造技法就称联想类比法(四)组合创新法:(性能组合,原理组合,功能组合,结构组合)利用事物间的内在联系,用已有的知识和现有的成果进行新的组合。从而产生新的方案。

现代设计方法简答题汇总

现代设计方法简答题 1、与文件系统相比,数据库系 统的主要特征有哪些? 答:1)实现了数据共享,减少了数 据的冗余。2)数据存储的结构 化3)增强了数据的独立性。4) 加强了对数据的保护。 2,CAD技术在机械工业中的应用主要有哪几方面? 答:CAD技术在机械工业中的主 要应用有以下几方面: (1)二维绘图(2)图形及符号库 3)参数化设计(4)三维造型(5) 工程分析(6)设计文档和生产报 表,特征造型是如何定义的? 特征是指能反映零件特点的,可 按一定原则分类的、具有相对独 立意义的典型结构形状。基于特 征的造型称为特征造型。基于特 征的造型是把特征作为产品零 件定义的基本单元,将产品描述 为特征的集合,包括形状特征、 精度特征、材料特征和其他工艺 特征,从而为工艺设计和制造过 程的各个环节提供充分的信息。 3三维实体模型的实现方法中,体素构造法(CSG)的基本思想是什么?需要存储的几何模型信息有哪些? 答:(1)体素构造法(CSG)的基本 思想是:各种各样形状的几何形 体都可以由若干个基本单元形 体,经过有限次形状拼合运算构 建得到。2)需要存储的几何模 型信息是:所有的基本形体的类参数和所采用的拼合运算过程。 4简述三维实体模型的实现方法 中的CSG方法和B-rep方法 各自的基本思想。 答;CSG方法的基本思想是:各种 各样形状的几何形体都可以由 若干个基本形体,经过有限次形 状集合运算(又称拼合运算)构 建得到。需要存储的几何模型信 息是:所有的基本形体的类型、 参数和所采用的拼合运算过 程。B -rep方法的基本思 想:几何实体都是由若干边界外 表面包容的,可以通过定义和全 面存储这些边界外表面信息的 方法建立实体几何模型。 5. 消隐算法中的基本测试方法 有哪些?各适合哪些方面的测 试? 基本测试方法有:面的可见性测 试、最大最小测试、包含性测试 和深度测试。面的可见性测试适 合于单凸物体的自隐藏面和自 隐藏线的测试。 最大最小测试用来检查两个多 边形是否重叠。包含性测试用来 检查一个给定的点是否位于给 定的多边形内。深度测试是用来 测定一个物体遮挡其它物体的 基本方法。 6.在进行图形处理时,为什么要 引入规格化设备坐标系? 1)用于用户的图形是定义在世 界坐标系里,而图形的输出是定 义在设备坐标系里。不同的图形 设备具有不同的设备坐标系且 其工作范围也不相同。 (2)为了便于图形处理,有必要 定义一个标准设备,引入与设备 无关的规格化设备坐标系,采用 一种无量纲的单位代替设备坐 标,当输出图形时,再转化为具 体的设备坐标。 (3)规格化设备坐标系的取值范 围是左下角(0,0),右上角(1, 1),其工作范围为0~1。 7.简述参数化绘图方法中的几何 作图局部求解法的核心思想。 几何作图局部求解法的核心思 想是:在交互作图过程中随时标 注每个新增加几何元素的自由 度和所受的约束关系;判断几何 求解的局部条件是否充分,通过 遍历检测,依次解出条件成熟的 元素参数;当图形的尺寸标注完 整时,用批处理程序经过多遍扫 描,解出绘图需要的所有未知数。 8.说明直线段编码剪裁算法的 思想和该算法的两个主要步骤。 直线段编码剪裁算法的思想:每 一线段或者整个位于窗口内,或 者能够被窗口分割而使其中的 一部分能很快地被舍弃。两个主 要步骤:第一步先确定一条线段 是否整个位于窗口内,若不是,则 确定该线段是否整个位于窗口, 外,若是,则舍弃;第二步,若 第一步的判断都不成立,那么就

现代设计方法及理论

2009-2010学年第二学期研究生课程考核 (读书报告、研究报告) 考核科目:现代设计方法及理论 学生所在院(系):机电学院 学生所在学科:机械制造及其自动化 题目:机械产品方案的现代设计方法及发展趋势 第 1 页(共 6 页)机械产品方案的现代设计方法及发展趋势

科学技术的飞速发展,产品功能要求的日益增多,复杂性增加,寿命期缩短,更新换代速度加快。然而,产品的设计,尤其是机械产品方案的设计手段,则显得力不从心,跟不上时代发展的需要。目前,计算机辅助产品的设计绘图、设计计算、加工制造、生产规划已得到了比较广泛和深入的研究,并初见成效,而产品开发初期方案的计算机辅助设计却远远不能满足设计的需要。为此,作者在阅读了大量文献的基础上,概括总结了国内外设计学者进行方案设计时采用的方法,并讨论了各种方法之间的有机联系和机械产品方案设计计算机实现的发展趋势。 根据目前国内外设计学者进行机械产品方案设计所用方法的主要特征,可以将方案的现代设计方法概括为下述四大类型。 1、系统化设计方法 系统化设计方法的主要特点是:将设计看成由若干个设计要素组成的一个系统,每个设计要素具有独立性,各个要素间存在着有机的联系,并具有层次性,所有的设计要素结合后,即可实现设计系统所需完成的任务。 系统化设计思想于70年代由德国学者Pahl和Beitz教授提出,他们以系统理论为基础,制订了设计的一般模式,倡导设计工作应具备条理性。德国工程师协会在这一设计思想的基础上,制订出标准VDI2221“技术系统和产品的开发设计方法。 制定的机械产品方案设计进程模式,基本上沿用了德国标准VDI2221的设计方式。除此之外,我国许多设计学者在进行产品方案设计时还借鉴和引用了其他发达国家的系统化设计思想,其中具有代表性的是: (1)将用户需求作为产品功能特征构思、结构设计和零件设计、工艺规划、作业控制等的基础,从产品开发的宏观过程出发,利用质量功能布置方法,系统地将用户需求信息合理而有效地转换为产品开发各阶段的技术目标和作业控制规程的方法。 (2)将产品看作有机体层次上的生命系统,并借助于生命系统理论,把产品的设计过程划分成功能需求层次、实现功能要求的概念层次和产品的具体设计层次。同时采用了生命系统图符抽象地表达产品的功能要求,形成产品功能系统结构。 (3)将机械设计中系统科学的应用归纳为两个基本问题:一是把要设计的产品作为一个系统处理,最佳地确定其组成部分(单元)及其相互关系;二是将产品设计过程看成一个系统,根据设计目标,正确、合理地确定设计中各个方面的工作和各个不同的设计阶段。

现代设计理论与方法重点

绪论 1、设计的的本质是由功能到结构的映射过程,是技术人员根据需要进行构思、计划并把计划变为现实可行的机械系统的过程。 2、计划具有个性化、抽象化、多解性的基本特征。 3、现代设计方法: 计算机辅助设计概念:计算机辅助设计是利用计算机及其图形设备辅助人们进行设计。优化设计是从多种设计方案中选择最佳方案的方法,它以数学中的最优化理论为基础,以计算机为手段,根据设计所追求的性能目标,建立目标函数,在满足给定的各种约束条件下,寻求最优的设计方案。 有限元设计就是利用假想的线和面将连续的介质内部和边界分割成有限大小、有限数目、离散的单位来研究。 稳健设计通过质量工程方法在产品设计阶段就要求把产品设计完美、健全,不受或尽量减少生产线波动带来的影响,以保证产品达到预期的质量效果。 虚拟设计是一种新技术,它可以在虚拟环境中用交互手段对在计算机内建立的模型进行修改,缩短了产品开发周期,提高了产品设计质量和一次设计成功率。 创新设计、智能设计、表面设计、绿色设计、动态设计、摩擦设计、协同设计、工业设计等。一 1、计算机辅助设计(简称CAD):是计算机科学领域的一门重要技术,是集计算、设计绘图、工程信息管理、网络通信等领域知识于一体的高新技术,是先进制造技术的重要组成部分。 2、CAD:(computer aided design):即计算机辅助设计CAE(computer aided engineering):即计算机辅助分析,CAM(computer aided manufacture):即计算机辅助制造,CAPP(computer aided process planning):即计算机辅助工艺设计,CIMS(computer integrated manufacturing system):即计算机集成制造系统, 8、CAD的特点:1)规范化、高质量规范设计流程,统一文档格式,提高设计质量。9、CAD发展方向:脱离图版,实现全自动无纸化设计、生产和制造,是CAD发展的最终目标。 10.CAD的基本功能及优点:1)人机交互 2)几何造型 3)计算分析 4)系统仿真 5)工程绘图 6)数据管理 11、CAD系统组成:CAD系统的硬件结构:计算机、图形输入设备、输出设备 CAD系统的软件:软件系统、支撑软件、应用软件。 二 1、优化设计:是从多种方案中选择最佳方案的设计方法。它以数学中最优化理论为基础,以计算机为手段,根据设计所追求的性能目标,建立目标函数,在满足给定的各种约束条件下,寻求最优的设计方案。 2、P49页:例2-1 黄金分割法求函数,3无约束优化方法:坐标轮换法、牛顿法、 约束优化方法:遗传算法、惩罚函数法、复合形法多目标优化方法:多目标优化问题、主要目标法、统一目标法 三 1、有限元法的概念:把复杂的结构看成由有限个单元组成的整体的一种设计方法 2、有限元法的基本思想:化整为零,积零其整,把复杂的结构看成由有限个单元组成的整体 3、弹性力学中的基本假设:连续性假设,完全弹性假设,各向同性假设,均匀性假设,微小性假设,无初应力假设 2、弹性力学的基本方程:平衡方程、几何方程、物理方程、边界条件

现代设计方法

机械设计方法实验报告 姓名: 学号: 成绩: 指导教师:

进退试算法实验报告 一、实验目的 1.加深对进退试算法的基本理论和算法步骤的理解。 2.培养独立编制、调试计算机程序的能力。 3.掌握常用优化程序的使用方法。 4.培养灵活运用优化设计方法解决工程实际问题的能力。 二、实验要求 1.明确进退试算法基本原理及程序框图。 2.编制进退试算法程序。 三.实验内容 计算实例:用进退试算法求函数())2 t f的搜索区间。 (+ =t t ①.进退试算法基本原理简述 进退试算法的基本思想是:按照一定的规律给出若干试算点,一次比较各试算点的函数值的大小,直到找出相邻的三点的函数值按“高——低——高”变化的单峰区间为止。

②、程序的流程图 ③.编制进退试算法程序 #include #include #define f(t) (t*(t+2)) void sb(double *a,double *b) { double t0,t1,t,h,alpha,f0,f1; int k=0; printf("请输入初始点t0="); scanf("%lf",&t0); printf("\n请输入初始步长h="); scanf("%lf",&h); printf("\n请输入加步系数alpha(需大于1)="); scanf("%lf",&alpha); f0=f(t0); t1=t0+h; f1=f(t1); while(1) { printf("\nf1=%lf,f2=%lf,t0=%lf,t=%lf,h=%lf,k=%d",f0,f1,t0,t1,h,k);

(完整版)《现代设计方法》2014考题及答案

贵州大学机械与自动化学院普通硕士研究生 《现代设计方法》考试试题 姓名:专业:研究方向:成绩: 一、填空题(每题1分,共15分) 1、现代设计所指的新兴理论与方法包括(现代设计方法学、计算机辅助设计技术、可信性设计技术)等等。 2、优化设计是(以数学规划理论为基础,以计算机为工具,优化设计参数)的一种现代设计方法。 3、功能设计法的基本过程包括(任务抽象、功能分解、功能载体、载体组合、方案评价)。 4、功能分解的常用方法有(按解决问题的因—果关系,或手段—目的关系分解;、按产品工艺过程的空间顺序或时间顺序分解;)。 5、解决供求矛盾的措施有(互换性原理、组合机床、系列化、通用化、标准化)。 6、模块化设计可分类成(横系列模块化、纵系列模块化、跨系列、全系列模块化、跨类模块化)。 7、模块的划分将影响(模块通用性、产品性能、产品外观、产品成本)。 8、遗传算法是一种(模拟生物进化过程)的搜索算法。 9、遗传算法最常用和基本的选择方法(选择算子)是(适应度比例选择)。 10、遗传算法中采用罚函数法的目的是(对违背约束条件的情况给予惩罚,并将此惩罚体现在目标函数设计中。2.2)。 11、遗传算法常用的编码方法有(二进制编码二进制编码方法、格雷码编码方法、实数编码、多参数级联编码)等等。 12、神经网络的样本数据应包括(训练样本数据和检验样本数据)。 13、当神经网络的样本数据不在[0~1]范围内时,应对数据进行(归一化)处理。 14、前馈型人工神经网络包括(1、线性阈值单元组成的前馈网络2、非线性单元组成的前馈网络输入层、隐层和输出层)3章。 15、神经网络的学习规则有(Hebb学习规则、感知器(perceptron)学习规则、Delta学习规则、

13春学期《现代设计方法》期末考核作业

东北大学继续教育学院 现代设计方法试卷(作业考核线上) A 卷 学习中心:山西潞安职业技术培训学校奥鹏学习中心 院校学号:C93550111090079 姓名王勇 (共页) 一.选择题(可多选,各2分,共20分) 1. 机械设计主要应体现哪些特点(BDE )。 A) 整体性B) 系统性C) 相关性 D) 多解性E)创新性 2. 机械系统的总体设计中不包括以下哪些内容(BE )。 A) 功能原理方案设计B) 技术可行性报告 C) 总体布局设计D) 系统主要参数计算 E)结构草图设计 3. 室内工作的机械选择(B )作为动力机不太合适。 A)电动机B)内燃机C)液压马达D)气动马达 4. 利用对未知系统的外部观测,分析该系统与环境之间的输入和输出,通过输入和输出的转换关系确定系统的功能、特性所需具备的工作原理与内部结构,这种方法称为(A )。 A) 黑箱法B) 列举法C) 移植法D) 筛选法 5. (A )执行系统,要求执行系统实现预期精度的动作(位移、速度、加速度等),而对执行系统中各构件的强度、刚度无特殊要求。 A. 动作型 B. 动力型 C. 动作——动力型 6. 考虑到强度问题时,(C )图的设计比较合理。

A) (a) B) (b) C) (c) 7. 对(a)图所示的轴对称模型进行有限元分析时,必须施加约束支座以消除刚体位移。下面的(b)图和(c A) (b)图 8. A) 设计空间B) 设计维数C) 设计可行域 9. 已知某零件的失效时间随机变量服从指数分布,其故障率是5×10-4/小时,那么在工作时间100小时的可靠度水平是:(C ) A) 0.05 B) 0.85 C) 0.95 10. 对野外工作的机械及移动式机械,其动力机一般不选择(A )。 A)电动机B)内燃机C)液压马达D)气动马达 二.判断题:(正确:T;错误:F,各2分,共20分) 1. 一个机械系统必须由动力系统、执行系统、传动系统、操纵控制系统、架体支撑系统几部分组成。( F ) 2. 机械产品的施工设计阶段要完成全部图纸资料和相关的技术文件。(T ) 3. 利用对未知系统的外部观测,分析该系统与环境之间的输入和输出,通过输入和输出的转换关系确定系统的功能、特性所需具备的工作原理与内部结构,这种方法称为黑箱法。

现代设计方法综述

现代设计方法学综述摘要 现代设计方法已经成为一个新的技术领域。经阅读文献 本文从现代设计方法的基本定义出发 通过与传统机械设计方法的对比 阐述现代设计方法的 特点及主要内容 特别是该方法体现的先进性,接着立足于其现状 展望其发展趋势。关键字 现代设计方法 设计思想 传统机械设计方法 主要内容 趋势0 引言目前 随着 科学技术的迅猛发展和计算机技术的广泛应用 市场竞争愈演愈烈 而且市场竞争已是国 际化的、动态化的和多元化的。当前, 我国国民经济各部门也迫切需要质量好、效率高、消耗低、价格便宜的先进的机电产品,而产品设计是决定产品性能、质量、水平和经济效益的重要环节。传统的机电产品设计是一种以强度和低压控制为中心的安全系数设计、经验设计、类比设计和机电分离设计,也称常规设计。而现代机电产品设计方法则是强调创造性 以电子计算机为手段, 运用工程设计的新理论和新方法, 使计算结果达到最优化, 使设计过程实现高效化和自动化。因此, 运用现代设计方法可以适应市场剧烈竞争的需要, 提高设计质量和缩短设计周期。1 现代设计方法的定义及设计思想1. 1 现代设计方法的涵义现代设计方法 Modern Design Technigue 是新理论与计算机应用相结合的产物。它是以思维科学、设计理论系统工程为基础,以方法论为手段,以计算机为工具的各种方案、图样和程序的总和。对此定义作出以下解释: 1 迄今为止, 尚未阅读或检索到有明确给出过现代设计方法的定义, 尽管这种叫法、书名有很多, 或偶尔见到有对现代设计方法(技术)作过某种解释, 但很难视之为对这一概念的定义。 2 虽有文献报道, 在机械设计理论、设计技术等方面出现的新领域中, 已有设计方法学---- 是研究科学的设计思想、设计步骤和设计组织等的方法 及设计系统学---- 是研究对于同一问题所能取得几种设计方案的科学方法, 可也未提到现代设计方法。 3 于是, 借助于各种字词典, 对现代设计方法做出上述定义寻找依据: 现代是个泊来词 是指现在这个时代(中国多指1919 年至现在)。设计为了满足人类和社会的功能需求 将预定的目标通过人们创造型思维 经过一系列规划、分析和决策 产生载有相应的文字、数据、图形等信息的技术文件 以取得最满意的社会与经济效益。方法多指解决问题的门路、程序等。如工作方法、思想方法。综合以上解释, 加之考量现代设计方法领域的实际, 成为定义现代设计方法依据。基于以上依据而给出上述现代设计方法的这个定义, 只是个人认识, 不一定完全正确, 也不一定十分科学, 仅供参考, 并请大家 讨论。1.2 现代设计方法的设计思想科学技术发展的历史和实际表明, 机械工业是科学技术物化为生产力的重要载体。在以前的工业革命尤其是现在的工业化过程中, 机械与电子、信息、冶金、电力、化工、轻工、建筑等诸多领域科技成果的有机结合, 为国民经济的发展和人们生活质量的提高不断地提供了先进设备、器械和用品。科学技术成果要转变为有竞争力的新产品, 设计起着关键性的作用。现代机械设计以理论计算为设计主题 最本质的工作是从无到有创造出一部机器以满足我们的要求 由设计分析和设计综合共同构成贯穿 整个设计过程的始终。也就是说, 机械设计问题是一个决定机械产品一序列的技术、经济及社会环境效果的问题。2 现代设计方法与传统设计方法的比较2.1 传统机械设计方法在传统设计理论发展时期 由于受机械生产水平的制约、客观条件的限制以及当时计算手段的局限等一系列原因, 人们的思维还未被充分开发。同时 社会对机械生产的要求不象今天这样向高速、高效、精密、轻量化、自动化方向发展, 机械系统和产品结构也不象今天这样日趋复杂。传统设计在进行理论分析时, 基于其观念的制约和所确定的力学—数学模型的需要, 常将复杂的具体问题作了一些等效处理,使理论分析的目的性和问题的本质更加明确, 也使分析的过程得到简化。2.1.1 传统设计方式方法分类 1 理论设计根据长期总结出来的设计理论和实验数据所进行的设计称为理论设计。如对简单受拉杆的强度设计设计强度计算式σ≤σlim / s 或F/ A ≤σlim / s 式中 F :作用在杆上的外载荷A :拉杆的横

现代设计理论与方法论文

现代设计理论与方法 班级:材控1031 姓名:黄加全 学号:201020607157

反求工程技术 20世纪以来,由于科学和技术的发展与进步,对设计的基础理论研究得到加强,对着设计经验的积累,以及设计和工艺的结合,已经形成了一套半经验半理论的设计方法。依据这套设计方法进行机电产品设计,称为传统设计。 限于历史和科学发展的原因,传统设计方法基本上是一种以静态分析、近似计算、经验设计、手工劳动为特征的设计方法。显然,随着现代科学技术的飞速发展,生产技术的需要和市场的激烈竞争,以及先进设计科学技术的手段的出现,这种传统设计方法已经很难满足当今时代的需要,从而迫使设计领域不断研究和发展新的设计方法和技术。 现代设计是过去长期的传统设计活动的延伸和发展,它继承了传统设计的精华,吸收了当代科技成果和计算机技术。与传统设计相比,它则是一种以动态分析、精确计算、优化设计和CAD为特征的设计方法。 从20世纪60年代末开始,设计领域中就开始相继出现一系列新兴理论与方法。为了区别过去常用的传统设计理论与方法,把这些新兴的理论与方法称之为现代设计。现代设计理论与方法的内容众多而丰富,它们是功能论、优化论、离散论、对应论、艺术论、系统论、信息论控制论、突变论、智能论和模糊论等方法学构成。 现代设计方法包括可靠性设计方法、化设计方法、并行设计、虚拟设计、绿色设计、动态设计等,这里重点介绍反求工程设计。 1.反求工程技术的基本概述 反求工程(Reverse Engineering,简称:ER) 也称逆向工程,就是针对消化吸收先进技术的系列分析方法和应用技术的综合的一项新技术。反求工程类似

现代设计方法课程教学大纲

现代设计方法 总学分:2 总学时:30 课程英文名称:Modern Design Methods 先修课程: 机械设计基础、机械原理、高等数学、计算机基础、运筹学 适用专业: 机械设计制造及其自动化、机械电子工程 一、课程性质、地位和任务 现代设计方法是机械设计制造及其自动化、农业机械化及其自动化、机械电子工程专业的专业选修课。现代设计方法是随着当代科学技术的飞速发展和计算机技术的广泛应用而在设计领域发展起来的一门多元交叉学科,是以设计产品为目标,以提高设计质量和缩短设计周期为目的而发展起来的一系列新兴学科的集成。主要任务是系统学习现代设计方法的特点、技术体系、现代设计的基本理念和思路,以及一些应用广泛、实用性强的设计方法的理论及其应用。 二、教学目标要求 1.理解现代设计方法的基本概念及其特点,能以计算机为手段应用几种典型的现代设计方法解决产品设计中的主要问题; 2.掌握优化设计、可靠性设计和有限元法的基本理论和方法,建立产品设计的理念,并能正确地运用于机电产品设计。 三、理论教学内容及安排 第1章绪论(2学时) 教学目标:理解设计及设计系统的基本概念及内涵,部分现代设计方法的基本概念及内容;掌握现代设计方法的概念及主要内容,以及传统设计方法与现代设计的方法的区别及其特点。 重点、难点:重点是现代设计方法的基本概念及内容;难点是传统设计方法

与现代设计的方法的区别及其特点。 1.1 设计的概念 1.2 设计系统 1.3 传统设计与现代设计 1.4 部分现代设计方法简介 1.5 学习现代设计方法的意义 第2章优化设计(16学时) 教学目标:理解优化设计的基本概念及其分类,以及多目标和离散变量的优化方法;掌握优化设计的几何意义和终止准则、一维搜索方法、无约束优化方法和约束优化方法。 重点、难点:重点是优化设计的几何意义和终止准则、一维搜索方法、无约束优化方法和约束优化方法。难点是可行方向法和变尺度法。 2.1 优化设计的基本概念与数学模型(1学时) 2.1.1 优化设计的概念 2.1.2 优化设计的数学模型 2.1.3 优化设计的分类 2.2 优化设计的几何意义与终止准则(1学时) 2.2.1 优化设计的几何意义 2.2.2 数值迭代法及准直准则 2.3 一维搜索法(4学时) 2.3.1 概述 2.3.2 常用的一维搜索法 2.3.3 黄金分割法 2.3.4 二次插值法 2.4 无约束优化问题(4学时) 2.4.1 梯度法 2.4.2 牛顿法 2.4.3 共轭方向法 2.4.4 变尺度法

现代设计理论与方法作业 (大作业)

现代机械设计理论与方法 (大作业)

1、采用系统化设计流程及所学现代设计方法详细阐述某公司需要投资研发一款新型产品的整个设计流程和采用方法。 (1)请具体阐述采用哪些设计方法,如何去完成新产品的规划设计过程?(2)请具体阐述采用哪些设计方法,如何去完成新产品的方案设计过程?(3)请具体阐述采用哪些设计方法,如何去完成新产品的技术设计过程?(4)请具体阐述采用哪些设计方法,如何去完成新产品的施工设计过程? 答: (1)产品规划设计包括三个主要阶段:第一个阶段是市场细分及选择阶段。在这个阶段,主要通过市场调研与分析,研究如何细分市场,以及企业如何选择细分市场,最后确定企业对细分市场的战略选择。第二个阶段是定义新产品概念。在这个阶段中要对某个细分市场,收集其需求的主要内容,包括客户需求、竞争需求及企业内部需求,并确定企业在该细分市场的产品定位,然后寻找和定义新产品概念。第三个阶段是确定产品规划阶段。在这一阶段中需要从技术层面分析新产品属于哪个产品族及其开发路径,并根据公司的战略确定新产品开发的优先顺序和组合策略,然后依据企业资源状况,制定新产品开发的时间计划。 产品规划设计的步骤为:信息集约→产品设计任务→预测调研→可行性分析→明确任务要求→可行性报告、设计要求项目表。 进行产品规划设计的主要方法有:设计方法和预测技术。支持产品规划设计的主要理论有:设计方法学、技术预测理论、市场学、信息学等。 (2)新产品的方案设计过程大致可以分为方案设计和方案评审两个阶段。方案设计阶段的步骤为:总共能分析→功能分解→功能元求解→功能载体组合→获得功能原理方案(多个原理方案)→原理试验→评价决策→最优原理方案→原理参数表、方案原理图。 进行产品的方案设计的方法主要有:系统化设计方法、创造技法、评价决策法、形态学矩阵法。 主要的理论指导包括:系统工程学、形态学、创造学、思维心理学、决策论、模糊数学等。 (3)对产品进行技术设计时,首先要对结构进行总体设计,包括了对产品的结构设计和造型设计。进行新产品的技术设计的主要步骤为:

现代设计理论与方法(最终版)

第一章设计方法学 1. 现代设计目标:缩短产品设计周期;提高产品质量;降低生产成本。 T--缩短产品设计周期 Q--提高产品质量 C--降低其成本 2. 传统设计法特点:静态的、经验的、手工式的、(近似计算) 现代设计法特点:动态的、科学的、计算机化的、(精确计算) 3.现代设计理论与方法的发展分为:(1)直觉设计阶段(2)经验设计阶段 (3)半理论半经验设计阶段(4)现代设计阶段 4.系统-执行特定功能而达到特定目的,相互联系,相互作用的元素。 具有特定功能的、相互间具有一定联系的许多要素构成的一个整体,即由两个或两个以上的要素组成的具有一定结构和特定功能的整体都是系统。 5.系统化设计的特征:由上而下、由总到细。 基本方法:系统的分析和综合。 6.黑箱法定义:把系统看成是一个不透明的,不知其内部结构的“黑箱”,在不打开黑箱的前提下,利用外部观测,通过分析黑箱与周围环境的信息联系,了解其功能的一种方法。 根据系统的某种输入及要求获得某种输出的功能要求,从中寻找出某种物理效应或原理来实现输入-输出之间的转换,得到相应的解决方法,从而推求出“黑箱”的功能结构,使“黑箱”逐渐变成“灰箱”、“白箱”的一种方法。 7.系统化设计的步骤: 8、评价的目标内容: (1) 技术评价目标——可行性,创造性,可靠性 (2) 经济评价目标——成本,利润,市场潜力 (3)社会评价目标——社会效益和影响 9.技术-经济评价法 (a)技术价Wt : Wt=(Piqi)/Pmax (Pi-各技术评分值;qi-加权系数;Pmax-最高分值5分或10分)

(b)经济价Ww:Ww=Hi/H=0.7Hz/H (Hi-理想成本;H-实际成本)(c)技术-经济综合评价:均值法:W=(Wt+Ww)/2 双曲线法:W= (Wt.Ww ) 10.产品价值V=F/C ( F-功能C-成本) 11.寿命周期成本(要会画出它的曲线图,并做分析) C=C1+C2 C1-生产成本C2-使用成本 12、提高V途径(分5种情况讨论) F ↑/C →=V ↑功能 F →/C ↓=V ↑成本 F ↑/C ↓=V ↑功能、成本 F ↑↑/C ↑=V ↑功能 F ↓/C ↓↓=V ↑成本 第二章机械优化设计 1.优化设计的数学模型 统一形式描述: min f(x) x=[x1,x2,………xn]T s.t. gi(x)<=0 i=1,2,3…m hj(x)=o j=1,2,……n(p

现代设计方法学

现代设计方法法学—绿色设计 一.绿色设计及其特点 1.1传统产品设计 传统产品设计时,通常主要考虑的是产品的基本属性。其设计过程如图: 传统产品设计是从“摇篮到坟墓”的过程。一旦设计及制造活动完成,产品设计人员和工艺人员就不在关心产品生命周期结束后所出现的问题。传统设计过程的不足主要表现在一下几个方面: 1)产品开发的各个环节顺序进行,反复次数多,开发周期长,开发费用高。2)产品开发过程很少考虑产品的环境属性,结构复杂,拆卸回收难度大,造成大量资源的浪费、能源浪费,并且污染环境。 3)产品设计人员的环境意识不强,对绿色产品和绿色设计认识不很明确。4)传统设计的产品难于适应市场竞争和持续发展的需要 1.2绿色设计 绿色设计是20世纪末期所出现的一种设计潮流。由于社会工业化和现代化以来对人类生存环境造成了巨大的破坏,绿色设计这一概念的提出主要反映了人们对于现代科技文化所引起的环境及生态破坏的反思,同时也体现了设计师道德和社会责任心的回归。绿色设计指的是在产品整个生命周期内,着重考虑产品对自然资源、环境影响,将可拆除性、可回收性、可重复利用性等要素融入到产品设计的各个环节中去。在满足环境要求的同时,兼顾产品应有的基本功能、使用寿命、经济性和质量等。绿色设计并以此为基点,更新人类的生产消费理念,从而不断促进社会经济结构的转变,推动绿色经济的发展。

绿色设计(Green Design——GD),也称为生态设计(Ecological Design——ED)、环境设计(Design for Environment——DFE)、生命周期设计(Life Cycle Design ——LCD)或环境意识设计(Environment Conscious Design——ECD)等,虽然叫法不同但其内涵大体一致,其基本思想是在设计阶段九江环境因素和预防污染的措施纳入产品设计之中,将环境性能作为产品的设计目标和出发点,力求对环境的影响为最小。 绿色设计不同于传统设计,绿色设计即在产品整个生命周期内,着重考虑产品环境属性(自然资源的利用、环境影响及可拆卸性、可回收性、可重复利用性等),并将其作为设计目标,在满足环境目标的同时,并行地考虑并保证产品应有的基本功能、使用寿命、经济性和质量等。绿色设计和传统设计在设计依据、设计人员、设计工艺和技术、设计目的等方面都存在很大的不同。绿色设计核心—3R Reduce——减少:即在产品设计中尽量减少体积、重量,简化结构,去掉一切不必要的用材;在制造中减少能源消耗,降低成本;减少消费的污染。Recycle——循环:它包含了立法、建立回收运行机制、课回收的结构设计、利用回收资源再设计生产的一整套工程。 Reuse——重新利用:首先是产品部件结构自身的完整性;其次是产品主体的可替换性结构的完整性;再则是产品功能的系统性 从绿色设计与传统设计的比较可以看出,绿色设计要求在设计产品时必须按

现代设计方法答案

河北文理专修学院/高等教育自学考试学习服务中心 现代设计方法作业二 课程代码:02200 三、简答题 1.简述软件工程的概念及采用软件工程的方法进行软件开发的基本步骤。 答:软件工程是一门研究用工程化方法构建和维护有效的、实用的和高质量的软件的学科。它涉及到程序设计语言,数据库,软件开发工具,系统平台,标准,设计模式等方面。 软件的开发步骤分为4个部分,首需求分析和可行性研究阶段,系统功能和系统结构设计阶段,程序设计和编写阶段,软件测试阶段,使用和维护阶段。 2.简述窗口与视区的定义及窗口与视区变换的作用。 答:窗口是用户坐标系中定义的确定显示内容的一个矩形区域,只有在这个区域内的图形才能在设备坐标系中输出,而窗口外的部分则被裁掉。 视区是在设备坐标系中定义的一个矩形区域,用于输出窗口中的图形,视区决定了窗口中图形要显示与屏幕上的位置和大小。 作用:固定视区参数,改变窗口参数可以改变视区中图形现实的比例和部位,如果同时增大的高度和宽度,则视区显示内宽范围增大,图形比例缩小。如果只改变窗口左下角坐标,则显示的比例不变,但是显示的范围产生左右、上下移动。 3.选择优化方法一般需要考虑哪些因素? 答:软件的优化不光是缩减软件不必要的三维和使软件运行速度。考虑完这些问题的话想在同类软件中更为突出的话就尽量做到人性化、简单化和智能化,在接受程度上会远远大于同类软件。 4.试说明常规安全系数设计法与可靠性设计的关系。 答:常规安全系数设计法也叫传统性设计,与可靠性的关系是:二者都是以零件的安全或失效做为研究内容,因此,二者有密切的联系。可靠性设计是传统设计的延伸和发展,在某种意义上,也可以认为可靠性设计只是传统设计方法上设计变量视为随机变量,并通过随机变量法则进行运算。 二、图解题 1.已知函数F(X)=2x 2x 2x x 212221+--+,试绘出在点X (1)=??????12;X (2)= ??????33;X (3)=? ?????-33的梯度方向.(若梯度为零,请在试卷上相应位置说明该点梯度为零)。 答案交卷时找王老师要,然后抄在试卷上。 选择题答案:AAAA BAAB CBCD AD

现代设计方法_习题集(含答案)

《现代设计方法》课程习题集 西南科技大学成人、网络教育学院 版权所有 习题 【说明】:本课程《现代设计方法》(编号为09021)共有单选题,计算题,简答题, 填空题等多种试题类型,其中,本习题集中有[ 填空题,单选题]等试题类型未进入。 一、计算题 1. 用黄金分割法求解以下问题(缩小区间三次)。 342)(min 2+-=x x x f ,给定初始区间[][]3,0,=b a ,取1.0=ε。 2. 用黄金分割法求解以下问题(缩小区间三次) 32)(min 2+=x x f ,给定[][],1,2a b =-,取1.0=ε 3. 用黄金分割法求解以下问题(缩小区间三次) 432+=x )x (f min ,给定[][]40,b ,a =,取10.=ε。 4. 用黄金分割法求解以下问题(缩小区间三次)。 12)(min 3+-=x x x f ,给定初始区间[][]3,0,=b a ,取5.0=ε 5. 用黄金分割法求解以下问题(缩小区间三次)。 107)(min 2+-=x x x f ,给定初始区间[][]3,0,=b a ,取1.0=ε 6. 用梯度法求解无约束优化问题: 168)(min 22221+-+=x x x X f ,取初始点[]T X 1,1)0(= ,计算精度1.0=ε。 7. 用梯度法求解96)(min 12221+-+=x x x X f ,[]T X 1,1)0(= ,1.0=ε。 8. 用梯度法求解44)(min 22221+-+=x x x X f ,[]T X 1,1)0(=,1.0=ε 。 9. 用梯度法求解无约束优化问题:1364)(min 222121+-+-=x x x x X f ,取初始点

相关文档
最新文档