定积分应用方法总结(经典题型归纳)

定积分应用方法总结(经典题型归纳)
定积分应用方法总结(经典题型归纳)

定积分复习重点

定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物理问题等. 1.定积分的运算性质

1212(1)()()().

(2)[()()]()().

(3)()()()().

b b

a

a

b b

b a

a

a

b c b

a

a

c

kf x dx k f x dx k f x f x dx f x dx f x dx f x dx f x dx f x dx =±=±=+????????为常数其中a

2.微积分基本定理

如果()f x 是区间[a ,b]上的连续函数,并且'

()()F x f x =,那么

()()()b

a

f x d x F b

F a

=-?

,这个结论叫微积分基本定理,又叫牛顿—莱布尼兹公式。

3.求定积分的方法

(1)利用微积分基本定理就定积分 ①对被积分函数,先简化,再求定积分.

例如:

230

(1-2sin

)2d π

θ

θ?注:32

2

()3x x '=,(-cos )sin x x '=

②分段函数,分段求定积分,再求和.(被积函数中带有绝对值符号时,计算的

基本思路就是用分段函数表示被积函数,以去掉绝对值符号,然后应用定积分对积分区间的可加性,分段进行计算)

1.计算积分?---3

22|32|dx x x

解1. 由于在积分区间]3,2[-上,被积函数可表示为

?

??≤<-----≤≤---=--.31,)32(,

12,32|32|2

2

2

x x x x x x x x 所以

?

---3

2

2|32|dx x x 13)32()32(3

1

212

2=-----=??---dx x x dx x x .

(2)利用定积分的几何意义求定积分

如定积分

1

20

14x dx π

-=

?

,其几何意义就是单位圆面积的1

4。

(课本P60 B 组第一题) (3)利用被积函数的奇偶性

a. 若()f x 为奇函数,则()0

a

a f x dx -=?;

b. 若()f x 为偶函数,则0()()a a

a f x dx f x dx

-=??2;其中0a >。

例题:1.2352

2(+5x )0

x dx -=?(同步训练P32 第3题)

2.

a

a

a

(cos -5sin 2)(cos -5sin )24a

a

a

x x x dx x x x dx dx a

---+=+=?

??

3) (2007枣庄模拟)已知f(x)为偶函数,且60

()8

f x dx =?

,则6

6

()f x dx

-?

等于( B )

A.0 B.4 C.8 D.16 (同步训练P30 第6题)

4.利用定积分求曲边多边形的面积

在直角坐标系中,要结合具体图形来定:

方法总结:求由两条曲线围成的图形的面积的解题步骤

(1)画出图形,(2)求出交点的横坐标.定出积分的上、下限;

(1)();

(2)()();

(3)()()()();

(4)[()()]b

a

b

b

a

a c

b

c

b

a

c

a

c

b

a

S f x dx S f x dx f x dx S f x dx f x dx f x dx f x dx S f x g x dx

==

=-=+=-=-??

??????

(3)确定被积函数,特别要注意分清被积函数的上、下位置;

(4)写出平面图形面积的定积分的表达式;(5)运用微积分基本定理计算定积分,求面积.

5.定积分在物理中的应用 (1)变速直线运动问题

如果作变速直线运动的物体的速度v 关于时间t 的函数是()()()0v v t v t =>,那么物体从时刻()t a t b a b ==<到所经过的路程为:

()b

a

s v t dt =?

(2)变力做功问题

()b

a

W F x dx =?

巩固练习:

1.由直线x y e x y 2,,0===及曲线x

y 2

=

所围成的封闭的图形的面积为( ) A.2ln 23+ B.3 C.322

-e D.e 2.由曲线sin ,cos y x y x ==与直线0,2

x x π

==所围成的平面图形(图中的阴影部分)的面积

是 .

3.在平面直角坐标系xOy 中,由直线0,1,0x x y ===与曲线x y e =围成的封闭图形的面积

是 . 4.曲线0,,2y y x y x ==

=-所围成的封闭图形的面积为 .

5.由直线x =-3π,x =3

π

,y =0与曲线y =cosx 所围成的封闭图形的面积为 .

6.曲线1xy =与直线y x =和3y =所围成的平面图形的面积为_________. 7.

2

20

4x dx -=?

.

8.曲线2

y =x 与y =2x 围成的图形的面积为______________.

巩固练习答案:

1.B

1

21010

1

22|2ln |123e

e

xdx dx x x x

+=+=+=?

?

,故选B. 2.222-

故4

400

2

22

(cos sin )2(sin cos )|2(

1)22222S x x dx x x ππ

=-=?+=?+-=-?

3.1e -

4.

103

4

4

332

44

220

22

02210

(2)(2)423233x S xdx x dx x x =--=--=?-=?

?.

5.3

6.4ln3-

则所求区域面积为()1

31131334ln 3S dx x dx x ?

?=-+-=- ??

???

7.π根据积分的几何意义,由图可得

?

=-2

24π

dx x ,故填π.

3,3()

13,3()

1,1()

O

y

x

y=3

y=

1x

y=x

定积分的方法总结

定积分的方法总结 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求 s i n b a x d x ? , (b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的 方法作积分和.取h = n a b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

定积分典型例题20例答案(供参考)

定积分典型例题20例答案 例1 求2 1lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111 n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+L =1lim n n →∞+L =34 = ?. 例2 0 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=, 故321(1)3f x x -= ,令3126x -=得3x =,所以1(26)27 f =.

七大积分总结

七大积分总结 一. 定积分 1. 定积分的定义:设函数f(x)在[a,b]上有界,在区间[a,b]中任意插入n -1个分点: a=x 0

? ??==b a b a b a du u f dt t f dx x f )()()(。 (2) 定义中区间的分法与ξi 的取法是任意的。 (3) 定义中涉及的极限过程中要求λ→0,表示对区间[a,b]无限细分的过程,随λ →0必有n →∞,反之n →∞并不能保证λ→0,定积分的实质是求某种特殊合式的极限: 例:∑?=∞→=n i n n i f dx x f 1 1 0n 1 )()(lim (此特殊合式在计算中可以作为公式使用) 2. 定积分的存在定理 定理一 若函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。 定理二 若函数f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间上可积。 3. 定积分的几何意义 对于定义在区间[a,b]上连续函数f(x),当f(x)≥0时,定积分 ? b a dx x f )(在几何上表示由曲线y=f(x),x=a,x=b 及x 轴所围成的曲边梯形的面积;当f(x) 小于0时,围成的曲边梯形位于x 轴下方,定积分?b a dx x f )(在几何意义上表示曲边梯形面积的负值。若f(x)在区间上既取得正值又取得负值时,定积分的几何意义是:它是介于x 轴,曲线y=f(x),x=a,x=b 之间的各部分曲边梯形的代数和。 4.定积分的性质 线性性质(性质一、性质二)

定积分典型例题11254

定积分典型例题 例1 求21lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞L =1lim n n →∞+L =34 =?. 例2 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 比较1 2 x e dx ?,2 1 2 x e dx ?,1 2 (1)x dx +?. 分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小. 解法1 在[1,2]上,有2 x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又 1 22 1 ()()f x dx f x dx =-? ?,从而有2 111 2 2 2 (1)x x x dx e dx e dx +>>???. 解法2 在[1,2]上,有2 x x e e ≤.由泰勒中值定理2 12! x e e x x ξ=++得1x e x >+.注意到 1 2 2 1 ()()f x dx f x dx =-? ?.因此 2 1 11 2 2 2 (1)x x x dx e dx e dx +>>? ??. 例4 估计定积分2 2x x e dx -?的值. 分析 要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值.

定积分总结

定积分讲义总结 内容一 定积分概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?= ),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:1 1 ()()n n n i i i i b a S f x f n ξξ==-=?=∑∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分 ()b a f x dx ? 是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和: 1()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? 例1.弹簧在拉伸的过程中,力与伸长量成正比,即力()F x kx =(k 为常数,x 是伸长量),求弹簧从平衡位置拉长b 所作的功. 分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解. 解: 将物体用常力F 沿力的方向移动距离x ,则所作的功为W F x =?. 1.分割 在区间[]0,b 上等间隔地插入1n -个点,将区间[]0,1等分成n 个小区间: 0,b n ??????,2,b b n n ?? ????,…,()1,n b b n -?????? 记第i 个区间为()1,(1,2,,)i b i b i n n n -???=? ? ??L ,其长度为()1i b i b b x n n n -??=-= 把在分段0, b n ? ???? ?,2,b b n n ?? ????,…,()1,n b b n -?????? 上所作的功分别记作:1W ?,2W ?,…,n W ? (2)近似代替 有条件知:()()11i i b i b b W F x k n n n --???=??=?? ? ?? (1,2,,)i n =L (3)求和 ()1 1 1n n n i i i i b b W W k n n ==-=?=??∑∑ =()()22222 110121122n n kb kb kb n n n n -?? ++++-==-?? ?? ??? L

高中数学定积分知识点

数学选修2-2知识点总结 一、导数 1.函数的平均变化率为 =??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或 0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;

6、常见的导数和定积分运算公式:若() g x均可导(可积),则有: f x,() 用导数求函数单调区间的步骤: ①求函数f(x)的导数'() f x ②令'() f x>0,解不等式,得x的范围就是递增区间. ③令'() f x<0,解不等式,得x的范围,就是递减区间; [注]:求单调区间之前一定要先看原函数的定义域。 7.求可导函数f(x)的极值的步骤: (1)确定函数的定义域。 (2) 求函数f(x)的导数'() f x (3)求方程'() f x=0的根 (4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查/() f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如

定积分知识点总结.doc

定积分知识点总结 北京航空航天大学 李权州 一、定积分定义与基本性质 1.定积分定义 设有一函数f(x)给定在某一区间[a,b]上. 我们在a 与b 之间插入一些分点b x x x x a n =<<<<=...210. 而将该区间任意分为若干段. 以||||π表示差数 )1,...,1,0(1-=-=?+n i x x x i i i 中最大者. 在每个分区间],[1+i i x x 中各取一个任意的点i x ξ=. )1,...,1,0(1-=≤≤+n i x x i i i ξ 而做成总和 ∑-=?=1 0)(n i i i x f ξσ 然后建立这个总和的极限概念: σπ0 ||||lim →=I 另用""δε-语言进行定义: 0>?ε,0>?δ,在||||πδ<时,恒有 εσ<-||I 则称该总和σ在0→λ时有极限I . 总和σ在0→λ时的极限即f(x)在区间a 到b 上的定积分,符号表示为 ?=b a dx x f I )( 2.性质 设f(x),g(x)在[a,b]上可积,则有下列性质 (1) 积分的保序性 如果任意)(),(],,[x g x f b a x ∈,则??≥b a b a dx x g dx x f ,)()(

特别地,如果任意,0)(],,[≥∈x f b a x 则?≥b a dx x f 0)( (2) 积分的线性性质 ???±=±b a b a b a dx x g dx x f dx x g x f )()())()((βαβα 特别地,有??=b a b a x f c dx x cf )()(. 设f(x)在[a,b]上可积,且连续, (1)设c 为[a,b]区间中的一个常数,则满足 ???+=b c c a b a dx x f dx x f dx x f )()()( 实际上,将a,b,c 三点互换位置,等式仍然成立. (4)存在],[b a ∈θ,使得 )()()(θf a b dx x f b a -=? 二、达布定理 1.达布和 分别以i m 和i M 表示函数f(x)在区间],[1+i i x x 里的下确界及上确界并且做总和 ∑∑=+=+-=-=n i i i i n i i i i x x m f S x x M f S 1 11 1)(),(,)(),(ππ ),(f S π称为f(x)相应于分割π的达布上和,),(f S π称为f(x)相应于分割π的达布下 和 特别地,当f(x)连续时,这些和就直接是相应于任意分割法的积分和的最小者和最大者,因为在这种情形下f(x)在没一个区间上都可以达到其上下确界. 回到一般情况,有上下界定义知道 i i i M f m ≤≤)(ξ 将这些不等式逐项各乘以i x ?(i x ?是正数)并依i 求其总和,可以得到

定积分典型例题56177

定积分典型例题 例1 求332 1lim )n n n →∞+. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1 i x n ?=,然后把2111n n n =?的一个因子1n 乘入和式中各 项.于是将所求极限转化为求定积分.即 3321lim )n n n →∞+=3 1lim )n n n n →∞+=03 4 =?. 例2 ? =_________. 解法1 由定积分的几何意义知,0 ? 等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ?= 2 π. 例18 计算 2 1 ||x dx -? . 分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分. 解 2 1 ||x dx -? =02 1 ()x dx xdx --+?? =220210[][]22x x --+=5 2 . 注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 3 322 2111 []6 dx x x --=-=?,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界. 例19 计算 2 20 max{,}x x dx ? . 分析 被积函数在积分区间上实际是分段函数 212 ()01x x f x x x ?<≤=?≤≤? . 解 232 12 2 2 12010 1 1717 max{,}[][]23236 x x x x dx xdx x dx =+=+=+=? ?? 例20 设()f x 是连续函数,且1 ()3()f x x f t dt =+? ,则()________f x =. 分析 本题只需要注意到定积分 ()b a f x dx ? 是常数(,a b 为常数). 解 因()f x 连续,()f x 必可积,从而 1 ()f t dt ? 是常数,记1 ()f t dt a =?,则 ()3f x x a =+,且1 1 (3)()x a dx f t dt a +==??. 所以

定积分计算方法总结

定积分计算方法总结 Final revision by standardization team on December 10, 2020.

定积分计算方法总结 一、不定积分计算方法 1.凑微分法 2.裂项法 3.变量代换法 1)三角代换 2)根幂代换 3)倒代换 4.配方后积分 5.有理化 6.和差化积法 7.分部积分法(反、对、幂、指、三) 8.降幂法 二、定积分的计算方法 1.利用函数奇偶性 2.利用函数周期性 3.参考不定积分计算方法 三、定积分与极限 1.积和式极限 2.利用积分中值定理或微分中值定理求极限 3.洛必达法则 4.等价无穷小

四、 定积分的估值及其不等式的应用 1. 不计算积分,比较积分值的大小 1) 比较定理:若在同一区间[a,b]上,总有 f(x)>=g(x),则∫f (f )ff f f >=∫f (f )f f dx 2) 利用被积函数所满足的不等式比较之 a) 当0

3)常数变易法 4)利用泰勒公式展开法 五、变限积分的导数方法

定积分计算的总结论文

定积分计算的总结论文公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限, 设()0()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[]1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

第六章 定积分的应用总结

第六章 定积分的应用 总结 一、定积分的元素法 1.用定积分表示量U 的条件 如果量U 满足: (1) ; (2) ; (3) ,那么就可考虑用定积分表示这个量U . 2.写出量U 的积分表达式的步骤: (1) ; (2) ; (3) . 二、平面图形的面积 1.若平面图形由连续曲线))()()((),(x g x f x g y x f y ≥==及直线)(,b a b x a x <==所围成,则其面积为=A . 2.若平面图形由连续曲线))()()((),(y y y x y x ψ?ψ?≥==及直线)(,d c d y c y <==所围成,则其面积为=A . 3.由连续曲线0)(),(≥=θ?θ?ρ及两射线βθαθ==,围成的曲边扇形的面积为=A . 三、体积 1.旋转体的体积 (1)由连续曲线0)(≥=x f y ,直线)(,b a b x a x <==及x 轴所围成的平面图形绕x 轴旋转一周而成的旋转体的体积为=x V . (2)由连续曲线0)(≥=y x ?,直线)(,d c d y c y <==及y 轴所围成的平面图形绕y 轴

旋转一周而成的旋转体的体积为=V . 2.平行截面面积为已知的立体的体积 适当建立x 轴,使立体在过点)(,b a b x a x <==且垂直于x 轴的两平面之间,)(x A 为该立体过点x 且垂直于x 轴截面的面积,于是该立体的体积为=V . 四、平面曲线的弧长 1.曲线可求长的充分条件: . 2.求光滑曲线弧的长度的公式:(设L 为平面光滑曲线弧) 如果已知L 的参数方程:)(),(), (βαψ?≤≤???==t t y t x ,其中)(t ?和)(t ψ在],[βα上有连续导数, 且0)()(22≠'+'t t ψ?,则L 的长度为=s . 如果已知L 的直角坐标方程:)()(b x a x f y ≤≤=,其中)(x f 在],[b a 上有一阶连续导数,则L 的长度为=s . 如果已知L 的极坐标方程:)()(βθαθρρ≤≤=,其中)(θρ在],[βα上有一阶连续导数,则L 的长度为=s . 四、定积分在物理学上的应用 1.变速直线运动的路程 某物体作直线运动,已知速度)(t v 是时间t 的连续函数,且0)(≥t v ,则该物体从时刻1t 到时刻2t (21t t ≤)的运动路程为=s . 2.变力沿直线作功 如果力F 的方向不变(与x 轴同向)且大小为)(x F ,物体在力F 的作用下由x 轴上的点a 移动到点b ,则力F 对物体作的功为=W . 3.水压力 一般使用定积分的 法得到水压力的定积分表示式,再计算其值. 4.引力 求引力时通常分别求引力在两个坐标轴上的分力,使用定积分的 法.要注意充分利用对称性.

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

定积分典型例题

定积分典型例题 例 1 求 Iim J 2(^n τ +Q2n 2 +H ∣ +V ∏3). n _.: ∏ 分析将这类问题转化为定积分主要是确定被积函数和积分上下限?若对题目中被积函数难以想到, 可采取如下方法:先对区间[O, 1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 1 III 1 解 将区间[0, 1] n 等分,则每个小区间长为.汉=丄,然后把—=丄1的一个因子-乘入和式中 n n n n n 各项?于是将所求极限转化为求定积分?即 n i ?^贰+痢+山+疔)=曲(£ +£ +川+晋)=MdX=扌? 例 2 £ J 2x 一 X d X __________ . 解法1由定积分的几何意义知, °?2x -χ2dx 等于上半圆周(x_1) y =1 (y_0) 与X 轴所围成的图形的面积?故 2? 2^x 2dx = _ ? ■° 2 解法2本题也可直接用换元法求解?令 x_1 = sint (—巴

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

导数及定积分知识点的总结及练习(经典)

导数的应用及定积分 (一)导数及其应用 1.函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0 Δy Δx =lim Δx → f (x 0+Δx )-f (x 0)Δx .我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0 Δy Δx =lim Δx → f (x 0+Δx )-f (x 0)Δx 。 2.导数的几何意义 函数y =f (x )在x =x 0处的导数,就是曲线y =f (x )在x =x 0处的切线的斜率 ,即k =f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0) Δx . 3.函数的导数 对于函数y =f (x ),当x =x 0时,f ′(x 0)是一个确定的数.当x 变化时,f ′(x )便是一个关于x 的函数,我们称它为函数y =f (x )的导函数(简称为导数),即f ′(x )=y ′=lim Δx →0 f (x 0+Δx )-f (x 0) Δx . 4.函数y =f(x)在点x 0处的导数f ′(x 0)就是导函数f ′(x)在点x =x 0处的函数值,即f ′(x 0)=f ′(x)|x =x 0。 5.常见函数的导数 (x n )′=__________.(1 x )′=__________.(sin x )′=__________.(cos x )′=__________. (a x )′=__________.(e x )′=__________.(log a x )′=__________.(ln x )′=__________. (1)设函数f (x )、g (x )是可导函数,则: (f (x )±g (x ))′=________________;(f (x )·g (x ))′=_________________. (2)设函数f (x )、g (x )是可导函数,且g (x )≠0,?? ?? f (x ) g (x )′=___________________. (3)复合函数y =f(g(x))的导数和函数y =f(u),u =g(x)的导数间的关系为yx ′=y u ′·u x ′.即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 6.函数的单调性 设函数y =f(x)在区间(a ,b)内可导, (1)如果在区间(a ,b)内,f ′(x)>0,则f(x)在此区间单调__________; (2)如果在区间(a ,b)内,f ′(x)<0,则f(x)在此区间内单调__________. (2)如果一个函数在某一范围内导数的绝对值较大,那么这个函数在这个范围内变化较__________,其图象比较__________. 7.函数的极值

定积分典型例题20例答案

定积分典型例题20例答案 例1 求33322 32 1lim (2)n n n n n →∞+++. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 33322 32 1lim (2)n n n n n →∞+++=333 112 lim ()n n n n n n →∞++ +=1303 4 xdx =?. 例2 2 20 2x x dx -? =_________. 解法1 由定积分的几何意义知,2 20 2x x dx -?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故220 2x x dx -? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 2 2 2x x dx -? =2 2 2 1sin cos t tdt ππ- -? =2 2 21sin cos t tdt π -? =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=,

浅谈定积分的应用

浅谈定积分的应用 **** **** (天津商业大学经济学院,中国天津 300134) 摘要:定积分在我们日常生活和学习中有很多的用处,本文阐述了定积分的定义和几何意义,并通过举例分析了定积分在高等数学、物理学、经济学等领域的应用条件及其应用场合,通过分析可以看出利用定积分求解一些实际问题是非常方便及其准确的。 关键词 定积分 定积分的应用 求旋转体体积 变力做功 The Application of Definite Integral **** **** (Tianjin University of Commerce ,Tianjin ,300134,China) Abstract:Definite integral in our daily life and learning have a lot of use, this paper expounds the definition of defi nite integral and geometric meaning, and through the example analysis of the definite integral in the higher mathe matics, physics, economics, and other fields of application condition and its applications, through the analysis can be seen that the use of definite integral to solve some practical problems is very convenient and accurate. Keywords: definite integral, the application of definite integral, strives for the body of revolution, volume change forces work 0、前言 众所周知,微积分的两大部分是微分与积分。一元函数情况下,求微分实际上是求一个已知函数的导数,而积分是已知一个函数的导数,求原函数,所以,微分与积分互为逆运算。在我们日常生活当中,定积分的应用是十分广泛的。定积分作为人类智慧最伟大的成就之一,既可以作为基础学科来研究,也可以作为一个解决问题的方法来使用。 微积分是与应用联系着并发展起来的。定积分渗透到我们生活中的方方面面,推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支的发展。并在这些学科中有越来越广泛的应用,微积分是一门历史悠久而又不断发展进步的学科,历史上许多著名的数学家把毕生的心血投入到微积分的研究中,从生产实际的角度上看,应用又是重中之重,随着数学的不断前进,微积分的应用也呈现前所未有的发展[1-5] 。本文将举例介绍定积分在 的我们日常学习和生活当中的应用。 1定积分的基本定理和几何意义 1.1、定积分的定义 定积分就是求函数)(x f 在区间[]b a ,中图线下包围的面积。即由0=y ,a x =, b x =,()x f y =所围成图形的面积。 定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是: 如果)(x f 是[]b a ,上的连续函数,并且有())(' x f X F =,那么 ()()()1)( a F b F dx x f b a -=?