基因工程菌大规模培养

基因工程菌大规模培养
基因工程菌大规模培养

第7章基因工程菌的培养

工程菌的稳定性

一、工程菌不稳定的表现

工程菌的不稳定实际上包括质粒的不稳定及其表达产物的不稳定两个方面。具体表现为:质粒的丢失、重组质粒发生DNA片段脱落和表达产物的不稳定。

二、引起工程菌不稳定的一些因素及对策

工程菌稳定与否,取决于质粒本身的分子组成、宿主细胞的生理和遗传特性及环境条件等三个方面

工程菌不稳定的因素:控制基因的过量表达,菌体的比生长速率,培养温度,培养基的组成

1、培养基的组成

质粒在丰富培养基比在低限培养基中更加不稳定。合成培养基往往有利于宿主细胞的生长,但不利于外源基因的表达。

2、培养温度

进行工程菌培养时必须探索其最佳培养温度。通常低温有利于重组质粒的稳定遗传。

3、菌体的比生长速率

如果宿主菌的比生长速率比工程菌的大,质粒将严重丢失,导致工业上倒罐;如果宿主菌的比生长速率比工程菌小,大量繁殖时因竟争性利用基质,宿主细胞将会受到抑制,对发酵影响不大。

4、控制基因的过量表达

外源基因表达水平越高,重组质粒就越不稳定。可以采用两阶段培养法,即在发酵前期控制外源基因不过量表达,使质粒稳定遗传,到后期通过提高质粒的拷贝数和转录、转译效率使外源基因高效表达。

控制外源基因过量表达的方法:

1)如构建含可诱导启动子的工程菌,这种工程菌发酵生产时,可选择培养条件使启动子受阻遏制一定时间,

在此期间质粒稳定遗传,然后通过去阻遏(诱导)使质粒高效表达;

2)采用温度敏感型质粒,温度较低时质粒拷贝数少,当温度升高到一定时质粒大量复制、拷贝数剧增。

高密度培养

为了大量获得基因工程产品,通常采用高密度培养技术,即提高菌体的发酵密度,最终提高产物的比生产率(单位体积单位时间内产物的产量)的一种培养技术,通常指分批补料发酵技术。这样不仅可减少培养体积、强化下游分离提取,还可缩短生产周期、减少设备投资,最终降低生产成本。

一、重组大肠杆菌的高密度培养

重组大肠杆菌高密度发酵成功的关键是补料策略,即根据工程菌的生长特点及产物的表达方式采取合理的营养流加方案。在重组大肠杆菌高密度发酵中,合理流加碳源降低“葡萄糖效应”是成功的关键。常见的流加技术有:恒速流加、变速流加、指数流加和反馈流加。

1、恒速流加

限制性基质以恒定流速流加进入发酵罐中供细胞生长和代谢用的一种培养技术。通常以补料前的耗糖速率作为流加补料速率。

特点:

1)相对于发酵罐中的菌体来说,营养物的浓度逐渐降低;

2)比生长速率也慢慢降低;

3)菌体密度呈线性增加。

2、变速流加

限制性基质以变速或梯度增加流速流加进入发酵罐中供细胞生长和代谢用的一种培养技术。

特点:

1)这样可以克服恒速流加中营养物的浓度逐渐降低的缺陷,菌体在较高密度下通过流加更多营养物

质来促进菌体的生长,并对产物的表达有利。

2)比生长速率不断改变。

3、指数流加

恒定比生长速率的一种流加限制性基质的培养技术。是一种简单而又有效的补料技术。

特点:

1)流加速度指数增加,菌体密度也指数增加;

2)它能够使发酵罐中基质的浓度控制在较低的水平,这样就可以大大减少乙酸的积累;

还可以通过控制流加速率来控制菌体的生长速率,使菌体稳定生长的同时有利于外源蛋白的充分表达

4、反馈流加

以发酵参数,如pH、DO、OUR、CER和菌体浓度,作为控制对象,控制流加速度,使发酵液中葡萄糖浓度维持在较低水平的一种流加培养技术。常见的有恒pH法和恒溶氧法。

A 恒pH法

大肠杆菌代谢葡萄糖产生乙酸将导致pH的降低,因此pH降低速率与葡萄糖消耗速率成正比。当pH降低过快时,说明葡萄糖过量,来不及完全氧化,产生了过量乙酸,即流加速度过快,此时应将其流加速度减慢;否则相反。

B 恒溶氧法

发酵过程当葡萄糖耗尽时,发酵液的溶氧将迅速升高。因此,发酵过程中溶氧水平和糖流加速率与工程菌的酵解过程和代谢物的完全氧化有很大关系。具体表现为:

1)缺氧即溶氧值低将迫使糖代谢进入酵解途径,产生乙酸,对工程菌培养不利;

2)当补糖速率过快时,将导致部分糖无法及时氧化而进入酵解途径。因此,可通过控制流加速度来控制

溶氧水平,降低乙酸的积累。

具体控制策略:

1)当溶氧过低时,说明葡萄糖过量,此时应降低流加速率;

2)当溶氧过高时,说明葡萄糖即将耗尽,此时应加大流加速率。

二、重组酵母菌的高密度培养

酵母是外源基因另一个常用的表达系统。其与大肠杆菌表达系统相比具有一些明显的优势,主要体现在:

1)酵母可达到更高密度培养,100 g /L(干细胞), 400 g/L(湿细胞),500 OD600

2)酵母一般很少分泌杂蛋白,这样便有利于外源蛋白的提取和纯化;

3)重组产物的表达水平高,毕赤酵母的表达水平比酿酒酵母高10~100倍;

4)酵母作为一种模式真核生物,象许多真核生物一样,它分泌的蛋白质一般都要经过一次或多次对其功

能或稳定性至关重要的翻译后修饰—糖基化,糖基化能保证蛋白质进行适当的折叠,从而保护蛋白质免受蛋白酶的降解作用,这在重组蛋白药物中是十分重要的;

5)同样糖基化使外源蛋白在宿主细胞中出现错误折叠的可能性比细菌要小得多,不像大肠杆菌一样外源

蛋白常存在于包涵体中,则便能简化外源蛋白的分离和纯化工序。

常见的酵母表达系统有酿酒酵母和毕赤酵母,下面主要介绍重组毕赤酵母的高密度培养

1、原理

毕赤酵母Pichia pastoris为甲醇利用型酵母,能以甲醇为唯一碳源和能源生长。甲醇利用途径的第一个酶为醇氧化酶(AOX)。生长在限量甲醇中的细胞能诱导出大量该酶,而生长在甘油、葡萄糖或乙醇中的细胞却不能产生该酶。因此,可利用醇氧化酶基因(AOX1)作为强启动子来构建表达系统而高效表达外源蛋白。

2、影响外源基因在毕赤酵母中高效表达因素

1) 表达菌株:最常用的宿主菌为GS115(his4),为his营养缺陷菌。

2) 表达载体:对于非分泌蛋白采用胞内表达载体,对分泌蛋白则选择分泌型载体

3) 选择强启动子:最常用的启动子为AOX1启动子

4) 信号肽的选择:影响外源蛋白质分泌关键因素是外源蛋白基因本身,但是利用信号肽能更好地分泌蛋白。

5) 增加外源基因整合拷贝数:毕赤酵母载体在宿主染色体上大多数为单拷贝整合,而且即使单拷贝也能获得较高产量,但是也有一些例子表明提高拷贝数可大大增加表达水平。

6) 转化方法的选择

通过不同的转化方法提高拷贝数。毕赤酵母的转化方法主要有电激法、原生质体法和氯化锂法。

3、高密度培养技术

具体方法主要是下面的所谓“三段法”

第一阶段,在甘油或葡萄糖为碳源的合成培养基中进行工程菌的分批培养,以积累菌体细胞;

第二阶段,在限制生长速率下流加甘油或葡萄糖的流加补料培养,以进一步提高菌体量;

第三阶段,即诱导阶段,开始较低速度流加甲醇,以诱导外源蛋白的表达。

近年来,又出现了所谓混合补料工艺,即在诱导阶段,以一定比例和速度流加甲醇和甘油混合料液。该工艺的主要优点是:1) 提高细胞存活力;2) 缩短诱导时间;3) 提高重组蛋白的生产速率。但是过量甘油的流加,又将抑制甲醇利用途径,导致外源蛋白的表达水平降低。

重组毕赤酵母的大规模培养的高密度培养时要注意控制代谢副产物乙醇的量,同时还要注意控制甲醇的流加量,它们都将抑制细胞的生长,后者还将影响表达水平。

控制甲醇的流加量措施:

恒溶氧(DO)法:当甲醇流加速率过快时,DO上升;反之甲醇流加速率过慢时,DO降低。利用甲醇传感器,控制发酵液中甲醇的浓度。

思考题

1.影响工程均不稳定的因素有哪些?

2.????何谓高密度培养?重组大肠杆菌的高密度培养的关键和核心是什么?其培养技术有哪几种?

3.????请简述毕赤酵母作为外源蛋白表达系统的原理。何谓“三段法”?重组毕赤酵母高密度培养时应注意哪些问题?

基因工程菌的大规模培养及高密度发酵技术

生物工程下游技术实验模块实验一:基因工程菌的大规模培养及高密度发酵技术 创建人:时间:2013-04-17 【点击数: 482】 实验一:基因工程菌的大规模培养及高密度发酵技术 1.实验目的 (1)掌握工程菌大规模培养及高密度发酵技术的原理。 (2)学习工程菌高密度发酵的技术方法。 2.实验原理 重组大肠杆菌的高密度培养是增加重组蛋白产率的最有效的方法,高密度发酵在增加菌密度的同时提高蛋白的表达量,从而有利于简化下游的纯化操作。重组大肠杆菌高密度培养受表达系统、培养基、培养方式、发酵条件控制等多种因素的影响,在实际操作中需要对各种因素进行优化,建立最佳的发酵工艺。发酵工艺优化的研究可通过每次改变一个因素或同时改变几个参数来进行,然后运用统计学分析寻找它们之间的相互作用。 工程菌提高分裂速度的基本条件是必须满足其生长所需的营养物质,因此,培养基成分和浓度的选择就成为首要解决的问题,在成分选择上,要尽量选取容易被工程菌利用的营养物质,例如,普通培养基中一般是以葡萄糖为碳源,而葡萄糖需经过氧化和磷酸化作用,生成1,3-二磷酸甘油醛,才能被微生物利用,即用甘油作为培养基的碳源可缩短工程菌的利用时间,增加分裂增殖的速度。目前,普遍采用6g/L的甘油作为高密度发酵培养基的碳源。另外,高密度发酵培养基中各组分的浓度也要比普通培养基高2~3倍,才能满足高密度发酵中工程菌对营养物质的需求。当然,培养基浓度也不可过高,因为过高会使渗透压增高,反而不利于工程菌的生长。 补料的流加方式直接影响着发酵的效果。分批补料培养的特点是,在培养过程中不断补充培养基,使菌体在较长时间里保持稳定的生长速率,从而达到高密度生长。但是在补料流加过程中既不能加入得过快,也不能加入得过慢。过慢则无法满足逐渐增加的菌体生长需要,同时也使培养过程中产生的抑制性副产物大量积累;而过快则使携带目的蛋白的质粒没有充裕的时间复制,降低目的蛋白的表达量;而且快速的细菌生长还易引发质粒的不稳定性。 高密度发酵是工程菌剧烈生长繁殖的过程,这期间对氧气的需求量也大大提高,这就需要及时调整通风量和搅拌速度,一般的高密度发酵通风速度达18L/min(20L发酵罐),搅拌速度达500r/min以上,需保持60%以上的溶氧饱和度。此外,还需要考虑通风速度和搅

基因工程菌发酵操作流程

基因工程菌发酵操作流程 1.检查发酵车间是否达到发酵要求(所以设备处于待用状态)。 2.通知蒸汽车间按时送符合要求蒸汽。 3.种子罐基础培养基的领料及定容配制。 4.种子罐的PH、DO电极的校正安装和补料口堵头更换。 5.种子罐进料,调PH。 6.种子罐基础培养基在位灭菌,同时灭移种管道上段。 7.种子罐冷却后可连接酸、碱、消泡剂补料瓶。 8.种子罐培养基温度、PH(需进一步校准)、罐压、消泡达到发酵条 件。通知菌种室准备菌种转接。 9.无菌操作将种子罐所需MgSO4、Amp转入菌种转换罐。 10.种子罐扩增培养发酵阶段需平稳控制罐压、PH、DO、温度、消泡。 11.大罐基础培养基领料及配制。 12.大罐PH、DO电极校正安装及补料口堵头的更换。 13.大罐进料、定容、调PH;碱罐碱液的配制。 14.大罐基础培养基在位灭菌,同时对移种管道、进料管道、补料管 道、碱罐及碱管道上段的灭菌。 15.大罐基础培养基温度降至发酵温度后再次校准PH、DO。连接补 料瓶调节至发酵条件。 16.无菌操作将大罐所需MgSO4、Amp转入菌种转换罐并转入种子罐。 17.利用压力差将种子罐里的种子液移接到大罐。 18.补碱时,将管道上阀门打开。程序设为自动,控制流量。

19.补料罐补料培养基的领料定容配制。 20.补料罐补料培养基在位灭菌,同时对管道上段灭菌。 21.补料时,将管道上阀门打开。程序设为自动,设置流量。 22.诱导剂领料,在配料罐中加水配制定容。 23.将诱导剂打入种子罐,灭菌后保持罐压。 24.利用压力差将种子罐里的诱导剂移接到大罐。 25.一段时间后,大罐的PH、DO呈上升形态即为发酵结束,可放罐 离心。

基因工程菌的发酵控制

基因工程菌的发酵控制 近年来,基因工程已开始由实验室走向工业生产,一些珍稀药物如胰岛素、干扰素、人生长激素等已先后面市,但从许多研究中发现,基因重组菌的培养与发酵有其自身的特点。从培养工程的角度应考虑诸如营养源浓度的控制(碳源、氮源等)、最适生长条件的控制等因素;从生物学上应考虑诸如质粒稳定性的控制、质粒拷贝数的控制、转录效率和翻译效率的提高及代谢产物向菌体外的分泌等主要因素。 1 、营养源浓度的控制 由于大多数基因重组菌不能把所需的基因产物分泌到胞外,而只能靠破碎细胞后提取,因此要获得基因产物,首先必须得到大量菌体。为此基因重组菌的发酵一般采用高浓度菌体培养的方法,如大肠杆菌培养时最高可达125g 干菌体/L 发酵液,酿酒酵母可达145g 干菌体/L 发酵液。但要得到高浓度菌体,必须要提供高浓度的营养物质,而营养源浓度过高,渗透压也就高,反过来又会抑制重组菌的生长。此外,许多基因重组菌常是维生素或氨基酸的营养缺陷型菌株,为维持菌体生长,也必须添加必需量的生长因子营养物。常采用在调节pH 的同时补加氨基酸混合液和葡萄糖的方法。使整个培养期间,葡萄糖和氨基酸的浓度几乎保持恒定,菌体持续以最高生长速度生长,得到高浓度菌体。 2 、质粒的不稳定性及其控制 在重组菌工业化生产过程中,质粒的不稳定性是一个极为重要而独特的问题。带有质粒的细胞生长较慢,生长速率与所带质粒的大小成反比。此外,高水平克隆基因产物的生成也会导致生长缓慢或生长异常(表达越高,生长越慢)。由于质粒的不稳定性,在繁殖传代过程中还会有一部分细胞部分甚至完全丢失质粒,导致所需产物的产量下降。 质粒不稳定包括分离性不稳定和结构性不稳定两种类型。前者是细胞分裂过程中质粒没有分配到子细胞中而导致整个质粒的丢失;后者是由于重组质粒DNA 发生缺失、插入或重排而引起的质粒结构变化。 为了在工业化生产时使质粒的丢失降低到最低程度,除了构建合适的重组菌外,还应对重组菌进行一系列发酵试验,选择最佳的发酵条件。 使质粒稳定的主要措施:首先是组建合适载体和选择适当宿主,关于这两项措施应在构建携带质粒工程菌时即应加以考虑。在发酵过程中可以: (1 )、施加选择压力 利用某些生长条件,只让那些具有一定遗传特性的细胞才能够生长。在重组菌发酵时,常采取这种方法来消除重组质粒的不稳定性,以提高菌体纯度和发酵生产率。

(完整word版)目的基因到工程菌的构建

目的基因到工程菌的构建 1基因工程的诞生 1972年,美国斯坦福大学的学者首先在体外进行了DNA改造的研究,他们把SV40(一种猴病毒)的DNA分别切割,又将两者连接在一起,成功构建了第一个体外重组的人工DNA分子。1973年,Cohen等人首次在体外将重组的DNA分子导入大肠杆菌中,成功地进行了无性繁殖,从而完成了DNA体外重组和扩增的全过程。在这个的基础上,基因工程诞生了。 SV40病毒

第一个重组体的构建 1.1基因工程技术的三大理论基础 一是20世纪40年代Avery等人通过肺炎球菌的转化实验证明了生物的遗传物质是DNA,而且证明了通过DNA可以把一个细菌的性状转移给另一个细菌。二是20世纪50年代Watson和Crick发现了DNA分子的双螺旋结构及DNA的半保留复制机理。三是20世纪60年代关于遗传信 息中心法则的确立,即生物体中遗传信息是按DN A→RNA→蛋白质的方向

进行传递的。 1.2基因工程技术的三大技术基础 三大基本技术问题:一是如何从生物体庞大的双链DNA分子中将所需的基因片段切割下来;二是如何将切割下来的DNA片段进行繁殖扩增;三是如何将所获得的基因片段重新连接。20世纪70年代,由Smith等人发现的核酸限制性内切酶、DNA连接酶和可以作为基因工程载体的细菌质粒的发现,解决了上述三大问题。 1.2.1 限制性核酸内切酶 限制性内切酶不切割自身DNA是因为原核生物中不存在酶的识别序列或识别序列已经被修饰。 1.2.2 DNA连接酶 作用实质:将具有末端碱基互补的2个DNA片段连接在一起,形成重组DNA分子,其起作用时不需要模板。 1.2.3 基因工程的载体-质粒 基因载体的作用是运载目的基因进入宿主细胞,使之能得到复制和进行表达。也就是说,离开染色体的外源DNA不能复制,而而插入复制子DNA的外源DNA可作为复制子的一部分在受体菌中进行复制,这种复

酵母基因工程

酵母基因工程 一酵母基因工程的发展现状 1.酿酒酵母自身的改造 (1)将葡萄糖淀粉酶基因导入酿酒酵母 (2)将外源的蛋白水解酶基因导入酿酒酵母 (3)将β—葡聚糖酶基因导入酵母 (4)将ATP硫酸化酶和腺苷酰硫酸激酶基因在酿酒酵母体内表达 (5)将人血清清蛋白(HAS)的基因转化到酿酒酵母 2酵母表达异源蛋白 (1)表达水平 (2)表达质量 2酵母基因工程的发展趋势 (1)解决酵母基因工程中还存在的缺陷 (2)在人类基因组计划中的应用研究是一个重要的发展方向 (3)利用酵母基因工程筛选更多新药 (4)改造酿酒酵母自身,降低生产酒精的成本 (5)酵母的生理承受极限研究引起人们的关注 3发展历程 1.1974年rlarck—walker和Miklos发现在大多数酿酒酵母中存在质粒。 2.1978年Hmnen将来自一株酿酒酵母的leu 2基因导入另一株酿酒酵母,弥补 了后者的Leu2缺陷,标志着酵母表达系统的建立。 3.1981年Hinnen等用酵母基因表达系统表达了人干扰素。 4.我国也在1983年首次用酵母菌表达了乙型肝炎病毒表面抗原基因。 5.1996年在全世界科学家的通力合作下,完成了第一个真核生物——酿酒酵母 全基因组的测序。 二.酵母基因工程的优点 1.安全无毒,不致病; 2.有较清楚的遗传背景,容易进行遗传操作; 3.容易进行载体DNA的导入。DNA转化技术的不断发展优化,多数酵母菌可 以取得较高的转化率; 4.培养条件简单,容易进行高密度发酵; 5. 能将外源基因表达产物分泌到培养基中; 6.有类似高等真核生物的蛋白质翻译后的修饰功能 三.酵母表达系统 (1)酵母表达载体 ①载体的基本构架:大肠杆菌和酵母菌的“穿梭”质粒。 原核部分:大肠杆菌中复制的起点序列(ori)和抗生素抗性基因序列。 酵母部分: 1酵母菌中维持复制的元件:2μ质粒复制起点;自主复制序列(ARS); 整合型载体的整合介导区。 2营养缺陷型基因序列、抗生素抗性基因序列 3基因启动子和终止子序列 4信号肽序列

第7章 基因工程菌大规模培养

第7章基因工程菌的培养 7.1 工程菌的稳定性 一、工程菌不稳定的表现 工程菌的不稳定实际上包括质粒的不稳定及其表达产物的不稳定两个方面。具体表现为:质粒的丢失、重组质粒发生DNA片段脱落和表达产物的不稳定。 二、引起工程菌不稳定的一些因素及对策 工程菌稳定与否,取决于质粒本身的分子组成、宿主细胞的生理和遗传特性及环境条件等三个方面 工程菌不稳定的因素:控制基因的过量表达,菌体的比生长速率,培养温度,培养基的组成 1、培养基的组成 质粒在丰富培养基比在低限培养基中更加不稳定。合成培养基往往有利于宿主细胞的生长,但不利于外源基因的表达。 2、培养温度 进行工程菌培养时必须探索其最佳培养温度。通常低温有利于重组质粒的稳定遗传。 3、菌体的比生长速率 如果宿主菌的比生长速率比工程菌的大,质粒将严重丢失,导致工业上倒罐;如果宿主菌的比生长速率比工程菌小,大量繁殖时因竟争性利用基质,宿主细胞将会受到抑制,对发酵影响不大。 4、控制基因的过量表达 外源基因表达水平越高,重组质粒就越不稳定。可以采用两阶段培养法,即在发酵前期控制外源基因不过量表达,使质粒稳定遗传,到后期通过提高质粒的拷贝数和转录、转译效率使外源基因高效表达。 控制外源基因过量表达的方法: 1)如构建含可诱导启动子的工程菌,这种工程菌发酵生产时,可选择培养条件使启动子受阻遏制一定时间, 在此期间质粒稳定遗传,然后通过去阻遏(诱导)使质粒高效表达; 2)采用温度敏感型质粒,温度较低时质粒拷贝数少,当温度升高到一定时质粒大量复制、拷贝数剧增。 7.2 高密度培养 为了大量获得基因工程产品,通常采用高密度培养技术,即提高菌体的发酵密度,最终提高产物的比生产率(单位体积单位时间内产物的产量)的一种培养技术,通常指分批补料发酵技术。这样不仅可减少培养体积、强化下游分离提取,还可缩短生产周期、减少设备投资,最终降低生产成本。 一、重组大肠杆菌的高密度培养 重组大肠杆菌高密度发酵成功的关键是补料策略,即根据工程菌的生长特点及产物的表达方式采取合理的营养流加方案。在重组大肠杆菌高密度发酵中,合理流加碳源降低“葡萄糖效应”是成功的关键。常见的流加技术有:恒速流加、变速流加、指数流加和反馈流加。 1、恒速流加 限制性基质以恒定流速流加进入发酵罐中供细胞生长和代谢用的一种培养技术。通常以补料前的耗糖速率作为流加补料速率。 特点: 1)相对于发酵罐中的菌体来说,营养物的浓度逐渐降低; 2)比生长速率也慢慢降低; 3)菌体密度呈线性增加。 2、变速流加 限制性基质以变速或梯度增加流速流加进入发酵罐中供细胞生长和代谢用的一种培养技术。 特点: 1)这样可以克服恒速流加中营养物的浓度逐渐降低的缺陷,菌体在较高密度下通过流加更多营养物 质来促进菌体的生长,并对产物的表达有利。 2)比生长速率不断改变。

大肠杆菌基因工程菌常用类型

1、大肠杆菌DH5a菌株 DH5a是世界上最常用的基因工程菌株之一。由于DH5α是DNA酶缺陷型菌株,有利于基因克隆,保存质粒,但该菌株的蛋白酶没有缺陷,表达的蛋白容易被降解,因此通常不作为表达菌株。E.coli DH5a在使用pUC系列质粒载体转化时,可与载体编码的β-半乳糖苷酶氨基端实现α-互补。可用于蓝白斑筛选鉴别重组菌株。 基因型:F-,φ80dlacZΔM15,Δ(lacZYA-argF)U169,deoR,recA1,endA1,hsdR17(rk-,mk+),phoA,supE44,λ-,thi-1,gyrA96,relA1 2、大肠杆菌BL21(DE3) 菌株 该菌株用于高效表达克隆于含有噬菌体T7启动子的表达载体(如pET系列)的基因。T7噬菌体RNA聚合酶位于λ噬菌体DE3区,该区整合于BL21的染色体上。该菌适合表达非毒性蛋白。 基因型:F-,ompT,hsdS(rBB-mB-),gal,dcm(DE3) 3、大肠杆菌BL21(DE3) pLysS菌株 该菌株含有质粒pLysS,因此具有氯霉素抗性。PLysS含有表达T7溶菌酶的基因,能够降低目的基因的背景表达水平,但不干扰目的蛋白的表达。该菌适合表达毒性蛋白和非毒性蛋白。 基因型:F-,ompThsdS(rBB-mB-),gal,dcm(DE3,pLysS,Camr 4、大肠杆菌JM109菌株 该菌株在使用pUC系列质粒载体进行DNA转化或用M13 phage载体进行转染时,由于载体DNA产生的LacZa多肽和JM09编码的LacZΔM15进行α-互补,从而显示β-半乳糖苷酶活性,由此很容易鉴别重组体菌株。 基因型:recA1,endA1,gyrA96,thi-1,hsdR17,supE44,relA1,Δ(lac-proAB)/F’[traD36,proAB+,lacIq,lacZΔM15] 5、大肠杆菌TOP10菌株 该菌株适用于高效的DNA克隆和质粒扩增,能保证高拷贝质粒的稳定遗传。 基因型:F- ,mcrAΔ(mrr-hsd RMS-mcrBC),φ80 ,lacZΔM15,△lacⅩ74,recA1 ,araΔ139Δ(ara-leu)7697,galU,galK,rps,(Strr) endA1,nupG 6、大肠杆菌HB101菌株 该菌株遗传性能稳定,使用方便,适用于各种基因重组实验。 基因型:supE44,hsdS20(rB-mB-),recA13,ara-14,proA2,lacY1,galK2,rpsL20,xyl-5,mtl-1,leuB6,thi-1 7.XL10-Gold菌株:所制备的感受态细胞是目前转化效率最高的感受态细胞,缺失几乎所有已知的限制酶切系统;同时缺失核酸内切酶(endA),提高了质粒DNA的产量和质量;重组酶缺陷型(recA)减少插入片段的同源重组概率,保证了插入DNA的稳定性,提高感受态转化效率及大质粒转化能力的宿主菌基因型。

基因工程菌大规模培养

第7章基因工程菌的培养 工程菌的稳定性 一、工程菌不稳定的表现 工程菌的不稳定实际上包括质粒的不稳定及其表达产物的不稳定两个方面。具体表现为:质粒的丢失、重组质粒发生DNA片段脱落和表达产物的不稳定。 二、引起工程菌不稳定的一些因素及对策 工程菌稳定与否,取决于质粒本身的分子组成、宿主细胞的生理和遗传特性及环境条件等三个方面 工程菌不稳定的因素:控制基因的过量表达,菌体的比生长速率,培养温度,培养基的组成 1、培养基的组成 质粒在丰富培养基比在低限培养基中更加不稳定。合成培养基往往有利于宿主细胞的生长,但不利于外源基因的表达。 2、培养温度 进行工程菌培养时必须探索其最佳培养温度。通常低温有利于重组质粒的稳定遗传。 3、菌体的比生长速率 如果宿主菌的比生长速率比工程菌的大,质粒将严重丢失,导致工业上倒罐;如果宿主菌的比生长速率比工程菌小,大量繁殖时因竟争性利用基质,宿主细胞将会受到抑制,对发酵影响不大。 4、控制基因的过量表达 外源基因表达水平越高,重组质粒就越不稳定。可以采用两阶段培养法,即在发酵前期控制外源基因不过量表达,使质粒稳定遗传,到后期通过提高质粒的拷贝数和转录、转译效率使外源基因高效表达。 控制外源基因过量表达的方法: 1)如构建含可诱导启动子的工程菌,这种工程菌发酵生产时,可选择培养条件使启动子受阻遏制一定时间, 在此期间质粒稳定遗传,然后通过去阻遏(诱导)使质粒高效表达; 2)采用温度敏感型质粒,温度较低时质粒拷贝数少,当温度升高到一定时质粒大量复制、拷贝数剧增。 高密度培养 为了大量获得基因工程产品,通常采用高密度培养技术,即提高菌体的发酵密度,最终提高产物的比生产率(单位体积单位时间内产物的产量)的一种培养技术,通常指分批补料发酵技术。这样不仅可减少培养体积、强化下游分离提取,还可缩短生产周期、减少设备投资,最终降低生产成本。 一、重组大肠杆菌的高密度培养 重组大肠杆菌高密度发酵成功的关键是补料策略,即根据工程菌的生长特点及产物的表达方式采取合理的营养流加方案。在重组大肠杆菌高密度发酵中,合理流加碳源降低“葡萄糖效应”是成功的关键。常见的流加技术有:恒速流加、变速流加、指数流加和反馈流加。 1、恒速流加 限制性基质以恒定流速流加进入发酵罐中供细胞生长和代谢用的一种培养技术。通常以补料前的耗糖速率作为流加补料速率。 特点: 1)相对于发酵罐中的菌体来说,营养物的浓度逐渐降低; 2)比生长速率也慢慢降低; 3)菌体密度呈线性增加。 2、变速流加 限制性基质以变速或梯度增加流速流加进入发酵罐中供细胞生长和代谢用的一种培养技术。 特点: 1)这样可以克服恒速流加中营养物的浓度逐渐降低的缺陷,菌体在较高密度下通过流加更多营养物 质来促进菌体的生长,并对产物的表达有利。 2)比生长速率不断改变。

基因工程菌的发酵

基因工程菌的发酵 近年来,重组DNA技术(基因工程)已开始由实验室走向工业生产,走向实用。它不仅为我们提供了一种极为有效的菌种改良技术和手段,也为攻克医学上的疑难杂症——癌、遗传病及艾滋病的深入研究和最后的治愈提供了可能;为农业的第三次革命提供了基础;为深入探索生命的奥秘提供了有力的手段。现在由工程菌产生的珍稀药物,如胰岛素、干扰素、人生长激素、乙肝表面抗原等等部已先后面市,基因工程不仅保证了这些药物的来源,而且可使成本大大下降。但是从许多研究中发现,工程菌在保存过程中及发酵生产过程中表现出不稳定性,因而工程菌不稳定性的解决已日益受到重视并成为基因工程这一高技术成就转化为生产力的关键之一。 第一节工程菌的来源和应用 一、何谓基因工程 基因工程(genetic engineering)是指在基因水平上,采用与工程设计十分类似的方法,根据人们的意愿,主要是在体外进行基因切割、拼接和重新组合,再转入生物体内,产生出人们所期望的产物,或创造出具有新的遗传特征的生物类型,并能使之稳定地遗传给后代。 基因工程的核心技术是DNA的重组技术。重组即利用供体生物的遗传物质或人工合成的基因,经过体外或离体的限制酶切割后与适当的载体连接起来形成重组DNA分子,然后在将重组DNA分子导入到受体细胞或受体生物构建转基因生物,该种生物就可以按人类事先设计好的蓝图表现出另外一种生物的某种性状。除DNA 重组技术外,基因工程还应包括基因的表达技术,基因的突变技术,基因的导入技术等。 基因工程一般分为4个步骤: 一是取得符合人们要求的DNA片段,这种DNA片段被称为“目的基因”;二是将目的基因与质粒或病毒DNA连接成重组DNA;三是把重组DNA引入某种细胞;四是把目的基因能表达的受体细胞挑选出来。DNA 分子很小,其直径只有20埃,约相当于五百万分之一厘米,在它们身上进行“手术”是非常困难的,因此基因工程实际上是一种“超级显微工程”,对DNA的切割、缝合与转运,必须有特殊的工具。要把目的基因从供体DNA长链中准确地剪切下来,可不是一件容易的事。1968年,沃纳·阿尔伯博士、丹尼尔·内森斯博士和汉密尔·史密斯博士第一次从大肠杆菌中提取出了限制性内切酶,它能够在DNA上寻找特定的“切点”,认准后将DNA分子的

发酵工程课程实验教学大纲(生物制药方向) (1)

《发酵工程》课程实验教学大纲(生物制药方向) 课程名称(中文)发酵工程 课程编号04118 课程性质独立设课课程属性专业课 教材及实验指导书名称《发酵工程实验》 学时学分:总学时60 总学分 3 实验学时36 实验学分 2 应开实验学期三年级四~五学期 适用专业制药工程 先修课程微生物学、生物化学、化工原理 一、课程简介及基本要求 发酵工程是整个生物工程的核心,是工业微生物实现实验室与工厂化生产的具体操作,是生物技术在生产实践中应用的原理及方法的一部分,是基因工程及酶工程等生物技术工业化的过程与方法。因此,通过对《发酵工程》的学习,不仅掌握发酵工程原理及发酵优化控制过程,而且对系统了解生物技术及其工业化应用都具有深远的意义。 通过《发酵工程》的学习,使学生进一步系统了解发酵工程从培养基配制到发酵罐生产,产品工程放大等一系列的操作原理及过程。 二、课程实验目的要求(100字左右) 发酵工程是一门实践性很强的工程学科,需要一定学时的实验教学实践,为今后从事相关工作打下良好的实践基础,通过《发酵工程》实验学习,不仅能够掌握发酵工艺操作的具体过程及反应过程控制方法,而且进一步了解目前发酵行业的具体产品生产工艺,对发酵生产能够进行指导与分析。 三、适用专业 制药工程(生物制药方向)。 四、主要仪器设备 操净工作台,摇床,7L和50L不锈钢通风发酵罐、离心机、生化培养箱 五、实验方式与基本要求 1.本课程以实验为主,为单独设课,所以开课后,任课教师需向学生讲清课程的性质、任务、要求、课程安排和进度、平时考核内容、期末考试办法、实验守则及实验室安全制度等。 2.该课以设计性实验为主,教材中只给出设计题目,实验前学生必须进行预习,设计报告经教师批阅后,方可进入实验室进行实验。 3.实验4人1组,在规定的时间内,由学生独立完成,出现问题,教师要引导学生独立分析、解决,不得包办代替。

酵母基因工程综述

酵母基因工程综述 姓名:张衡学号:060509215 班级:生工092 酵母菌是一类群体庞大的单细胞真核微生物,种类繁多,至少包括80个属,600多种,1000多菌株。它有完整的亚细胞结构和严谨的基因表达调控机制,它既能通过有丝分裂进行无性繁殖,也可以通过减数分裂实现有性繁殖。酵母菌作为单细胞真核生物,既具有细菌生长迅速、操作简单的特点,又具有真核细胞对翻译后蛋白的加工及修饰的能力,它是表达外源基因的理想宿主。因此利用酵母基因工程成功的生产了人类、动物、植物或微生物来源的异源蛋白,在医药生物技术上发挥了重要作用。 一、酵母基因工程的发展现状和发展趋势 酵母既具有原核生物生长快、遗传操作简单的特点,又有哺乳类细胞的翻译后加工和修饰功能,如二硫键的正确形成、糖基化作用等,用来生产来源于真核生物的生物活性蛋白有很多优点。目前在酵母基因工程中发展和应用的较多的酵母有酿酒酵母、乳酸克鲁维酵母、巴斯德毕赤酵母等,其应用主要体现在两个方面,一是改造酵母本身用以提高发酵性能;二是利用酵母作为宿主表达异源蛋白。1、酿酒酵母自身的改造:a、将葡萄糖淀粉酶基因导入酿酒酵母;b、将外源的蛋白水解酶基因导入酿酒酵母;c、将β—葡聚糖酶基因导入酵母; d、将ATP硫酸化酶和腺苷酰硫酸激酶基因在酿酒酵母体内表达; e、将人血清清蛋白(HAS)的基因转化到酿酒酵母。2、酵母表达异源蛋白:a、表达水平;b、表达质量。 对于酵母基因工程,在构建各种表达载体、建立新的表达系统方面取得了一系列进展。在未来一段时间内,酵母基因工程的研究将逐步转移到完善现有的表达系统、解决存在的缺陷、扩大应用领域等方面。对酵母自身的改造集中体现在如何通过转基因技术使酿酒酵母能利用纤维素和半纤维素等可再生物质来生产廉价的酒精,缓解能源紧张。1、解决酵母基因工程中还存在的缺陷;2、在人类基因组计划中的应用研究是一个重要的发展方向;3、利用酵母基因工程筛选更多的新药;4、改造酿酒酵母自身,降低生产酒精的成本;5、酵母的生理承受极限研究将引起人们的关注。 二、酵母表达系统 酵母菌作为单细胞真核生物,既具有细菌生长迅速、操作简单的特点,又具有真核细胞对翻译后蛋白的加工及修饰的能力,所以是表达外源基因的理想宿主。1、酵母表达载体:a、载体的基本构架典型的酵母表达载体均为大肠杆菌和酵母菌的"穿梭"质粒。它是由来自酵母的部分基因序列和细菌的部分基因序列所组成。其原核部分主要包括可以再大肠杆菌中复制的起点序列(ori)和特定的抗生素抗性基因序列。2、载体的复制形式酵母表达系统的载体主要分为附加型载体和整合型载体两种。附加型载体在酵母宿主中的拷贝数量大,但是在传代过程中易丢失,影响重组菌的稳定性和表达量:整合型载体导入酵母宿主细胞后与酵母细胞染色体基因组DNA整合,稳定性高,但是基因的拷贝数量低。2、宿主能够发展成基因表达系统的宿主应该具备一定的条件:a、安全无毒,不致病;b、遗传背景清楚,容易进行遗传操作;c、构建的载体DNA容易进入,转化频率较高;d、发酵周期短,培养条件简单,容易进行高密度发酵;e、蛋白质分泌能力好。3、酵母的DNA转化:a、原生质体法;b、离子溶液法;c、一步法;d、PEG1000法;e、电穿孔法和粒子轰击法。4酵母分泌外源蛋白的糖基化不同酵母细胞对分泌蛋白的糖基化方式和程度不同,加到分泌蛋白上的碳水化合物

SHMT基因工程菌的构建方案设计

SHMT基因工程菌的构建 第四组 一、实验相关知识 1、丝氨酸羟甲基转移酶是丝氨酸合成中的关键酶,能催化甘氨酸和丝氨酸的相互转化,具体的催化反应如下: SHMT 甘氨酸+N5,N10-亚甲基四氢叶酸L-丝氨酸+四氢叶酸 在丝氨酸羟甲基转移酶(SHMT)作用下,甘氨酸同亚甲基四氢叶酸反应生成L-丝氨酸。该反应需要5-磷酸吡哆醛作为辅酶。N5,N10-亚甲基四氢叶酸上亚甲基可以来自于甘氨酸、甲醛、甲酸、蛋氨酸、胆碱和肌氨酸,它们同四氢叶酸反应生成N5,N10-亚甲基四氢叶酸。本实验以甘氨酸和甲醇为前体物发酵生产L-丝氨酸时,菌体积累L-丝氨酸与菌体含有的SHMT的活性直接相关,但由于SHMT的催化作用理论上是双向的,有必要了解在相同的培养条件或者在本文所用的菌株SHMT是否具有双向催化作用。 2、基因工程(genetic engineering)又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段。

基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。所谓基因工程是在分子水平上对基因进行操作的复杂技术。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。它克服了远缘杂交的不亲和障碍。 3、丝氨酸是一种非必需氨基酸,它在脂肪和脂肪酸的新代谢及肌肉的生长中发挥着作用,因为它有助于免疫血球素和抗体的产生,维持健康的免疫系统也需要丝氨酸。丝氨酸在细胞膜的制造加工、肌肉组织和包围神经细胞的鞘的合成中都发挥着作用。 [大肠杆菌] 细菌染色体DNA 的制备(预习方案)一.实训目的 .学习并掌握细菌基因组的基本知识和提取方法 二.实训原理及相关知识 1.大肠杆菌(Escherichia coli,E.coli)革兰氏阴性短杆菌,大小 0.5×1~3微米。周身鞭毛,能运动,无芽孢。能发酵多种糖 类产酸、产气,是人和动物肠道中的正常栖居菌,婴儿出生后 即随哺乳进入肠道,与人终身相伴,几占粪便干重的1/3。国 家规定,每升饮用水肠杆菌数不应超过3个大肠杆菌的抗原成

基因工程菌发酵生产L-苯丙氨酸工艺优化

基因工程菌发酵生产L-苯丙氨酸工艺优化 时间:2005-5-17 10:56:24 作者:不详来源:中国发酵工业网点击数: 本站另注:L-苯丙氨酸已在国内江苏部分厂家有发酵工业规模化生产,但仍然推荐此文供大家研究参考,了解工艺配方和分析方法。 L-苯丙氨酸(L-phe)是人和动物体内不能合成的8种氨基酸之一,人们称其为必须氨基酸。L-phe在生物体内是转化成L-酪氨酸的原料,因而L-phe成为一些氨基酸输液和氨基酸饮膳所必须的成分。而且,L-phe是合成药物麦角胺、抗生物质和维生素B6的重要原料。同时,L-phe也是合成一些抗癌药物的中间体[1]。在食品工业中,L-phe最主要的用途是合成二肽甜味剂,俗称蛋白糖。基于L-phe广泛的应用前景,近年来L-phe成为氨基酸行业单品中产量增长最快的一种。目前,L-phe的生产方法有酶法、发酵法等,直接发酵法具有可利用廉价原料直接生产L-phe的优点,发酵法生产 L-phe,国外报道产酸率为2.8%,L-phe在我国还未实现规模生产[2]。本实验对构建的重组L-phe基因工程菌 E.coLiHB101. 进行发酵实验,研究了其发酵工艺条件及营养物质的流加对产物L-phe积累的影响。 1实验材料与方法 1.1发酵用菌株基因重组工程菌E.coLiHB101. 。 1.2培养基 1.2.1种子培养基蛋白胨1%;氯化钠1%;酵母粉0.5%;葡萄糖2%;调pH=7.5;抗菌素Km(硫酸卡那霉素)。 1.2.2发酵培养基Na2HPO4·12H2O20g/L;Na-citrate6g/L;Na-gLutamat e0.4g/L;酪氨酸0.6g/L;葡萄糖 20g/L;Km40mg/L。 1.2.3补料培养基CaCL2·2H2O0.6g/L;酪氨酸500mg/L;葡萄糖500g/L;MgSO4·7H2O1g/L;VB1500mg/L;氨水28%。 1.3培养方法1.3.1摇瓶培养250mL锥形瓶内装LB培养基25mL,接种菌种斜面后,于旋转摇床上,在37℃培养12h。 1.3.2深层培养 在2L自控发酵罐(美国进口)中装入1L发酵培养基。灭菌后接入5%的摇瓶种子。通气量为1000L/L·min时,于38.5℃下搅拌培养。搅拌转速根据溶氧(DO)调节;使用28%的氨水调节pH=7.0±0.2;采用流加葡萄糖工艺补料,补料速率由测定葡萄糖来控制。 1.4测定方法 1.4.1菌体浓度 通过测定培养液或其稀释液在波长660nm处的吸光度OD660确定菌体浓度。一个OD660单位相当于 0.267g/L(菌体干重)。当OD660<0.3时,有良好的线性关系。 1.4.2残糖浓度 用费林试剂法测定[3]。 1.4.3发酵液中L-phe浓度分析 用荧光法进行测定[4]。 2结果与讨论 2.1生长因子对苯丙氨酸积累的影响 通过添加不同浓度的酪氨酸,实验由图1示出:随着酪氨酸添加量的增加,产酸率提高,从发酵成本和产酸率两方面分析,得出酪氨酸的最适添加量为1.0~1.2g/L,既可得高产酸率3.68%,又可使成本不致过高。

放线菌抗生素的发酵及目的产物的提取实验报告

放线菌抗生素的发酵及目的产物的提取 一、实验目的 1、熟悉掌握土壤中分离抗生素及培养方法 2、了解和掌握种子制备和摇瓶发酵技术和方法 3、了解抗生素发酵的一般规律和代调控理论 4、了解小型发酵罐的基本结构 5、熟悉掌握小型发酵罐的使用方法和保养 6.掌握抗生素生物效价测定的原理和方法; 7. 掌握管碟法测定抗生素生物效价相关的操作方法。 8.掌握放线菌次级代物的初步纯化及牛津杯实验的基本原理和操作技术 二、实验原理 ①发酵罐是进行液体发酵的特殊设备。生产上使用的发酵罐容积大,均用钢板或不锈钢板制成;供实验室使用的小型发酵罐,其容积可从约lL至数百升或稍大些。一般来说,5L以下是用耐压玻璃制作罐体,5L以上用不锈钢板或钢板制作罐体。发酵罐配备有控制器和各种电极,可以自动地调控试验所需要的培养条件,是微生物学、遗传工程、医药工业等科学研究所必需的设备。 ②抗生素(antibiotics)是由微生物(包括细菌、真菌、放线菌属)或高等动植物在生活过程中所产生的具有抗病原体或其它活性的一类次级代产物,能干扰其他生活细胞发育功能的化学物质。现临

床常用的抗生素有转基因工程菌培养液液中提取物以及用化学方法合成或半合成的化合物。 ③放线菌发酵结束后,次级代物可能与菌体结合,工业上常采用草酸或磷酸等酸化剂处理,释放与菌体结合的次级代物,并采用加热发酵液70 ℃,2 min使蛋白凝固,所得酸性滤液,在经碱处理,进一步去除蛋白。 抗生素的效价常采用微生物学方法测定,它是利用抗生素对特定的微生物具有抗菌活性的原理来测定抗生素效价的方法,如管碟法。管碟法是目前抗生素效价测定的国际通用方法,我国药典也采用此法。管碟法是根据抗生素在琼脂平板培养基中的扩散渗透作用,比较标准品和检品两者对试验菌的抑菌圈大小来测定供试品的效价。管碟法的基本原理是在含有高度敏感性试验菌的琼脂平板上放置小钢管(径6.0±0.l mm,外径8.0±0.l mm,高10±0. lmm),管放人标准品和检品的溶液,经16~18小时恒温培养,当抗生素在菌层培养基中扩散时,会形成抗生素浓度由高到低的自然梯度,即扩散中心浓度高而边缘浓度低。因此,当抗生素浓度达到或高于MIC(最低抑制浓度)时,试验菌就被抑制而不能繁殖,从而呈现透明的无菌生长的区域,常呈圆形,称为抑菌圈。根据扩散定律的推导,抗生素总量的对数值与抑菌圈直径的平方成线性关系,比较抗生素标准品与检品的抑菌圈大小,可计算出抗生素的效价。 常用的管碟法有:一剂量法、二剂量法、三剂量法。后二法已经列入药典。二剂量法系将抗生素标准品和供试品各稀释成一定浓度比

基因工程大实验报告 (终稿)

内蒙古大学生命科学学院生物系本科生基因工程实验论文 分类号: Q78编号: 本科生基因工程实验论文 纳豆激酶基因表达载体的构建及在 大肠杆菌中的表达 指导教师: X X X 学生: X X 专业:生物科学 年级:2009 2012 年8 月24 日

目录 摘要 ...................................................................................................................... .2 绪论 .. (3) 材料与方法 (4) 1材料 (4) 1.1试剂及仪器 (4) 1.2菌种 (5) 1.3质粒 (5) 1.4常用溶液的配制 (5) 2方法 (6) 2.1引物的设计 (6) 2.2 NK基因的PCR扩增 (7) 2.3 DH5a和BL21(DE3)感受态的制备 (7) 2.4 pMD19-T-NK的构建及转化和鉴定 (8) 2.5 pET-trx、pET-NK、pUC-Nk的酶切与回收 (9) 2.6 pET-trx-NK的构建及转化和检测 (11) 2.7 pET-trx-NK的诱导表达 (12) 2.8 pET-trx-NK表达的SDS-PAGE检测 (13) 结果 (15) 1. NK基因的PCR扩增 (15) 2. pMD19-T-trx的构建与鉴定 (16) 3. pET-trx、pET-NK、pUC-Nk的酶切与回收 (16) 4. pET-trx-NK的构建与检测 (18) 5. pET-trx-NK的诱导表达与SDS-PAGE检测 (19) 讨论 (20) 参考文献 (21) 致谢 (21) 感想 (22)

第7章基因工程菌大规模培养

第7章基因工程菌大规模 培养 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第7章基因工程菌的培养 工程菌的稳定性 一、工程菌不稳定的表现 工程菌的不稳定实际上包括质粒的不稳定及其表达产物的不稳定两个方面。具体表现为:质粒的丢失、重组质粒发生DNA片段脱落和表达产物的不稳定。 二、引起工程菌不稳定的一些因素及对策 工程菌稳定与否,取决于质粒本身的分子组成、宿主细胞的生理和遗传特性及环境条件等三个方面 工程菌不稳定的因素:控制基因的过量表达,菌体的比生长速率,培养温度,培养基的组成 1、培养基的组成 质粒在丰富培养基比在低限培养基中更加不稳定。合成培养基往往有利于宿主细胞的生长,但不利于外源基因的表达。 2、培养温度 进行工程菌培养时必须探索其最佳培养温度。通常低温有利于重组质粒的稳定遗传。 3、菌体的比生长速率 如果宿主菌的比生长速率比工程菌的大,质粒将严重丢失,导致工业上倒罐;如果宿主菌的比生长速率比工程菌小,大量繁殖时因竟争性利用基质,宿主细胞将会受到抑制,对发酵影响不大。 4、控制基因的过量表达 外源基因表达水平越高,重组质粒就越不稳定。可以采用两阶段培养法,即在发酵前期控制外源基因不过量表达,使质粒稳定遗传,到后期通过提高质粒的拷贝数和转录、转译效率使外源基因高效表达。 控制外源基因过量表达的方法: 1)如构建含可诱导启动子的工程菌,这种工程菌发酵生产时,可选择培养条件使启动子受阻遏制一定时 间,在此期间质粒稳定遗传,然后通过去阻遏(诱导)使质粒高效表达; 2)采用温度敏感型质粒,温度较低时质粒拷贝数少,当温度升高到一定时质粒大量复制、拷贝数剧增。 高密度培养 为了大量获得基因工程产品,通常采用高密度培养技术,即提高菌体的发酵密度,最终提高产物的比生产率(单位体积单位时间内产物的产量)的一种培养技术,通常指分批补料发酵技术。这样不仅可减少培养体积、强化下游分离提取,还可缩短生产周期、减少设备投资,最终降低生产成本。 一、重组大肠杆菌的高密度培养 重组大肠杆菌高密度发酵成功的关键是补料策略,即根据工程菌的生长特点及产物的表达方式采取合理的营养流加方案。在重组大肠杆菌高密度发酵中,合理流加碳源降低“葡萄糖效应”是成功的关键。常见的流加技术有:恒速流加、变速流加、指数流加和反馈流加。 1、恒速流加 限制性基质以恒定流速流加进入发酵罐中供细胞生长和代谢用的一种培养技术。通常以补料前的耗糖速率作为流加补料速率。 特点: 1)相对于发酵罐中的菌体来说,营养物的浓度逐渐降低; 2)比生长速率也慢慢降低; 3)菌体密度呈线性增加。 2、变速流加 限制性基质以变速或梯度增加流速流加进入发酵罐中供细胞生长和代谢用的一种培养技术。 特点: 1)这样可以克服恒速流加中营养物的浓度逐渐降低的缺陷,菌体在较高密度下通过流加更多营养物 质来促进菌体的生长,并对产物的表达有利。 2)比生长速率不断改变。

14基因工程菌的发酵-第十三章基因工程菌的发酵

第十三章基因工程菌的发酵 近年来,重组DNA技术(基因工程)已开始由实验室走向工业生产,走向实用。它不仅为我们提供了一种极为有效的菌种改良技术和手段,也为攻克医学上的疑难杂症——癌、遗传病及艾滋病的深入研究和最后的治愈提供了可能;为农业的第三次革命提供了基础;为深入探索生命的奥秘提供了有力的手段。现在由工程菌产生的珍稀药物,如胰岛素、干扰素、人生长激素、乙肝表面抗原等等部已先后面市,基因工程不仅保证了这些药物的来源,而且可使成本大大下降。但是从许多研究中发现,工程菌在保存过程中及发酵生产过程中表现出不稳定性,因而工程菌不稳定性的解决已日益受到重视并成为基因工程这一高技术成就转化为生产力的关键之一。 第一节工程菌的来源和应用 一、何谓基因工程 基因工程(genetic engineering)是指在基因水平上,采用与工程设计十分类似的方法,根据人们的意愿,主要是在体外进行基因切割、拼接和重新组合,再转入生物体内,产生出人们所期望的产物,或创造出具有新的遗传特征的生物类型,并能使之稳定地遗传给后代。 基因工程的核心技术是DNA的重组技术。重组即利用供体生物的遗传物质或人工合成的基因,经过体外或离体的限制酶切割后与适当的载体连接起来形成重组DNA分子,然后在将重组DNA分子导入到受体细胞或受体生物构建转基因生物,该种生物就可以按人类事先设计好的蓝图表现出另外一种生物的某种性状。除DNA重组技术外,基因工程还应包括基因的表达技术,基因的突变技术,基因的导入技术等。 基因工程一般分为4个步骤: 一是取得符合人们要求的DNA片段,这种DNA片段被称为“目的基因”;二是将目的基因与质粒或病毒DNA连接成重组 DNA;三是把重组DNA引入某种细胞;四是把目的基因能表达的受体细胞挑选出来。 DNA 分子很小,其直径只有20埃,约相当于五百万分之一厘米,在它们身上进行“手术”是非常困难的,因此基因工程实际上是一种“超级显微工程”,对 DNA的切割、缝合与转运,必须有特殊的工具。要把目的基因从供体 DNA长链中准确地剪切下来,可不是一件容易的事。1968年,沃纳·阿尔伯博士、丹尼尔·内森斯博士和汉密尔·史密斯博士第一次从大肠杆菌中提取出了限制性内切酶,它能够在DNA上寻找特定的“切点”,认准后将DNA分

基因工程实验报告(终)华南理工大学

分子生物学实验报告 (2011 -2012 学年第一学期) 实验内容:基因工程综合实验 实验时间:2012.10.28-2012.11.2 提交日期:2012 年11 月 5 日

实验目的 大肠杆菌表达包涵体蛋白的基因工程实验以一个目的基因片段的获得,表达和纯化和活性分析为主线,抓住蛋白和核酸两大主题,建立一个综合型和研究性的大实验教学体系,重视各项技术的衔接。综合性实验旨在启迪严谨的科学思维和创新意识,提高对实验方法和实验技术的综合运用能力。具体到每个实验的实验目的如下: 1.掌握SDS碱裂解法小量制备质粒的原理和方法。 2.掌握高速离心机、微量移液器等常规仪器的正确使用。 3. 掌握分光光度法估算样品中DNA的浓度和纯度。 4. 熟悉紫外分光光度计的使用方法。 5.学习掌握DNA的琼脂糖凝胶电泳的原理和方法及其运用。 6.掌握用CTAB法小量制备大肠杆菌基因组DNA 7.了解基因组DNA的其它提取方法 8.了解酶切原理。 9.掌握酶切体系的建立原则。 10. 熟悉基因工程所用限制性内切酶的特点。 11.学习掌握外源DNA与质粒载体的重组连接技术 12.掌握大肠杆菌感受态细胞的制备及转化的方法及技术。 13.熟练掌握用重组DNA转化感受态细胞的技术,为基因克隆打好基础 14.学习掌握PCR技术的原理及基本操作 15.学习考马斯亮蓝(Coomassie Brilliant Blue)法测定蛋白质浓度的原理和方法。 16.掌握蛋白质的SDS-PAGE电泳原理和操作技术及应用。

实验流程 具体每日实验流程 1、 10月28日,利用双酶切,DNA 琼脂糖凝胶电泳,胶回收,双酶切目的基因和载体连接过夜。 2、10月29日下午,大肠杆菌感受态细胞的制备与转化,涂平板和培养,先正放置半小时,再倒置培养过夜。 3、10月30日下午,挑阳性(含抗性基因)菌落,菌落PCR ,转板和液体培养菌体。 4、10月31日上午,转接培养,诱导表达,晚上,离心菌体,去上清,冰箱放置保存。 5、11月1日下午,离心菌体,提质粒,跑电泳进行鉴定,培养菌体。 6、11月2日下午,跑SDS 蛋白质电泳 。 双酶切 PCR DNA 琼脂糖电泳 PCR 产物回收 质粒的提取 Southern 杂交 pcr 抗性菌的筛选 蛋白质的提取分离 SDS-GAGE 蛋白质检测

相关文档
最新文档