气液分离器

气液分离器
气液分离器

气液分离器俗称油水分离器,用来分离气体中大于5微米的液体和固体颗粒。是在气体中除油水的最

简单实用的设备。

PX QF气液分离器可应用于对压缩空气、合成气、煤气、氢气、氮气、氧气、天然气、瓦斯气、沼气、

氨气、硫化氢、尾气等各种气体的气液分离。

PX QF气液分离器设计制造符合国内或国外的各种标准和规范,如GB150《钢制压力容器》或ASME标

准,并刻有CS及ASME钢印。

PX QF气液分离器工作原理

通过五级分离—降速、离心、碰撞、变向、凝聚等原理,除去压缩空气(气体)中的液态水份和固体颗粒,达到净化的作用。湿气在冷却过程中冷凝后,在分离器中的挡板廹使气体改变方向二次,并以设计好的速度旋转,产生离心力高效地分离出液体和颗粒,排水器应及时排放出冷凝液。常安置在后冷却器的后面,因为要求进气温度越低越好,一般不超过60℃。

PXQF气液分离器产品特点

1.除水效率高:可除去99%的液态水份,油份。

2.体积小、重量轻。

3.安装方便,管道式连接、可悬挂安装。

4.免维护、可靠性好。

5.寿命长:可使用20年。

6.按GB150压力容器标准制造,安全可靠。

PXQF气液分离器应用范围

1.压缩空气冷凝水分离回收

2.蒸汽管线冷凝水分离

3.气液混合部位的进/出口分离

4.真空系统中冷凝水分离排放

5.水冷却塔后的冷凝水分离

6.地热蒸汽分离器

7.其他多种气液分离应用

PXQF气液分离器

PXQF气液分离器规格与选型

气液分离器

液气分离器设备技术要求

第四章货物需求一览表及商务技术要求 一、货物需求一览表 标包1: 注:1. 本次招标为定商定价,采购数量以实际需求为准。 2. 技术要求详见技术规格书。 3. 整机产品质量保证期为安装验收合格后使用12个月或出厂18个月。质保期内, 因供方原因造成的质量问题,由供方负责“三包”。 二、商务要求 (一)质量保证措施和履约保证措施条款: (1)中标厂商的供货物资必须满足产品质量标准(标书中明确的标准要求),组织单位对中标物资进行不定期抽检,由有资质第三方检测单位进行检测,如发现一次不合格或质量管理部门抽检出现不合格产品的,取消该中标厂商在渤钻中标的同类产品的中标资格,启动排名第二为中标单位,执行自身投标价格。 (2)中标通知书下发以后,在中标有效期内,如供应商违反供货承诺,无故延期供货、拖延供货或无正当理由不供货,同一项目在收到渤海钻探工程公司各分公司投诉共计2次及以上,取消该供应商在公司范围内的交易资格,启动排名第二为中标单位,执行自身投标价格。 (3)供应商放弃中标或未能完全履行合同等相关违约事项,按照CT.7.1《物资供应商管理办法》中4.11.3、4.11.4、4.11.5、4.11.6、4.11.7和4.11.8中条例进行处罚,具体

内容如下: 4.11.3供应商出现下列情形之一的,临时暂停供应商交易资格,供应商管理部门进一步核实情况,确定处罚和恢复条件: a)公司及所属单位提出重大问题或质疑,需进一步调查核实; b)在质量、验收、事故处理方面存在问题有待核实; c)生产经营资质或体系保证文件逾期; d)在石油石化行业出现影响商业信誉的严重事故、法律纠纷等。 4.11.4供应商出现下列情形之一的,视情节严重程度中止其相应准入产品的交易资格3至12个月,并限期整改: a)某项产品质量经检验,不符合合同规定的质量要求; b)某项产品生产经营资质逾期超过规定时间更新; c)现场考察中发现产品生产存在某些质量隐患,需进行整改。 4.11.5供应商出现下列情形之一的,视情节严重程度中止供应商交易资格3至12个月,并限期整改: a)中标后无正当理由不与采购单位签订合同或延迟交货影响生产; b)非不可抗力原因,擅自变更、解除或终止合同或拒绝供货; c)供应商现场考察发现可能影响生产的问题; d)售后服务环节出现问题,影响企业运营。 e)在办理准入、年审工作中不按期履行相应义务,或信息变更不及时登记。 f)不符合公司QHSE管理体系要求,存在安全隐患的。 4.11.6供应商出现下列情形之一的,视情节严重程度中止供应商交易资格一至三年,并限期整改: a)恶意串通,影响采购,使采购部门提出有利于特定供应商中标的要求; b)供应商与采购部门、招标机构或其他供应商串通陪标的,或以不正当的手段排挤其

气液分离器选型

7.8气液分离器 7.8.1概述 气液分离器的作用是将气液两相通过重力的作用进行气液的分离。 7.8.2设计步骤 (1) 立式丝网分离器的尺寸设计 1) 气体流速(G u )的确定 气体流速对分离效率是一个重要因素。如果流速太大,气体在丝网的上部将把液滴破碎,并带出丝网,形成“液泛”状态,如果气速太低,由于达不到湍流状态,使许多液滴穿过丝网而没有与网接触,降低了丝网的效率。气速对分离效率的影响见下图: 图7-69 分离效率与气速的关系图 2) 计算方法 G u 5 .0)( G G L G K ρρρ-= 式中G u 为与丝网自由横截面积相关的气体流速,s m / L ρ、G ρ为分别为液体和气体的密度,3/m kg

G K 为常数,通常107.0=G K 3) 尺寸设计 丝网的直径为5 .0)( 0188.0G G G u V D = 式中 G u 为丝网自由截面积上的气体流速,s m / G D 为丝网直径,m 其余符号意义同前。 由于安装的原因(如支承环约为mm 1070/50?),容器直径须比丝网直径至少大l00mm,由图2.5.1-2可以快速求出丝网直径)(G D 4) 高度 容器高度分为气体空间高度和液体高度(指设备的圆柱体部分)。低液位(LL )和高液位(HL )之间的距离由下式计算: 2 1.47D t V H L L = 式中 D —容器直径,m ; L V —液体流量,h m /3; t —停留时间,min ; L H —低液位和高液位之间的距离,m ; 液体的停留时间(以分计)是用邻近控制点之间的停留时间来表示的,停留时间应根据工艺操作要求确定。 气体空间高度的尺寸见下图所示。丝网直径与容器直径有很大差别时,尺寸数据要从分离的角度来确定。

气液分离器

气液分离器 气液分离器在热泵或制冷系统中的基本作用是分离出并保存回气管里的液体以防止压缩机液击。因此,它可以暂时储存多余的制冷剂液体,并且也防止了多余制冷剂流到压缩机曲轴箱造成油的稀释。因为在分离过程中,冷冻油也会被分离出来并积存在底部,所以在气液分离器出口管和底部会有一个油孔,保证冷冻油可以回到压缩,从而避免压缩机缺油。气液分离器的基本结构见图F.1,主要分为立式,卧式和带回热装置,在一些小系统如冰箱,会用一些铜管做一个简单的气液分离器,如图F.1右下角。气液分离器的工作原理是带液制冷剂进入到气液分器时由于膨胀速度下降使液体分离或打在一块挡板上,从而分离出液体。 F.1 气液分离器的设计和使用必须遵循以下原则: 1.气液分离器必须有足够的容量来储存多余的液态制冷剂。 特别是热泵系统,最好不要少于充注量的50%,如果有条件最好做试验验证一下,因为用节流孔板或毛细管在制热时节流,可能会有70%的液态制冷剂回到气液分离器。还有高排气压力,低吸气压力也会让更多的液态制冷剂进入气液分离器。用热力膨胀阀会少一些,但也可能会有50%流到气液分离器,主要是在除霜开始后,外平衡感温包还是热的,所以制冷剂会大量流过蒸发器而不蒸发从而进入气液分离器。在停机时,气液分离器是系统中最冷的部件,所以制冷剂会迁移到这里,所以要保证气分有足够的容量来储存这些液态制冷剂。 2.适当的回油孔及过滤网保证冷冻油和制冷剂回到压缩机。 回油孔的尺寸要尽量保证没液态制冷剂回流到压缩机,但也要保证冷冻油尽量可以回到压缩机。

如果是运行中气液分离器中存有的液态制冷剂,推荐使用直径

0.040 in (1.02mm),,如果是因为停机制冷剂迁移到气液分离器推荐使用0.055 in (1.4mm)(谷 轮的应用工程手册是直接给出0.040-0.050 in (1.02-1.3 mm),并给出一般气液分离器是 0.0625-0.125(1.6-3.2mm))。当然如果有条件也可能用试验优化这个尺寸,以达到最好效果。 还有过滤网,谷轮推荐使用不小于30X30目(0.6mm孔径),这里推荐使用50X60 目,这里好象有点矛盾,不过考虑到在中国空调安装的水平,特别是分体式的安装,经常会有杂质进入系统,所以用大点孔径会稳妥些。 3.气液分离器的压力损失尽可能小。 冷冻油和制冷剂的流量由出口U形管的尺寸控制,所以它的尺寸也决定了制冷剂的压力损失,因为进入出口管的制冷剂是高速的。这里有一个参考值,对于R22,R134,R404AR410A,在5C 蒸发温度,30C吸气温度时压力损失为7kPa, 有些公司资料上压力损失是1/2F(0.5C)这应该是指饱和状态下的压力。但是不同制冷剂换算成压力又是不同的,前面提的压力损失又是针对几种制冷剂,所以这些参数只是作为参考。 此外,为了让气液分离器更好的工作,还有以下结构特点: 为了防止虹吸现象,在出口U形管上部有一个平衡孔,以防止停机后重新启动时制冷剂液体因虹吸而进入压缩机。 对于直径超过6”(150mm)的气液离器,必须要安装一个430F(221C)的泄压阀,以防止在火灾时不会对外界造成伤害。 按照UL207,气液分离器一般正常工作压力为2.50MPa,有些会达到3.10Mpa,最小破坏压力 12.50MPa,有些会达到15.5Mpa (一般管翅片式换热器,壁厚为0.35的光管的破坏压力为 15-16MPa)。使用钢板16MnR厚度3mm的破坏压力为2.89MPa,如果用Q235B,起码要5mm以上(用16MnR钢板要承受15MPar的破坏压力,要使用16mm板厚)。 气液分离器尽量靠近压缩机安装,有四通阀的安装在四通阀和压缩机之间,有过滤器的安装在它和压缩机之间。图F.2显示了气液分离器安装时管路的高度最好比压缩机回气口要低。选择卧式气液分离器时要注意,如果液体温度低于15F(9C)有些资料说是-10C时,冷冻油会变稠,因此很难通过细小的虹吸管经出口管回流到压缩机,这是由卧式特殊结构决定的。为了避免由于外界温度变化而对气液分离器里的制冷剂过热度造成影响,最好能在气液分离器外面包一层保温棉。 F.2 现在国外公司主要有,ALCO,PARKER,AC&R,REFRIGERATION RESEARCH,的产品都会有一个选型表,你可以根据制冷量

卧式气液分离器计算软件

卧式重力气液分离器计算软件 HG 20570.8 杭州易算云 1功能和概述 目前在大部分工程设计中往往需要进行大量图表查找及迭代计算,为提高简化工程师设计工作量及避免造成不必要的选型浪费,为工程计算提供选型依据。 本计算程序依据HG/T 20570-95编制,用于卧式重力气液分离器外形尺寸计算 【关键词】分离器计算卧式分离器重力分离器 引用标准规范 《气-液分离器设计》HG/T 20570.8-95 《油气集输设计规范》GB 50350-2005 《分离器规范》SYT 0515-2007 2适用范围 根据国家标准规范,本计算程序适用化工行业。

3.1易算云软件界面

3.3参数输入说明 3.4易算云软件计算说明 设备尺寸计算的依据是液体流量及停留时间。按式(3.4.1-1)求出“试算直径”DT,在此基础上,求得容器中液体表面上的气体空间,然后进行校核,验证是否满足液滴的分离。

3.4.1易算云试算直径DT计算 DT= 2.12V Lmax t C?A 1/3 3.4.1-1 式中 C=LT/DT—2~4(推荐值是2.5) DT、LT—分别是圆柱部分的直径和长度,m V Lmax=V L?e—液体的最大体积流量,m3/h t—停留时间,min A—可变液体面积(以百分比计) A=Atot-Aa-Ab,(均以百分比计) e—气体、液体最大体积系数 其中Atot—总横截面积,% Aa—气体部分横截面积,% Ab—液位最低时液体占的横截面积,% 3.4.2气相高度计算 a=(1-Q)DT 3.4.2-1 式中 a—气相高度,m(规范要求不小于0.3m) Q= h/DT—比例系数,根据附表一由(A+Ab)/Atot值查得 DT—分离器直径,m 3.4.3最小接管距离LN计算 两相流进口接管与气体出口接管之间的距离应尽可能大。 即LN≈LT及LT=C*DT 3.4.3-1 式中 LN—两相流进口到气体出口间的距离,m LT—圆筒形部分的长度,m 根据气体空间(Aa)和一个时间比值(R)(即液滴通过气体空间高度所需沉降时间与气体停留时间的比)来校核液滴的分离,计算进口和出口接管之间的距离LN。

气液分离器的原理

气液分离器采用的分离结构很多,其分离方法也有: 1、重力沉降; 2、折流分离; 3、离心力分离; 4、丝网分离; 5、超滤分离; 6、填料分离等。 但综合起来分离原理只有两种: 一、利用组分质量(重量)不同对混合物进行分离(如分离方法 1、2、3、6)。气体与液体的密度不同,相同体积下气体的质量比液体的质量小。 二、利用分散系粒子大小不同对混合物进行分离(如分离方法4、5)。液体的分子聚集状态与气体的分子聚集状态不同,气体分子距离较远,而液体分子距离要近得多,所以气体粒子比液体粒子小些。 一、重力沉降 1、重力沉降的原理简述 由于气体与液体的密度不同,液体在与气体一起流动时,液体会受到重力的作用,产生一个向下的速度,而气体仍然朝着原来的方向流动,也就是说液体与气体在重力场中有分离的倾向,向下的液体附着在壁面上汇集在一起通过排放管排出。 2、重力沉降的优缺点 优点: 1)设计简单。 2)设备制作简单。

3)阻力小。 缺点: 1)分离效率最低。 2)设备体积庞大。 3)占用空间多。 3、改进 重力沉降的改进方法: 1)设置内件,加入其它的分离方法。 2)扩大体积,也就是降低流速,以延长气液混合物在分离器内停留的时间。 1)设计简单。 2)设备制作简单。 3)阻力小。 缺点: 1)分离效率最低。 2)设备体积庞大。 3)占用空间多。 3、改进 重力沉降的改进方法: 1)设置内件,加入其它的分离方法。 2)扩大体积,也就是降低流速,以延长气液混合物在分离器内停留的时间。

优点:4、由于气液混合物总是处在重力场中,所以重力沉降也广泛存在。由于重力沉降固有的缺陷,使科研人员不得不开发更高效的气液分离器,于是折流分离与离心分离就出现了。 二、折流分离 1、折流分离的原理简述 由于气体与液体的密度不同,液体与气体混合一起流动时,如果遇到阻挡,气体会折流而走,而液体由于惯性,继续有一个向前的速度,向前的液体附着在阻挡壁面上由于重力的作用向下汇集到一起,通过排放管排出。 2、折流分离的优缺点 优点: 1)分离效率比重力沉降高。 2)体积比重力沉降减小很多,所以折流分离结构可以用在(高)压力容器内。 3)工作稳定。 缺点: 1)分离负荷范围窄,超过气液混合物规定流速后,分离效率急剧下降。 2)阻力比重力沉降大。 3、改进 从折流分离的原理来说,气液混合物流速越快,其惯性越大,也就是说气液分离的倾向越大,应该是分离效率越高,而实际情况却恰恰相反,为什么呢? 究其原因: 1)在气液比一定的情况下,气液混合物流速越大,说明单位时间内分离负荷越重,混合物在分离器内停留的时间越短。 2)气体在折流的同时也推动着已经着壁的液体向着气体流动的方向流动,如果液体流到收集壁的边缘时还没有脱离气体的这种推动力,那么已经着壁的液体将被气体重新带走。在气液比一定的情况下,气液混合物流速越大,气体这种继续推动液体的力将越大,液体将会在更短的时间内

制冷用气液分离器设计

制冷用气液分离器设计 1、气液分离器的作用 ●把从蒸发器返回到压缩机的冷媒分离成气体和液体,使气体回到压缩机,从而避免液态制冷剂进入压缩机破坏润滑或损坏涡旋盘。(单冷机在低温工况下验证,热泵以融霜时验证(相当于人低温工况)) ●使气液分离器中的润滑油回到压缩机。 2、有效容积计算 ●理论计算法 气液分离器出口管入口到底部的容积,见图3,气液分离器简图。 V =【(最大制冷剂注入量÷ρ】×0.8以上 注:最大制冷剂注入量(单位:kg): 压缩机和气液分离器置于室外分体机:室外机制冷剂注入量+最长配管时的追加制冷剂注入量。 压缩机和气液分离器置于室内分体机:整机注入量+最长配管时的追加制冷剂注入量。最大制冷剂注入量要考虑到系统允许的油重比,在不符合压缩机规格书的情况下,必须与压机厂家做沟通并书面确认。 ρ:密度(单位:kg/L):制冷剂在0℃饱和液态情况下的比重,R22:1.28;R410A 为1.18;R134a:1.3;R407C:1.27。 0.8为安全系数。由于高压腔压缩机抗液击能力差,所以当选用高压腔压缩机时需要与压机厂家进行充分的沟通。 ●估算法 按照系统总体制冷剂充注量的50%确定气液分离器的容积,以保证冬季运行工况切换时系统运行的安全性。(指有效容积,压缩机厂家建议有效容积占比不大于总容积的70%) 3、直径设计

在设计气液分离器时,要求气液分离器的直径D应能满足制冷剂从蒸发器返回至分离器时,通过扩容减速使最大的稳定流速ω不超过0.75m/s,即ω≤ 0.75m/s,以保证气液充分分离。气液分离器直径D可通过如下公式来计算: 式中D —气液分离器直径,m; Vi—吸气比容,m3/kg; Gm—制热运行时最高蒸发温度下的质量流量,kg/s; ω—最大稳定流速,m/s; 4、气液分离器均压孔的设计 均压孔的作用是当压缩机停止时,如果没有均压孔,气液分离器中的液态冷媒向压缩机移动,当压缩机再次起动时将进行液压缩,导致压缩机损坏。 当压缩机运转时,大量的气体冷媒通过吸气管回到压缩机,只有少量的液体冷媒和油通过回油孔,均压孔不起作用。当压缩机停止瞬间,由于吸入管内外压力差的原因,气液分离器内部的液态冷媒将会通过回油孔回到压缩机,在压缩机下次启动时,造成压缩机液击。因此,必须设置均压孔,当压缩机停止时,根据连通器原理吸气管内外压力一致,冷媒液面保持水平,不发生冷媒液体返回压缩机。 气液分离器出口管的均压孔径是按以下计算的。 均压管孔径面积(mm2) = 出口管外径横截面积(mm2) × (0.03~0.033) 注:最终的均压孔径的计算,还是根据实验来决定的。 气液分离器的液态制冷剂在积存量固定的状态下停压缩机时,液态制冷剂是不会流入压缩机内的。在气液分离器回到压缩机之间安装视液镜进行确认。 案例: 设计条件:出口管外径:φ22.3 均压管孔径面积(mm2) = {1/4×3.14×(22.32)2}×0.03= 11.71 均压孔径φ(mm) =( 11.71÷(1/4×3.14))0.5= 3.9 初步采用φ4.0的均压孔,后用试验进行确认。

气-液分离器设计[1]

标准 T/ES220020-2005 中国石化集团宁波工程有限公司 气—液分离器设计 2005-04-15 发布 2005-05-01 实施

中国石化宁波工程有限公 司 目次 1 总则 1.1 目的 1.2 范围 1.3 编制本标准的依据 2 立式和卧式重力分离器设计 2.1应用范围 2.2 立式重力分离器的尺寸设计 2.3 卧式重力分离器的尺寸设计 2.4 立式分离器(重力式)计算举例 2.5附图 3 立式和卧式丝网分离器设计 3.1 应用范围 3.2 立式丝网分离器的尺寸设计 3.3 卧式丝网分离器的尺寸设计 3.4 计算举例 3.5 附图 4 符号说明

1 总则 1.1 目的 本标准适用于工艺设计人员对两种类型的气—液分离器设计,即立式、卧式重力 分离器设计和立式、卧式丝网分离器设计。并在填写石油化工装置的气—液分离器数据表时使用。 1.2 范围 本标准适用于国内所有化工和石油化工装置中的气-液分离器的工程设计。 1.3 编制本标准的依据: 化学工程学会《工艺系统工程设计技术规定》HG/T20570.8-1995第8篇气—液分离器设计。 2 立式和卧式重力分离器设计 2.1 应用范围 2.1.1 重力分离器适用于分离液滴直径大于200μm 的气液分离。 2.1.2 为提高分离效率,应尽量避免直接在重力分离器前设置阀件、加料及引起物料的转向。 2.1.3 液体量较多,在高液面和低液面间的停留时间在6~9min ,应采用卧式重力分离器。 2.1.4 液体量较少,液面高度不是由停留时间来确定,而是通过各个调节点间的最小距离100mm 来加以限制的,应采用立式重力分离器。 2.2 立式重力分离器的尺寸设计 2.2.1 分离器内的气速 2.2.1.1 近似估算法 5 .0ρρρ=G G L s t K V (2.2.1—1) 式中 V t ——浮动(沉降)流速,m/s ; ρL 、ρG ——液体密度和气体密度,kg/m 3; K S ——系数 d * =200μm 时,K S =0.0512; d *=350μm 时,K S =0.0675。

气液分离器的种类与结构讲课讲稿

气液分离器的种类与 结构

气液分离器的种类与结构目录 一、研究目的 (2) 二、气液分离器的作用 (2) 三、气液分离器的原理和分类 (2) 四、气液分离器的结构及优缺点 (2) 1.重力沉降 (3) 2.折流分离 (4) 3.离心分离 (5) 4.填料分离 (6) 5.丝网分离 (7) 6.微孔过滤分离 (9) 五、实验分析 (10) 1.常规冷干机的气液分离器的除水效果 (10) 2.查阅相关资料 (12) 3.设备整改 (13) 4.C型冷干机气分测试 (15) 六、优化方案 (17) 仅供学习与交流,如有侵权请联系网站删除谢谢2

一、研究目的 增强公司冷干机、预冷机等设备上的气液分离器的效果,提升设备性能。 二、气液分离器的作用 饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴,随气体一起流动。气液分离器作用就是处理含有凝液的气体,实现凝液回收或者气相净化。我们公司设备上的气液分离器作用主要是气相净化。 三、气液分离器的原理和分类 气液分离器采用的分离结构很多,其分离方法包括:1、重力沉降;2、折流分离;3、离心力分离;4、填料分离;5、丝网分离; 6、微孔过滤分离等。 但综合起来分离原理只有两种: 仅供学习与交流,如有侵权请联系网站删除谢谢3

1、利用组分质量(重量)的不同,对混合物进行分离(如分离方法1、 2、 3、4):气体与液体的密度不同,相同体积下气体的质量比液体的质量小。 2、利用分散系粒子大小不同对混合物进行分离(如分离方法5、6):液体的分子聚集状态与气体的分子聚集状态不同,气体分子距离较远,而液体分子距离要近得多,所以液体粒子比气体粒子大。 四、气液分离器的结构及优缺点 1、重力沉降: 仅供学习与交流,如有侵权请联系网站删除谢谢4

LPG气液分离器原理

气液分离器的工作原理 饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴·随气体一起流动。 气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。 其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。 一般气体由上部出口,液相由下部收集。 汽液分离罐是利用丝网除沫,或折流挡板之类的内部构件,将气体中夹带的液体进一步凝结,排放,以去除液体的效果。 基本原理是利用气液比重不同,在一个突然扩大的容器中,流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。 QQ截图未命名.gif (93.74 KB) 分离器的结构与原理相辅相成,分离器不止是分离气液也分离气固,如旋风除尘器原理是利用离心力分离气体中的固体. 气液分离器,根据分离器的类型不同,有旋涡分离,折留板分离,丝网除沫器, 旋涡分离主要是根据气体和液体的密度,做离心运动时,液体遇到器壁冷凝分离。 基本都是利用沉降原理的,瞬间扩大管道半径,造成压降,温度等的变化,达到分离的目的. 使用气液分离器一般跟后系统有关,因为气体降温减压后会出现部分冷凝而后系统设备处理需要纯气相或液相,所以

主反应后装一个气液分离器静止分离出气相和液相给后系统创造条件。。。 工厂里常见的气液分离器是利用闪蒸的原理,闪蒸就是介质进入一个大的容器,瞬间减压气化并实现气液分离,出口气相中含饱和水,而游离的水和比重大的液滴会由于重力作用分离出来,另外分离器一般带捕雾网,通过捕雾网可将气相中部分大的液滴脱除。 气液分离器无非就是让互相混杂的气相液相各自聚合成股,液滴碰撞聚结,气体除去液滴后上升,从而达到分离的目的。 原理是利用气液比重不同,在一个突然扩大的容器中,流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。算过一个气液分离器就是一个简单的压力容器,里面有相应的除沫器一清除雾滴。 气液分离器其基本原理是利用惯性碰撞作用,将气相中夹带的液滴或固体颗粒捕集下来,进而净化气相或获得液相及固相。其为物理过程,常见的形式有丝网除雾器、旋流板除雾器、折板除雾器等。 单纯的气液分离并不涉及温度和压力的关系,而是对高速气流(相对概念)夹带的液体进行拦截、吸收等从而实习分离,旋流挡板等在导流的同时,为液体的附着提供凭借,就好像空气中的灰尘要有物体凭借才能停留下来一样。而不同分离器在设计时,还优化了分离性能,如改变温度、压力、流速等 气液分离是利用在制定条件下,气液的密度不同而造成的分离。 我觉得较好的方法是利用不同的成分其在不同的温度或压力下熔沸点的差异,使其发生相变,再通过不同相的物理性质的差异进行分离 饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴·随气体一起流动。 气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。 其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。 一般气体由上部出口,液相由下部收集。 化工厂中的分离器大都是丝网滤分离气液,这种方法属于机械式分离,原理就是气体分子小可以通过丝网空隙,而液态分子大,被阻分离开, 还有一种属于螺旋式分离,气体夹带的液体由分离器底部螺旋式上升,液体被碰撞“长大”最终依靠重力下降,有时依靠降液管引至分离器底部 气液分离器,出气端一般在上,因为比重低,内部空气被抽离,或在出气端连气泵 而液体经旋转,再次冷凝下降从下部排出 利用气体与液体的密度不同。。从而将气体与液体进行隔离开来 1、气液分离器有多种形式。 2、主要原理是:根据气液比重不同,在较大空间随流速变化,在主流体转向的过程中,气相中细微的液滴

油气分离器设计计算

摘要 为了满足油气井产品计量、矿场加工、储存和管道输送的需要,气、液混合物要进行气液分离。本文是某低温集气站中分离器的设计与计算,选用立式分离器与旋风式两种。立式分离器是重力式分离器的一种,其作用原理是利用生产介质和被分离物质的密度差来实现基本分离。旋风式分离器的分离原理是由于气、液质量不同,两相在分离器筒内所产生的离心力不同,液滴被抛向筒壁聚集成较大液滴,在重力作用下沿筒壁向下流动,从而完成气液两相分离。分离器的尺寸设计根据气液混合物的压力﹑温度以及混合物本身的性质计算确定。最后确定分离器的直径、高度、进出口直径。 关键词:立式两相分离器旋风式分离器直径高度进出口直径 广安1#低温集气站的基本资料: 出站压力:6MPa 天然气露点:5C <-?

气体组成(%):C 1=85.33 C 2=2.2 C 3=1.7 C 4=1.56 C 5 =1.23 C 6=0.9 H 2S=6.3 CO 2=0.78 凝析油含量:320/g m 0.78l S = 1. 压缩因子的计算 ① 天然气的相对分子质量 ∑=iMi M ? 式中 M ——天然气的相对分子质量; i ?——组分i 的体积分数; Mi ——组分i 的相对分子质量。 则计算得, M=20.1104 ② 天然气的相对密度 天然气的相对密度用S 表示,则有: S= 空 天 M M 式中 M 天、M 空分别为天然气的相对分子质量。 已知:M 空=28.97 所以,天然气相对密度S= 空 天 M M =20.1104/28.97=0.694 ③ 天然气的拟临界参数和拟对比参数 对于凝析气藏气: 当 0.7S < 时,拟临界参数: 4.7780.248106.1152.21pc pc P S T S =-=+ 计算得,

气液分离器的种类与结构

气液分离器的种类与结构目录 一、研究目的...................................................、.........、、 (2) 二、气液分离器的作用……………………………………………、第2页 三、气液分离器的原理与分类 (2) 四、气液分离器的结构及优缺点……………………………、第2页 1.重力沉降…………………………………………………、、…、第3页 2.折流分离……………………………、……………………、…、第4页 3.离心分离………………………………………………、、……、第5页 4.填料分离………………………………………………、、……、第6页 5.丝网分离…………………………、……………………、……、第7页 6.微孔过滤分离………………………………………………、第9页 五、实验分析……………………………………………………………、、第10页 1.常规冷干机的气液分离器的除水效果…、第10页 2.查阅相关资料…………………………………、……、、、第12页 3.设备整改………………………………………………、、、、第13页 4.C型冷干机气分测试.................................、 (15) 六、优化方案……………………………………………………………、、第17页 一、研究目的 增强公司冷干机、预冷机等设备上的气液分离器的效果,提升设备性能。 二、气液分离器的作用

饱与气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴,随气体一起流动。气液分离器作用就就是处理含有凝液的气体,实现凝液回收或者气相净化。我们公司设备上的气液分离器作用主要就是气相净化。 三、气液分离器的原理与分类 气液分离器采用的分离结构很多,其分离方法包括:1、重力沉降;2、折流分离;3、离心力分离;4、填料分离;5、丝网分离;6、微孔过滤分离等。 但综合起来分离原理只有两种: 1、利用组分质量(重量)的不同,对混合物进行分离(如分离方法1、 2、 3、4):气体与液体的密度不同,相同体积下气体的质量比液体的质量小。 2、利用分散系粒子大小不同对混合物进行分离(如分离方法5、6):液体的分子聚集状态与气体的分子聚集状态不同,气体分子距离较远,而液体分子距离要近得多,所以液体粒子比气体粒子大。 四、气液分离器的结构及优缺点

空调气液分离器的设计与使用

空调气液分离器的设计与使用 一、工作原理 二、气液分离器的作用 三、气液分离器的安装位置 四、气液分离器的容积设计 五、气液分离器回油孔的设计 六、气液分离器均压孔的设计 七、气液分离器评价试验步骤和判定标准 八、气液分离器的图纸 九、气液分离器设计和使用的雷区 十、气液分离器的选型对照表 十一、气液分离器错误的安装引起的故障(案例)

一、工作原理 饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴·随气体一起流动。 气液分离器就是处理含有少量凝液的气体,实现凝液回收或者气相净化。 其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。 一般气体由上部出口,液相由下部收集。 气液分离罐是利用丝网除沫,或折流挡板之类的内部构件,将气体中夹带的液体进一步凝结,排放,以去除液体的效果。 基本原理是利用气液比重不同,在一个突然扩大的容器中,流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。 下图是空调使用的气液分离器

二、气液分离器的作用 1. 把从蒸发器返回到压缩机的冷媒分离成气体和液体,仅使气体回到压缩机,从而避免液态制冷剂进入压缩机破坏润滑或者损坏涡旋盘。(以防止压缩机液击。) 2. 使气液分离器中的润滑油回到压缩机,它可以暂时储存多余的制冷剂液体,并且也防止了多余制冷剂流到压缩机曲轴箱造成油的稀释。因为在分离过程中,冷冻油也会被分离出来并积存在底部,所以在气液分离器出口管和底部会有一个油孔,保证冷冻油可以回到压缩,从而避免压缩机缺油。 注:①如果能保证蒸发器出口的冷媒总是气体的状态,也可以取消气液分离器。 ②原则上讲,所有的热泵产品都应该增加气液分离器,单冷机型视情况决定,一般建议使用。 3. 一般情况下12000W制冷量(5匹及以上的空调)需要气液分离器,而涡旋压缩机本身不带储液罐,则另外要增加气液分离器,旋转式压缩机本身就带有储液罐。 旋转式压缩机涡旋压缩机

气液分离器的种类与结构

气液分离器的种类与结构 欧阳学文 目录 一、研究目的 (2) 二、气液分离器的作用 (2) 三、气液分离器的原理和分类 (2) 四、气液分离器的结构及优缺点 (2) 1.重力沉降 (3) 2.折流分离 (4) 3.离心分离 (5) 之欧阳学文创作

4.填料分离 (6) 5.丝网分离 (7) 6.微孔过滤分离 (9) 五、实验分析 (10) 1.常规冷干机的气液分离器的除水效果 (10) 2.查阅相关资料 (12) 3.设备整改 (13) 4.C型冷干机气分测试 (15) 六、优化方案 (17) 一、研究目的 增强公司冷干机、预冷机等设备上的气液分离器的效果,提升设备性能。 之欧阳学文创作

二、气液分离器的作用 饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴,随气体一起流动。气液分离器作用就是处理含有凝液的气体,实现凝液回收或者气相净化。我们公司设备上的气液分离器作用主要是气相净化。 三、气液分离器的原理和分类 气液分离器采用的分离结构很多,其分离方法包括:1、重力沉降;2、折流分离;3、离心力分离;4、填料分离;5、丝网分离;6、微孔过滤分离等。 但综合起来分离原理只有两种: 之欧阳学文创作

1、利用组分质量(重量)的不同,对混合物进行分离(如分离方法1、 2、 3、4):气体与液体的密度不同,相同体积下气体的质量比液体的质量小。 2、利用分散系粒子大小不同对混合物进行分离(如分离方法5、6):液体的分子聚集状态与气体的分子聚集状态不同,气体分子距离较远,而液体分子距离要近得多,所以液体粒子比气体粒子大。 四、气液分离器的结构及优缺点 1、重力沉降: 原理:结构很简单,原理也很简单,利用液体与气体的重量不同达到分离。空压机末端的储气罐之所以能分离大量液态水,就是依靠这个原理。 之欧阳学文创作

气液分离器的工作原理和分离种类

浅谈气液分离器的工作原理和分离种类 饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴随气体一起流动。气液分离器作用就是处理含有少量凝液的气体,实现分离器现凝液回收或者气相净化。其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。一般气体由上部出口,液相由下部收集。气液分离罐是利用丝网除沫,或折流挡板之类的内部构件,将气体中夹带的液体进一步凝结,排放,以去除液体的效果。基本原理是利用气液比重不同,在一个突然扩大的容器中,流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。分离器的结构与原理相辅相成,分离器不止是分离气液也分离气固,如旋风分离器除尘器原理是利用离心力分离气体中的固体.根据分离器的类型不同,有旋涡分离,折留板分离,丝网除沫分离器器,旋涡分离主要是根据气体和液体的密度,做离心运动时,液体遇到器壁冷凝分离。基本都是利用沉降原理的,瞬间扩大管道半径,造成压降,温度等的变化,达到分离的目的. 使用气液分离器一般跟后系统有关,因为气体降温减压后会出现部分冷凝而分离器后系统设备处理需要纯气相或液相,所以主反应后装一个气液分离器分离器静止分离出气相和液相给后系统创造条件。。。工厂里常见的气液分离器是利用闪蒸的原理,闪蒸就是介质进入一个大的容器,瞬间减压气化并实现气液分离,出口气相中含饱和水,而游离的水和比重大的液滴会由于重力作用分离出来,另外分离器一般带

捕雾网,通过捕雾网可将气相中部分大的液滴脱除。气液分离器无非就是让互相混杂的气相液相各自聚合成股,液滴碰撞聚结,分离器气体除去液滴后上升,从而达到分离的目的。原理是利用气液比重不同,在一个突然扩大的容器中,流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器分离器,气分离器相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。算过一个气液分离器就是一个简单的压力容器,里面有相应的除沫器一清分离器除雾滴。气液分离器分离器其基本原理是利用惯性碰撞作用,将气相中夹带的液滴或固体颗分离器粒捕集下来,进而净化气相或获得液相及固相。其为物理过程,常见的形式有丝网除雾器、旋流板除雾器、折板除雾器等。单纯的气液分离并不涉及温度和压力的关系,而是对高速气流(相对概念)夹带的液体进行拦截、吸收等从而实习分离,旋流挡板等在导流的同时,为液体的附着提供凭借,就好像空气中的灰尘要有物体凭借才能停留下来一样。而不同分离器在设计时,还优化了分离性能,如改变温度、压力、流速等分离器,气液分离是利用在制定条件下,气液的密度不同而造成的分离。我觉得较好的方法是利用不同的成分其在不同的温度或压力下熔沸点的差异,使其发生相变,再通过不同相的物理性质的差异进行分离饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴随气体一起流动。

气液分离器设计

气—液分离器设计 2005-04-15 发布2005-05-01 实施

目次 1 总则 1.1 目的 1.2 范围 1.3 编制本标准的依据 2 立式和卧式重力分离器设计 2.1应用范围 2.2 立式重力分离器的尺寸设计 2.3 卧式重力分离器的尺寸设计 2.4 立式分离器(重力式)计算举例 2.5附图 3 立式和卧式丝网分离器设计 3.1 应用范围 3.2 立式丝网分离器的尺寸设计3.3 卧式丝网分离器的尺寸设计 3.4 计算举例 3.5 附图 4 符号说明

1 总则 1.1 目的 本标准适用于工艺设计人员对两种类型的气—液分离器设计,即立式、卧式重力 分离器设计和立式、卧式丝网分离器设计。并在填写石油化工装置的气—液分离器数据表时使用。 1.2 范围 本标准适用于国内所有化工和石油化工装置中的气-液分离器的工程设计。 1.3 编制本标准的依据: 化学工程学会《工艺系统工程设计技术规定》HG/T20570.8-1995第8篇气—液分离器设计。 2 立式和卧式重力分离器设计 2.1 应用范围 2.1.1 重力分离器适用于分离液滴直径大于200μm 的气液分离。 2.1.2 为提高分离效率,应尽量避免直接在重力分离器前设置阀件、加料及引起物料的转向。 2.1.3 液体量较多,在高液面和低液面间的停留时间在6~9min ,应采用卧式重力分离器。 2.1.4 液体量较少,液面高度不是由停留时间来确定,而是通过各个调节点间的最小距离100mm 来加以限制的,应采用立式重力分离器。 2.2 立式重力分离器的尺寸设计 2.2.1 分离器内的气速 2.2.1.1 近似估算法 5 .0? ??? ??-=G G L s t K V ρ ρρ (2.2.1—1) 式中 V t ——浮动(沉降)流速,m/s ; ρL 、ρG ——液体密度和气体密度,kg/m 3; K S ——系数 d * =200μm 时,K S =0.0512; d *=350μm 时,K S =0.0675。 近似估算法是根据分离器内的物料流动过程,假设Re =130,由图2.5.1—1查得相应的

气液分离罐罐体制作工艺设计分解

《焊接结构课程设计说明书》 --------------------------气液分离器生产工艺 姓名: 班级: 系部: 学号: 指导老师: 2013-2014第二学期

目录 摘要 (3) 1. 气液分离器概述 (4) 2. 母材的选择与检验 (4) 表2 化学成分表 (5) 3.罐体制造工艺流程 (6) 4.筒体的制作工艺 (7) 5.封头压制 (14) 6.总装配焊接 (18) 7.检验 (21) 8.涂装及零件图 (22) 9.参考文献 (23)

摘要 本设计编制的是气液分离器的制造工艺,按照在承压等级的基础上,综合压力容器工作介质的危害性(易燃、致毒等程度)进行分类,此容器属于Ⅱ类容器。此容器受压元件材料主要为Q245R,故在讨论Q245R焊接性的基础上对该容器进行制造工艺编制。本产品制造、试验和验收按GB150—1998《钢制压力容器》中的技术条件规定执行。 本次设计的气液分离器筒体由?426mm×14mm×2700mm厚的筒体,封头?426mm×14mm由热压方法获得。本设计首先介绍了气液分离器的结构,并分析了制造本产品的材料如Q245R钢的化学成分、力学性能及焊接性,然后分析了该容器焊接制作工艺流程。文中详细论述了气液分离器加工、装配、焊接工艺。同时对容器制作中容易出现的质量问题进行了分析说明,提出了相应的解决措施。 文中重点阐述了装配焊接工艺,包括筒节的纵缝装配焊接、筒节与封头的环缝装配焊接、筒节与筒节的环缝焊接等。如装配方法、焊条、焊剂与焊丝及焊接方法的选择、焊接参数的选取等。并对容器的焊后试验、气密性试验等进行了必要的说明。 压力容器是容器的一种,是指最高工作压力≧0.1MPa,容积≧25L,工作介质为气体、液化气体或最高工作温度高于或等于标准沸点液体的容器。这类结构大都在一定的温度和压力下工作,且相当一部分结构的工作介质或内部充装物为易燃易爆,或具有强烈腐蚀性,或有毒的物质,一旦发生泄露或者断裂破坏,就可能产生灾难性的后果,造成人民生命财产的严重损失。因此,必须保证该类结构在工作和运行中的安全可靠性,必须按照产品设计的技术要求中专门的技术规范来进行制造生产,严格控制质量,并且要由专设机构来进行监督和检查。世界各国对于压力容器的制造和使用都非常重视,均设有专门机构,制定了详细的技术规范和检查标准。 压力容器产业的发展离不开机械、冶金、石油化工、电脑信息、经济管理和安全防护等诸多工程技术的改革创新,或者说它是在多项新材料、新技术、新工艺综合开发的基础上发展的工业产品。在科学技术不断提高的今天,压力容器行业的发展当然也离不开先进技术的使用。

气液分离器的种类与结构

气液分离器的种类与结构目录 一、研究目的 (2) 二、气液分离器的作用 (2) 三、气液分离器的原理和分类 (2) 四、气液分离器的结构及优缺点 (2) 1.重力沉降 (3) 2.折流分离 (4) 3.离心分离 (5) 4.填料分离 (6) 5.丝网分离 (7) 6.微孔过滤分离 (9) 五、实验分析 (10) 1.常规冷干机的气液分离器的除水效果 (10) 2.查阅相关资料 (12) 3.设备整改 (13) 4.C型冷干机气分测试 (15) 六、优化方案 (17)

一、研究目的 增强公司冷干机、预冷机等设备上的气液分离器的效果,提升设备性能。 二、气液分离器的作用 饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴,随气体一起流动。气液分离器作用就是处理含有凝液的气体,实现凝液回收或者气相净化。我们公司设备上的气液分离器作用主要是气相净化。 三、气液分离器的原理和分类 气液分离器采用的分离结构很多,其分离方法包括:1、重力沉降;2、折流分离;3、离心力分离;4、填料分离;5、丝网分离;6、微孔过滤分离等。 但综合起来分离原理只有两种: 1、利用组分质量(重量)的不同,对混合物进行分离(如分离方法1、 2、 3、4):气体与液体的密度不同,相同体积下气体的质量比液体的质量小。 2、利用分散系粒子大小不同对混合物进行分离(如分离方法5、6):液体的分子聚集状态与气体的分子聚集状态不同,气体分子距离较远,而液体分子距离要近得多,所以液体粒子比气体粒子大。

四、气液分离器的结构及优缺点 1、重力沉降: 原理:结构很简单,原理也很简单,利用液体与气体的重量不同达到分离。空压机末端的储气罐之所以能分离大量液态水,就是依靠这个原理。 适用分离大于200u的液态。 优点:设计简单;设备制作简单;阻力小。 缺点:分离效率很差;需要气体流速很慢,所以相对应设备体积就很大。

分离器尺寸计算word版本

分离器尺寸计算

1.1.1分离器尺寸计算 选用SMSM气/液分离器,进入高效分离器的气体体积流量为1795m3/h (工况下),按照壳牌高效分离器的设计标准,SMSM气/液分离器的直径计算如下: 已知:,:, 所以 气体处理能力标准: 由于,由壳牌分离器设计规范查表可知,取=0.186, 取分离器直径为1100mm,最多选择29个旋流管。 分离器高度按照壳牌公司提供的方法进行计算,见图4.16、表4.6 表4.6 分离器直径及涡流管个数的确定表

D ,m 涡流管个数 *m ax Q ,m3/s m ax ,m/s 0.21 1 0.0064 0.185 0.45 4 0.0256 0.161 0.50 5 0.0320 0.163 0.65 9 0.0576 0.174 0.70 12 0.0768 0.200 0.85 16 0.102 0.180 0.90 21 0.134 0.211 0.95 24 0.154 0.217 1.05 29 0.186 0.214 1.10 32 0.205 0.216 1.15 37 0.237 0.228 1.20 44 0.282 0.249 1.30 52 0.333 0.251 项目 高度,m 项目 高度,m X 1 0.5 X 5 0.22 X 2 0.32 X 6 0.165 X 3 0.3 D 1.1 X 4 0.1 h 1.2 综上所述,DY 气田干气脱汞方案闪蒸气处理工艺中,选用壳牌SMSM 高效分离器,分离器的直径为1200mm ,高度为3200mm 。 1.2 MEG 再生塔C-2201(1)和凝析油稳定塔C-2301 分别对MEG 再生塔和凝析油稳定塔进行选型并对塔径和高度进行计算。 1.2.1 MEG 再生塔和凝析油稳定塔基础数据 MEG 再生塔和凝析油稳定塔均选用整装填料塔,填料采用金属板波纹填料250Y 型,该种填料具有生产能力大,分离效率高,压力降小,操作弹性大,持液量小等优点。250Y 型填料主要性能参数见表4.8。 表4.8 250Y 型填料主要性能参数表 项目 填料主要性能参数 比表面积a,m 2/m 3 250 空隙率ε,% 97 填料因子a/ε3,m -1 273.92

相关文档
最新文档