酶在生活和生产当中的应用

酶在生活和生产当中的应用
酶在生活和生产当中的应用

酶在生活和生产当中的应用

1.洗涤剂工业:

加酶洗衣粉——碱性蛋白酶类易于洗去衣物上的血渍、奶渍等污渍。

2.乳制品工业:

凝乳酶——奶酪生产的凝结剂,并可用于分解蛋白质。

乳糖酶——降解乳糖为葡萄糖和半乳糖,获得没有乳糖的牛乳制品,有利于乳品的消化吸收。

3.纺织工业:

淀粉酶——广泛地应用于纺织品的褪浆,其中细菌淀粉酶能忍受100~110℃的高温操作条件。

纤维素酶——代替沙石洗工艺处理制作牛仔服的棉布,提高牛仔服质量。

4.医疗和药品工业:

胰蛋白酶——用于促进伤口愈合和溶解血凝块,还可用于去除坏死组织,抑制污染微生物的繁殖。

5.酿酒工业:

麦芽中的淀粉酶、蛋白酶、葡聚糖酶——将酿酒原料淀粉和蛋白质降解成能被酵母利用的单糖、氨基酸和肽,从而提高乙醇的产量。

1.洗涤剂和个人用品工业用酶:

洗涤剂是工业用酶最大的应用领域。在洗衣、洗碗、公共清洗及隐形眼镜等的清洗中,酶无处不在。蛋白酶、淀粉酶、脂肪酶、可除去衣领、袖口处的污渍及血渍、菜渍、油渍等一系列生活污垢;而纤维毒酶的参与则通过对棉织物纤维的修复作用而达到“织物复新”

的效果。

含有淀粉葡萄糖和葡萄糖氧化酶的牙膏及漱口液可防止牙菌班的形成,减少口臭。将来,多酚氧化酶在合适的介质中可完成生物染化的工作。这将使爱美人进一步心再的心为美丽而付出受化学品毒害的代价。

2酶在食品工业的应用:

3酶在纺织品整理中的应用:

4.饲料工业用酶:

5啤酒工业酿造用酶:传统方法将谷物转化成啤酒的酶的来自麦芽。如要麦芽汗中酶活性变化或过低可能导致一系列质量问题:提取率低,麦汗分离时间长,发酵慢,啤酒的口味及稳定性差等。

工业酶可用来补充麦芽天然含有的酶,用辅料(玉米、小麦、大米、等淀粉类原料)酿啤酒,大麦酿啤酒时分别加入α淀粉酶、β-葡聚糖酶及蛋白酶可确保酿造质量。

麦芽汗分离和啤酒过滤是酿酒工艺两个常见的难关。在糖化过程中的β葡聚糖酶和戊聚糖酶的应用可解决这些问题。

啤酒发酵初期酵母产生的双乙酰使啤酒有一种类似乳酪味道。当啤酒中双乙酰的含量下降到某一水平(大约0.07PPM)时,则标志着啤酒的成熟。发酵早期加入α乙酰乳酸脱羧酶可促进双乙酰分解,缩短啤酒发酵时间并确保良好的风味

6酶与燃料酒精:

7淀粉糖工业用酶;20世纪60年代,糖化酶的应用很使快大多数葡萄糖生产工艺都由酸水解变成酶小解。由于酶瓜的高效性和专一性,人们可以大规模地生产纯度更高、更易结晶的产品。1973年,固定化葡萄糖异构酶的开发使得高果糖浆的工业化生产成为可能。这一工业还迅速采用了由分子生物学和遗传工程学得到的新酶,使工艺不断得到优化和突破。

淀粉(主要来源于小麦、玉米、木薯和马铃薯等)制糖的主要转化步骤是液化、糖化和异构化。

在淀粉悬浮液中加入耐温型的α-淀粉酶,搅拌后通过喷射液化器在105110C的温度下经一系列管道统停留约5MIN,使淀粉完全糊化。部分液化了的淀粉经板式换热所产生的麦芽糊精经糖化酶或真菌α-淀粉酶进一步糖化,可生产各种不同甜度的甜味剂,如麦芽糖浆及高转化糖浆。应用α-淀粉酶、糖化酶及普鲁兰酶可生产高麦芽糖浆和中转化糖浆,其麦芽糖含量接近80%。

另外,淀粉经酶水解后还可发酵生产酒精、多元醇、维生素C和青毒素及其他抗生素等8发酵工业与酶:中华民族早在5000年前就开始利用微生物发酵生产食品、酿造调味品和饮用酒类,是世界上最早应用发酵技术的民族之一。

随着人类对微生物生理活动规律认识的加深,利用外源的高活力工业酶制剂将淀粉分解成为菌种利用效率最高的葡萄糖,并加入到发酵培养基中。形成了在时间与空间上均可分别进行的糖化和发酵工艺。这种工艺将工业化的α淀粉酶和葡萄糖淀粉酶(即糖化)的应用引入发酵工业,并立即带来发酵工业技术进步的巨大飞跃。

时至今日,仅仅是淀粉分解为葡萄糖的酶制剂已远远不能满足发酵工业的需求,具备以下特征的酶越来越受到发酵工业的青睐:更宽的PH、温度适应范围;更少的副产物生成;减少化学品使用以处于环境保护。

除了上述两种酶的应用外,越来越多的酶被不断地引入到发酵工业中以使人们可利用更多的原料来源,或使生产过程更环保和便利。

9制革工业用酶:

物理知识在实际生活中的一些应用

初中物理知识在实际生活中的一些应用 寨里中学刘善锋 物理是一门历史悠久的自然学科,物理科学作为自然科学的重要分支,不仅对物质文明的进步和人类对自然界认识的加深起了重要的推动作用,而且对人类的思维发展也产生了重要的影响。从亚里士多德时代的自然哲学,到牛顿时代的经典力学,直至现代物理中的相对论和量子力学等,都是物理学家的科学素质、科学精神以及科学思维的有形体现。随着科技的发展、社会的进步,物理已渗入到人类生活的各个领域。 新课程标准告诉我们“义务教育阶段的物理课程应贴近学生生活,符合学生认知特点,激发并保持学生的学习兴趣,通过探索物理现象,揭示隐藏其中的物理规律,并将其应用于生产生活实际,培养学生终身的探索乐趣、良好的思维习惯和初步的科学实践能力。”在生活中,我们会接触到各种各样的物体,为了更好的了解和使用它们,就要用到相关的物理知识。用身边的事例去解释和总结物理规律,学生易于接受和理解。只要时时留意,经常总结,就会不断发现有利于物理教学的事例,从而丰富我们的课堂,活跃教学气氛,简化物理概念和规律。 物理学存在于物理学家的身边。勤于观察的意大利物理学家伽利略,在比萨大教堂做礼拜时,悬挂在教堂半空中的铜吊灯的摆动引起了他极大的兴趣,后来反复观察,反复研究,发现了摆的等时性原理;勇于实践的美国物理学家富兰克林,为认清“天神发怒”的本质,在一个电闪雷鸣、风雨交加的日子,冒着生命危险,利用一个带铁丝的风筝将“上帝之火”请下凡间,由此发明了避雷针;古希腊阿基米德发现阿基米德原理;牛顿从苹果落地发现了万有引力定律;德国物理学家伦琴发现X射线……研究身边的琐事并因此成名的物理学家的事例不胜枚举。 物理学也存在于同学们身边。学习了电学知识后,同学们发现电在我们生活中起着举足轻重的作用。电灯、电视机、电饭煲、电褥子、电磁炉等,在很多家庭中都是必需品。当某个时候突然停电时,我们会变得手足无措。没有了电视,我们会觉得生活很单调;没有了电灯,我们会觉得回到了点煤油灯的时代。特别是现在的孩子,每次遇到这种情况,他们都会感叹电在现代文明中的重要作用。 于是,同学们自发的对家庭中涉及到电的物体进行了探究。经过一段时间的努力,他们得出各种各样的结论。在交流的基础上,各小组进行了汇总,得出几方面的结论: 一、在家庭线路安装方面 1.电表箱中电能表的选择,220V 20A的规格满足了大多数家庭用电器总功率 过大的要求。 2.电线的选择,2.5平方毫米的铜导线允许通过的最大电流23A,即与电能表 相匹配,又满足了大功率用电器对导线的安全要求。 3.闸刀开关中的保险丝,熔点低,电阻大。当线路中出现短路或过载时能自 动熔断,起到保护电路的作用。 4.漏电断路器,比闸刀开关更先进一些,除了对短路和过载起作用外,对于 意外的漏电和触电事故能起到自动跳闸的作用,更好的保障我们的人身安全。 5.三孔插座中的地线,可以把漏电电流及时的导入大地,避免了因用电器漏 电造成的人身触电事故。洗衣机、空调和其它大功率用电器的电源线都是三线 插头,就是为了和地线配套使用。 二、厨房中的电器 1.电饭煲利用电流的热效应,把电能转化为热能,它的热效率较低。 2.电磁炉能把电能转化为电磁能,电磁能转化为电能,电能再转化为热能。

电在生活中的应用

电在生活中的应用 八年级十三班周港辉 电是一种自然现象,是一种能量。电是像电子和质子这样的亚原子粒子之间的产生排斥力和吸引力的一种属性。它是自然界四种基本相互作用之一。电或电荷有两种:我们把一种叫做正电、另一种叫做负电。通过实验我们发现带电物体同性相斥、异性相吸,其吸引力或排斥力遵从库仑定律。电是个一般术语,包括了许多种由于电荷的存在或移动而产生的现象。这其中有许多很容易观察到的现象,像闪电、静电等等,还有一些比较生疏的概念,像电磁场、电磁感应等等。 现实应用: 消费类电子产品在不同发展水平的国家有不同的内涵,在同一国家的不同发展阶段有不同的内涵。中国消费类电子产品是指用于个人和家庭与广播、电视有关的音频和视频产品,主要包括:电视机、影碟机(VCD、 SVCD、DVD)、IPTV、录像机、摄录机、收音机、收录机、组合音响、电唱机、激光唱机(CD)等。而在一些发达国家,则把电话、个人电脑、家庭办公设备、家用电子保健设备、汽车电子产品等也归在消费类电子产品中。 随着技术发展和新产品新应用的出现,数码相机、手机、PDA等产品也在成为新兴的消费类电子产品。从二十世纪九十年代后期开始,融合了计算机、信息与通信、消费类电子三大领域的信息家电开始广泛地深入家庭生活,它具有视听、信息处理、双向网络通讯等功能,由嵌入式处理器、相关支撑硬件(如显示卡、存储介质、IC卡或信用卡的读取设备)、嵌入式操作系统以及应用层的软件包组成。广义上来说,信息家电包括所有能够通过网络系统交互信息的家电产品,如PC、机顶盒、HPC、DVD、超级VCD、无线数据通信设备、视频游戏设备、WEBTV等。目前,音频、视频和通讯设备是信息家电的主要组成部分。电冰箱、洗衣机、微波炉等也发展成为了信息家电,并构成智能家电的组成部分。 现代的电力供应由于常规能源的日益减少而出现了供应危机,世界各国均以新能源作为发展方向,主要推广的有风能、太阳能、地热能等,随着技术的进步,电力供应的常规能源消耗将被取代!人类的生活环境会得到改善!但也造成了污染。

酶在纺织中的应用

植物、动物以及微生物中都有酶,它们对细胞的功能具有重要的作用。酶已在啤酒、葡萄酒酿造业及食品加工业中应用了很多年。在这些行业中,它们被用来加工奶酪、改良人类消费所需的豆类及谷物、清洁柑橘类水果、制造稳定的浓缩果汁等。在纺织工业中,较为著名的是酶在传统的退浆工艺中的应用,而随着生物技术的发展,在纺织生产中酶的应用越来越多,从对纤维的改性到织物的漂白都有相应的酶制剂的使用。 1酶的认识 1.1酶的特性 催化剂是一类能改变反应速度,但不改变反应性质、反应方向和反应平衡点, 而且反应完成后其本身不发生变化的物质。酶是一种特殊的催化剂,作为催化剂它有一定的特点。 (1)高催化效率:在与无机或有机催化剂相比的情况下,酶的催化效率高达107 ~ 1012倍,某些酶甚至可加快反应速率高达1014倍。酶的这种高催化效率是因为酶能够显著降低反应过渡态能量。 (2)高度的专一性:酶的专一性是指一种酶只能催化一种或一类结构相似的底物进行某种类型反应的特性。催化反应的专一性是酶最重要的特性之一, 是酶与其它非酶催化剂最主要的不同之处,这种原理通过图1所示的锁-钥匙原理可以形象的表达。 图1 锁-玥匙原理 (3)反应条件温和:酶来自生物体,因而一般酶催化反应均可在常温常压条件下进行,有利于生产控制,并可节约能源,降低设备成本。另外,酶催化反应都在弱酸、弱碱或中性条件下进行,对环境污染小,对设备的腐蚀小,生产安全性高。 1.2酶的作用机理和过程 酶和底物的作用机理和过程如下表示:酶与底物作用→形成酶和底物的复合物→生化作用→形成酶与底物过度态络合物→酶和生成物分离而释放反应生成物和原来的酶。这样可使整个反应的活化能降低, 从而加快了反应速度。生化反应完成后, 酶和生成物分离, 酶又可重新催化反应。 1.3影响酶活性的因素 酶催化反应的效率取决于以下因素:酶的浓度、反应物浓度、保温或反应时间、反应温度、系统的PH值、所存在的活化剂及阻化剂。 在最佳的温度和PH值下,酶的催化水解反应总的反应速度取决于形成酶反应复合物的时间和生成产物的时间。要使复合物易于形成, 酶的浓度应足够高。且在酶附近的反应物浓度也应较高。反应物的浓度太高,反而不利于反应进行。这是因为过多的反应集中于酶的连接点或反应点上, 形成瓶颈其中的一种或两种情况发生都会降低反应速率。若反应时间较长, 酶的用量应低一些,较高用量的酶可降低总的反应时间, 但也不能过高。

互联网在生活中应用

网络技术在现实中的应用 网络这个词语已经流行很久了,上学的日子里,我体会到网络在生活中的作用越来越明显。在生活中网络技术无处不在,拇指一族说的就是总是用手机上网的人们。我们大学生更要学习网络及计算机知识,可以说,学习计算机,懂得网络知识是一项基本技能。我忘记了是哪个领导人说大学生要学习好先进技术,以应对变化万千的时代发展。 我能够体会得到的就是平时闲时网上聊天,还有,有的学科的作业老师会放在公共邮箱里面,这样既可以减少资源的浪费,也方便同学和老师的沟通。新闻信息每天都在更新,那么怎样才能第一时间了解国内外大事小情呢,我想只有发挥网络的作用了。比如,前些天国家关于“天宫一号”的及时报道,我们学生在学校如果想要了解这些及时的新闻,鼠标一点就能看见最清晰最及时的信息。 网络技术具有很大的应用潜力,能同时调动数百万台计算机完成某一个计算任务,能汇集数千科学家之力共同完成同一项科学试验,还可以让分布在各地的人们在虚拟环境中实现面对面交流。 我们国家非常重视发展网络技术,由863计划“高性能计算机及其核心软件”重大专项支持建设的中国国家网络项目在高性能计算机、网络软件、网络环境和应用等方面取得了创新性成果。 计算机网络的发展使人类社会发生了巨大变化,它塑造出一种与农业社会和工业社会不同的社会文明形态——网络社会文明形态。网络技术是从1990年代中期发展起来的新技术,它把从互联网上分散的资源融为有机整体,实现资源的全面共享和有机协作,使人们能够透明的使用资源的整体能力并得到获取信息。 网络被认为是互联网发展的第三阶段。网络可以构造地区性的网络、企事业内部网络、局域网网络、甚至家庭网络和个人网络。网络的根本特征并不一定是它的规模,而是资源共享,消除资源孤岛。 随着社会科技的迅速发展,因特网在全世界走进了千家万户,网上游戏娱乐、电子邮件、电子商务、网上新闻传播、网上教育、BBS电子公告牌等速得到了开拓和发展,网络的社会影响正逐渐渗透到人类社会生活的各个方面。 网络技术在生活中的应用有很多方面,比如教育、个人、传媒和经济发展。 下面就简单的介绍网络技术在这些方面的应用。 一、网络技术与教育

酶为生活添姿彩教案

酶为生活添姿彩 一、教学目标 1.知识与技能 说出酶的本质;举例说明酶在生活中的应用。 2.过程与方法 通过讨论交流培养学生的语言表达能力和逻辑思维能力。 3.情感态度与价值观 通过学习酶在生活中的应用,养成勇于实践的科学精神。 二、教学重难点 酶在生活中的应用 三、课时安排 1课时 四、教学过程 导入:大自然的杰作----无处不在的酶 (一)酶的概述 20世纪30年代以前,酶的定义:酶是一类具有生物催化作用的蛋白质。 1981年,Cech发现四膜虫rRNA的前体在没有蛋白质的情况下能专一地催化寡聚核苷酸底物的切割与连接,具有分子内催化的活性。 1983年美国S.Altman等研究RNaseP(由20%蛋白质和80%的RNA组成),发现RNaseP中的RNA可催化E. coli tRNA的前体加工。 1989年,Cech和Altman各自独立地发现了RNA的催化活性,并命名这一类酶为核酶,2人共同获1989年诺贝尔化学奖。核酶是具有催化功能的RNA分子。 总结:绝大多数酶是蛋白质,少数是RNA。 (二)核酶发现的意义 1.它突破了“酶是蛋白质”的传统概念。 2.对科学家们普遍感兴趣的生命的起源这一问题有了新的认识,对生物前化学有重要贡献。 (三)酶的应用 1.抗肿瘤治疗 核酶是天然的具有催化能力的RNA分子,能特异性地催化RNA剪接。针对某些病原或肿瘤的基因设计特异性核酶,并将其导入细胞以阻断或降低这些基因在细胞内的表达,最终可达到抑制病原增殖、肿瘤扩散的目的。 2、RNA治疗——RNA的修复 利用核酶的剪接能力,可引入新的基因功能或修复已有的基因缺陷。 蓝(N. Lan)等对镰形细胞贫血突变的β珠蛋白mRNA(βS RNA)进行了修复。

课题:比例在生活中的应用

课题:比例在生活中的应用 董干镇马崩小学 韦家祥 摘要:在现实生活中,我们经常与比例打交道,比例的应用自然也就成了常态,通过学习比例,应用比例,进一步增强人们对数学的热爱。关键词:常态、比例、数学 一、引言:“世界之大,无处不有数学的重要贡献。”华罗庚说“宇 宙之大,粒子之微,火箭之谜,化工之巧,地球之变,生物之谜,日用之繁,数学无处不在。”数学在生活中的应用是十分广泛的,我们每天的生活都离不开数学,数学也是来源于生活,如果数学一旦离开了生活也将会停滞发展。 二、比例的意义 比例的意义也就是什么样的关系才叫比例?其实比例是表示数量之间的对比关系,或者说是指一种事物在整体中所占的分量。 在数学中,比例是一个总体各个部分的数量占总体数量的比重,一种量变化,另一种量随之变化。具体的说,比例是表示两个比相等的式子。比如:2:3=4:6 0.5:0.2=5:2. 三、比例的基本性质 比例的基本性质是比例里一个比较重要的知识点,也是应用比较广泛的,可以说是贯穿比例的始终。那么什么是比例的基本性质呢?在认识比例基本性质之前,首先我们要了解比例的各部份名称,我们把组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。例如:2.4:1.6=60:40 外项是2.4和

40,内项是1.6和60. 1、定义:在比例里,两个外项的积等于两个内项的积。这就叫做比例的基本性质。 例如:2 : 3=4 : 6 推出 2 x 6=3 x 4 0.5 :0.2=5 : 2 推出 0.5 x 2=0.5 x 5 2、应用比例的基本性质来判断两个比是否能组成比例。 例如:2 : 3 和4 : 6 因为:2 x 6=12 3 x 4=12 所以2 :3和4 :6能组成比例,即 2 : 3=4 : 6 3、应用比例的基本性质来解比例。 例如:x :3=4: :6 推出 6x = 3x4 x=2 四、生活中的比例 国旗有大有小,为什么都叫国旗呢?世界那么大,为什么可以按照一定比例画在纸上呢?等等。这些都是关于比例的知识。 1、比例尺的应用 小明是个喜欢计算的人,有一天,在一放学回家,就在思考问题:我家离学校到底有多远呢?他想来想去,突然,他灵机一动,想到自己应该先在家里找一下资料,过了一会儿,他把所能翻到的资料拿了出来: 比例尺:1 :100000 图上距离:4cm 他笑了,他说,这还不简单吗!看我计算 解:设实际距离为xcm。

函数在日常生活中的应用

函数在日常生活中的应用 函数不仅在我们的学习中应用广泛,日常生活中也有充分的应用。在此举出一些例子并作适当分析。 当人们在社会生活中从事买卖活动或其他生产时,其中常涉及到变量的线性依存关系,经营者为达到宣传、促销或其他目的,往往会为我们提供两种或多种付款方案或优惠办法。总之,函数渗透在我们生活中的各个方面,我们也经常遇到此类函数问题,这时我们应三思而后行,深入发掘自己头脑中的数学知识,用函数解决。如: 1.一次函数的应用: 购物时总价与数量间的关系,是最基本的一次函数的应用,由函数解析式可以清楚地了解到其中的正比例关系,在单价一定的条件下,数量越大,总价越大。此类问题非常基本,却也运用最为广泛。 2.二次函数的应用: 当某一变量在因变量变化均匀时变化越来越快,常考虑用二次函数解决。如细胞的分裂数量随时间的变化而变化、利润随销售时间的增加而增多、自由落体时速度随时间的推移而增大、计算弹道轨迹等。二次函数的解析式及其图像可简明扼要地阐述出我们需要的一系列信息。如增加的速度、增加的起点等。 3.反比例函数的应用: 反比例函数在生活中应用广泛,其核心为一个恒定不变的量。如木料的使用,当木料一定时长与宽的分别设置即满足相应关系。还有总量一定的分配问题,可应用在公司、学校等地方。所分配的数量及分配的单位即形成了这样的关系。 4.三角函数的应用: 实际生活中,我们常常可以遇到三角形,而三角函数又蕴含其中。如建筑施工时某物体高度的测量,确定航海行程问题,确定光照及房屋建造合理性以及河宽的测量都可以利用三角函数方便地测出。 在日常生活中,我们往往需要将各种函数结合起来灵活运用,以解决复杂的问题。要时刻将函数的解析式与其图形联系起来,以得到最简单的解决办法。

酶制剂在工业上的应用现状与展望

《酶工程》课程论文 学院:材料与化工学院 专业班级:2011级生物工程(2)班 姓名:李丹丹 学号:20110412310047 评阅意见 评阅成绩 评阅教师: 2014年6月12日

酶制剂在工业上的应用现状与展望 姓名:李丹丹 学院和专业:材料与化工生物工程2班 摘要:酶制剂是一类特殊的食品添加剂,具有催化高效性,专一性等显著特点。文章综述了食品工业中酶制剂利用及新动向,包括淀粉糖、油脂、蛋白质加工、面包、啤酒、饮料工业以及改善苦味的酶类的应用。并介绍了酶与食品的关系、酶制剂在食品生产中用于保藏、改善质量和增加营养价值、增加品种种类、提高便捷性和提高食品生产效率等作用,还介绍了酶制剂在饲料中的应用。并对酶制剂在食品工业中和在动物饲料方面的发展方向进行展望。关键词:酶制剂食品工业饲料工业应用 1.酶制剂的简介 酶是一类具有专一性生物催化能力的蛋白质。而从生物体中提取的具有酶活力的制品,称为酶制剂。酶制剂主要用于食品加工和制造业方面,它在对提高食品生产效率和产量、改进产品风味和质量等方面有着其它催化剂所无法替代的作用。另外,酶制剂在日化、纺织、环境保护和饲料等行业也有着较广泛的应用。随着发酵工业的发展,酶制剂的主要来源已被微生物所取代,它具有不受季节、地区和数量等因素影响的特性,还具有种类多、繁殖快、质量稳定和成本低等特点。随着微生物育种技术的发展,酶制剂的种类越来越多,分类也越来越细。目前我国已工业化生产的、且用于食品工业的酶制剂主要有:淀粉酶、异淀粉酶、果胶酶和蛋白酶等,它们在食品加工中都起着十分重要的作用。当然,尽管目前我国酶制剂行业的发展已有了长足进步,但与发达国家相比,还有很大差距。为进一步加快酶制剂产业技术的进步,今后应注重在调整产品结构、增加新品种、提高产品质量和竞争力、实现规模化经营和拓宽应用领域等方面作深入的研究。 2.酶制剂在食品工业中的应用 利用淀粉酶可以将淀粉水解为葡萄糖或不同DE值的淀粉糖浆,再经过葡萄糖异构酶的作用产生果葡糖浆;果胶酶用于果汁的加工和澄清,可提高果酒的得率,改善澄清效果,加快过滤速度;乳糖酶可分解牛奶中的乳糖,提高人体对牛奶的消化性;脂肪酸可改进食品风味;蛋白酶可用于蛋白胨和氨基酸混合液的制造,生产糖果使用的蛋白发泡剂,用在面包、糕点和通心粉的生产上可缩短揉面时间、增强面团延伸性和改进产品质量,用在肉类加工上可嫩化肉类、软化肠衣和提高质量,用在乳酪制造上可缩短生产时间等。 2.1用于保藏 溶酶菌现已广泛地被用作水产品、肉食品、蛋糕、酒精、料酒、饮料以及日用化妆品的防腐剂。由于食品中的羟基和酸会影响溶酶菌的活性,因此,它一般与酒、植酸、甘氨酸等物质配合使用。目前与甘氨酸配合食使用的溶酶菌制剂,应用于面食、水产、熟食及冰淇淋等食品的防腐。在低度酒中添加20mg/kg的溶酶菌不仅对酒的风味无任何不良影响,还可防止产酸菌的生产,同时受酒类澄清剂的影响很小,是低度酒类较好的防腐剂,如日本就把溶酶菌用于清酒的防腐。 乳制品保险牛乳中含有13mg/dl的溶酶菌,在人乳中含量为40mg/ml。在鲜乳或奶粉中加入一定量溶酶菌,不但可起到防腐作用,而且还有强化作用,能增进婴儿健康。 将各种肉类和水产熟制品(如鱼丸、香肠及红肠等),用含1%明胶和0.05%溶酶菌的混合液浸渍后再包装保存,可延长其保质期。各类糕点特别是奶油蛋糕是容易腐败变质的食品,在制作过程中加入溶酶菌就具有一定的防腐、保鲜作用。此外,溶酶菌还可应用于pH值为6.0~7.5的饮料的防腐。 海产品及水产品如虾、鱼和蛤蜊等在含甘氨酸、溶酶菌和食盐的溶液中浸渍5min后,沥干,在5℃下保存9d后,无异味、无色泽变化。 3.2提高食品质量和增加营养价值

相似三角形在实际生活中的应用

标准对数视力表 0.1 4.0 0.12 4.1 0.15 4.2 相似三角形在实际生活中的应用 【知识点击】 1、如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过 ,那么这样的两个图形就称为位似图形。此时的这个点叫做 ,相似比又称为 . 注:位似图形作为一种特殊的相似图形,是最重要的图形之一.但相似图形未必都能够成位似关系.所谓位似图形,是指两个图形不仅是相似图形,而且___________________,此时的这个点叫做位似中心,相似比又称为_____________.位似图形具有相似图形的所有性质,利用位似的方法可以将一个多边形放大或缩小. 2、相似多边形的性质_____________________________________________________ 【重点演练】 知识点一、位似图形 例1、如图,在6×8网格图中,每个小正方形边长均为1,点O 和△ABC 的顶点均在小正方形的顶点. (1)以O 为位似中心,在网格图中作△A ′B ′C ′和△ABC 位似,且位似比为1︰2; (2)连接(1)中的AA ′,求四边形AA ′C ′C 的周长.(结果保留根号) 例2、如图3,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A′B′C′D′E′,已知OA =10cm ,OA ′=20cm,则五边形ABCDE 的周长与五边形A′B′C′D′E′的周长的比值是 . 变式训练: 1.视力表对我们来说并不陌生.如图是视力表的一部分,其中开口向上的两 个“E ”之间的变换是( ) A .平移 B .旋转 C .对称 D .位似 2. 如图,正方形OEFG 和正方形ABCD 是位似形,点F 的坐标为(1,1),点C 的坐标为(4,2),则这两个正方形位似中心的坐标是 . 图3 ′

酶制剂在乳制品生产方面的应用及研究现状

摘要:本文介绍了酶与酶制剂,应用酶制剂还可以提高乳制品生产的质量和安全性,改进生产工艺过程和改善产品风味。综述了酶制剂在干酪生产,乳品保鲜等方面的应用,以及酶制剂的研究现状。 关键词:酶制剂;乳制品

前言 虽然酶工程学是近来才兴起的学科,但酶在乳品中的应用由来已久。很久以前,人们就利用皱胃酶(凝乳酶)来生产干酪。近几年,随着乳牛业和乳品工业的迅猛发展,原料奶和乳制品产量大幅度提高,乳制品花色品种极大丰富,酶学研究进一步深入,酶在乳品中的应用也扩展到了更广的领域。 1酶制剂 1.1酶 早期是指在酵母中的意思,指由生物体内活细胞产生的一种生物催化剂。大多数由蛋白质组成(少数为RNA)。能在机体中十分温和的条件下,高效率地催化各种生物化学反应,促进生物体的新陈代谢。生命活动中的消化、吸收、呼吸、运动和生殖都是酶促反应过程。酶是细胞赖以生存的基础。细胞新陈代谢包括的所有化学反应几乎都是在酶的催化下进行的。 1.2酶制剂 酶制剂是指从生物中提取的具有酶特性的一类物质,主要作用是催化食品加工过程中各种化学反应,改进食品加工方法。我国已批准的有木瓜蛋白酶、α—淀粉酶制剂、精制果胶酶、β—葡萄糖酶等6种。酶制剂来源于生物,一般地说较为安全,可按生产需要适量使用。酶制剂是一类从动物、植物、微生物中提取具有生物催化能力的蛋白质。具有高效性,专一性,在适宜条件下具有活性。 2酶制剂在乳品中的应用 2.1脂肪酶 脂肪酶在乳品中的应用主要是在干酪生产中,用于加速干酪的成熟。Sood曾在碎凝乳中添加解脂酶my(Meito,Japan)发现,添加解脂酶的企达干酪游离挥发性脂肪酸含量远较未添加的高,挥发性游离脂肪酸含量随成

酶工程在现实方面的应用

酶工程在现实生活的应用 学院:生命科学与食品工程学院 姓名:沈峰学号:5602209078 班级:生工092 摘要:酶是催化特定化学反应的蛋白质、RNA或其复合体。是生物催化剂,能通 过降低反应的活化能加快反应速度,但不改变反应的平衡点。绝大多数酶的化学本质是蛋白质。具有催化效率高、专一性强、作用条件温和等特点。酶工程技术与我们生活息息相关,比如酿酒,制药工业等等。 Abstract:The enzyme is a specific protein, RNA or its complex which is used to catalytic specific chemical reaction.it's biological catalyst .It can accelerate reaction velocity by reduce the activation energy of reaction ,without changing the point of balance. The vast majority of enzyme's chemical nature is protein.so it have lots of Characteristics as high catalytic efficiency, high specificity, mild conditions and so on.The enzyme engineering is closely linked with our life ,for example,making wine pharmaceutical industry and so on. 关键字:酶工程酶啤酒制药 酶工程就是将酶或者微生物细胞,动植物细胞,细胞器等在一定的生物反应装置中,利用酶所具有的生物催化功能,借助工程手段将相应的原料转化成有用物质并应用于社会生活的一门科学技术。它包括酶制剂的制备,酶的固定化,酶的修饰与改造及酶反应器等方面内容。酶工程的应用,主要集中于食品工业,轻工业以及医药工业中。 如果要了解酶工程在现实生活方面的应用的话,首先先要知道什么是酶,什么是酶工程,和哪些酶可以在起作用及酶的特性有哪些。 首先酶是催化特定化学反应的蛋白质、RNA或其复合体。目前已发现有2000 多种。分子量在数万至数十万之间。生物体内的含量一般极少,它能参与生物体的各种生理生化活动,起催化剂的作用。酶的种类众多,而在酿酒等工业方面方面应用的酶也不少。比如,曲霉,根霉,红曲霉,拟内孢霉,木霉,青霉,等等。所以没对于现实生活有着广而深的影响,对于酶的特性的了解也就十分必要。 酶工程:酶制剂在工业上的大规模应用,主要由酶的生产、酶的分离纯化、酶的固定化和生物反应器四个部分组成。 酶的特性主要四点:1、酶具有高效率的催化能力;其效率是一般无机催化剂的10的7次幂~~10的13次幂。2、酶具有专一性;(每一种酶只能催化一种或一类化学反应。)3、酶在生物体内参与每一次反应后,它本身的性质和数量都不会发生改变(与催化剂相似);4、酶的作用条件较温和。 一酶工程在酿酒制造业的作用 总所周知,现实生活中的许多家庭每天都或多或少会在酒的方面消费,还有社交

(人教版)同步习题:3-2酶在工业生产中的应用(选修2)

第2节酶在工业生产中的应用 (时间:30分钟满分:50分) 一、选择题(共6小题,每小题4分,共24分) 1.根据酶在生物体内存在的部位,可分为胞内酶和胞外酶,下列属于胞外酶的是 ()。 A.呼吸酶B.RNA聚合酶 C.DNA聚合酶D.胰蛋白酶 解析胰蛋白酶属于消化酶,存在于消化道内,其余的酶在细胞内发挥作用。 答案 D 2.下列属于氧化还原酶的是()。 ①乙醇脱氢酶②琥珀酸脱氢酶③淀粉酶④丙酮酸羧化酶⑤谷丙转氨 酶⑥葡萄糖磷酸异构酶 A.①③B.③④C.⑤⑥D.①② 解析脱氢酶属于氧化还原酶。 答案 D 3.酶工程中酶制剂的生产按顺序排列为()。 ①酶的分离纯化②酶的固定化③酶的生产④酶的提取 A.①③②④B.③②①④ C.③④①②D.④①②③ 解析酶制剂的生产包括酶的生产、提取、分离纯化和固定化等。人们提供必要的条件,利用微生物发酵来生产酶的过程,叫做酶的生产。微生物发酵生产的酶种类很多,但是每种酶在培养液中的含量却很低,因此需要提取。提取液中含有多种酶、细胞代谢产物和细胞碎片等,要想获得所需要的某一种酶,就必须再进行酶的分离和纯化。为防止反应结束后酶制剂与产物混合在一起,又可以反复使用酶制剂,可以将酶进行固定化。 答案 C 4.下列不属于固定化酶在利用时的特点的是()。 A.有利于酶与产物分离 B.可以被反复利用 C.能自由出入依附的载体

D.一种固定化酶一般情况下不能催化一系列酶促反应 解析固定化酶是采用包埋法、化学结合法或物理吸附法将酶固定在一定载体上,所以固定化酶不能自由出入依附的载体。 答案 C 5.在果汁生产中加入果胶酶的目的是()。 A.分解纤维素 B.增加果汁的营养成分 C.增加果汁的黏稠度 D.使榨取果汁变得更容易,并使果汁澄清 解析果胶是植物细胞壁以及胞间层的主要组成成分之一,它是由半乳糖醛酸聚合而成的一种高分子化合物,不溶于水。在果汁加工中,果胶不仅会影响出汁率,还会使果汁浑浊。果胶酶能够分解果胶,瓦解植物的细胞壁及胞间层,使榨取果汁变得更容易,而果胶分解成可溶性的半乳糖醛酸,也使得浑浊的果汁变得澄清。 答案 D 6.下列关于淀粉酶、蛋白酶、纤维素酶的说法中,不正确的是()。 A.淀粉酶、蛋白酶和纤维素酶的化学本质均为蛋白质 B.淀粉酶生产的历史长,用途广,是工业生产中最重要的一类酶 C.在植物细胞杂交中需要应用纤维素酶 D.蛋白酶不能水解淀粉酶和纤维素酶 解析由于淀粉酶、纤维素酶的化学本质均为蛋白质,故蛋白酶能够水解淀粉酶和纤维素酶,因此D 项不正确。 答案 D 二、非选择题(共2小题,共26分) 7.(14分)为探究洗衣粉加酶后的洗涤效果,将一种无酶洗衣粉分成3等份,进行3组实验。甲、乙组在洗衣粉中加入1种或2种酶,丙组不加酶,在不同温度下清洗同种化纤布上的2种污渍,其他实验条件均相同,下表为实验记录。请回答下列问题。 水温/℃10 20 30 40 50 组别甲乙丙甲乙丙甲乙丙甲乙丙甲乙丙清除血渍 67 66 88 52 51 83 36 34 77 11 12 68 9 11 67 时间/min

酶制剂工业概况及其应用进展_胡学智

第33卷第4期 2003年12月 工业微生物 Industrial M icrobiology Vol.33No.4 Dec.2003 作者简介:胡学智(1926~),男,教授级高级工程师,本刊编委。 酶制剂工业概况及其应用进展 胡学智 (上海市工业微生物研究所,上海200233) 摘 要 概述了国内外酶制剂工业的生产和市场的情况,并介绍了酶制剂应用的进展,对于我国酶制剂工业的发展也作了展望。关键词:酶制剂; 工业; 应用 1 世界酶制剂工业概况 [1~6] 酶作为商品生产已有100多年历史,早在1833年还没出现酶字之前已有人用酒精沉淀出麦芽淀粉酶,叫Diastase 。可使2000倍淀粉液化而用于棉布退浆,微生物酶的生产是1884年日本人Takam ine 首先开发的,他在美国开Takamine 制药厂生产高峰淀粉酶用于棉布退浆和用作消化剂。此后在欧洲、美国和日本先后建立了一些酶制剂工厂,生产动植物酶如胰酶、胃蛋白酶、木瓜酶、麦芽淀粉酶以及真菌细菌淀粉酶等少数品种,其应用范围还限于作为消化剂、制革工业脱灰软化剂和棉布退浆剂等,20世纪50年代前酶制剂工业没什么惊人发展。 直到60年代随着发酵技术和菌种选育技术的进步,日本酶法生产葡萄糖获得成功,欧洲加酶洗涤剂的流行,70年代酶法生产果葡糖浆又获成功,带动了淀粉深加工工业的兴起,工业酶开始大量需要,使酶制剂工业出现重大转机。工业上使用酶带来了许多的好处,如节约成本,改善品质,减少环境污染等,因而引起人们广泛重视。80年代以后,遗传工程被广泛用于产酶菌种之改良,现在酶制剂工业已成为国民经济的一门重要高科技产业。酶制剂的世界市场于1970年以后迅速增长。从1978年不到2亿美元增加到1990年的5亿美元,1993年已达10亿美元 [6] ,据估计 [4] 1999年为19.2亿美元,2002 年达25亿美元,2008年将达30亿美元[5]。 表1 世界工业用微生物酶制剂市场规模 年份19931995199619971998*199920002002销售金额(亿美元)1012.513.515.4 17.3 19.2 22.1 25.7 增长% - 7.2 8.0 14.0712.3410.9815.112.20 *有的报道1998年为16亿美元 国际上知名的酶制剂企业在上世纪80~90年代有70多家,后来经过兼并改组,不少著名企业,如美国Miles 公司,荷兰Gist Brocades 公司,芬兰Finn Sugar 公司等从这个行业名单中消失。在酶制剂市场中,丹麦Novozy mes 公司和美国Genencor 国际公司各占世界市场的50%和20%,就近年来酶制剂市场在各应用领域分配来说,据Business communica tions Co.估计,1997~2002年的5年中,食品用酶由7.25亿美元增至11.76亿美元,年增长率11.4%,洗涤剂用酶由4.89亿美元增加到8.48亿美元,年增长率13.3%;纺织、制革、毛皮工业用酶将由1.65亿增加到2.58亿,年增长率10.3%;纸浆造纸业用酶由1.0亿增加到1.92亿,年增长率16.2%;化学工业由0.61亿增加到0.96亿,年增长率10.5%,平均年增长率为12.2%。与1985年时食品工业占酶制剂市场62%,洗涤剂用酶占33%,制革纺织业用酶占5%相比,十多年来明显的变化是非食品工业用酶领域迅速扩大,主要是植物纤维加工用酶如纤维素酶,半纤维素酶之在棉布加工,纸浆漂白,废纸脱墨等方面有了较大发展,反映了人们对环保意识的增强。在日本目前食用酶市场规模约为100亿日元,其中1/3为淀粉糖生产用的 淀粉酶、糖化

第2节 酶在工业生产中的应用

酶工程的资料 一、酶工程内容: (一)“产酶”模块,包括微生物发酵产酶、细胞工程产酶和现代分子技术产酶等; (二)“分离酶”模块,包括酶的酶学性质、酶的分离纯化等; (三)“改造酶”模块,包括酶的分子修饰、酶的固定化和酶的有机催化等; (四)“用酶”模块,包括酶在医药、食品、轻化工、环境保护和生物技术等方面的应用。 二、酶的基因工程与蛋白质工程 酶是具有催化功能的蛋白质,其催化的多样性已使其在生物产业中得到广泛应用。应用自然界酶分子进化原理,构建具有实际应用所需的高催化效率、高稳定性的酶是蛋白质工程研究的重要目标。随着人们对酶的三级结构了解的增加,越来越多的合理设计方法,比如定点突变和结构域重组,被用来改变酶的性质和功能。通过合理设计改造的酶,不仅在工业和医药等方面起着重要作用,也加深了人们对于蛋白质结构-功能关系的认识。结构域重组是自然界中蛋白质进化的一个重要途径,也是人工设计和改造酶蛋白的有效策略。天然存在的与多种功能和性质相关的蛋白质结构域为人们构建新型酶蛋白提供了重组素材。传统的结构域重组方法通过重组同源蛋白质的结构域,已经成功地构建出了许多嵌合酶。它们或具有新的催化活力,或改变了底物特异性,或在稳定性上获得了提高,等等。一般来讲,重组亲本的同源性越低,嵌合酶获得新功能的可能性越大。重组低同源性的亲本蛋白质的困难在于,来源于不同亲本的结构域在重组过程中往往会破坏结构域界面上的相互作用,导致无活力的嵌合酶。因此,蛋白质工程的合理设计需要加深对蛋白质进化机制的理解,以及有效地构建嵌合蛋白质的新策略。 蛋白质的合理设计是最早出现的蛋白质工程方法,它发展迅速并有着广泛的应用。合理设计是在对蛋白质结构-功能关系的认识的基础上,通过定点突变等技术对蛋白质的性质和功能进行改造的一种方法。应用合理设计改造蛋白质依赖于对蛋白质三级结构的了解。随着计算生物学的发展,即使目标蛋白质并没有获得解析的晶体结构,人们也可以通过与其同源的蛋白质结构进行计算机同源建模,获得其可能的结构。理论与实验相结合的特性使得合理设计成为研究蛋白质结构-功能关系的强有力的途径。根据设计所涉及的范围,合理设计可以分为如下几类: 1 定点突变(site-directed mutation) 定点突变是指通过聚合酶链式反应(PCR)等技术向目的 DNA 片段中引入所需变化,包括碱基的添加、删除、点突变等[5]。定点突变能迅速、高效地提高 DNA 所表达的目的蛋白的性质。

玉米淀粉加工复合酶制剂的生产与应用研究

工作报告 1.1课题来源 “玉米淀粉加工复合酶制剂的生产与应用研究”由白银赛诺生物科技有限公司自主立项,白银赛诺生物科技有限公司与江南大学共同组建的白银赛诺酶制剂应用技术研究中心实施完成。实施期为2010年1月——2010年12月。 1.2项目研究的目的和意义 玉米淀粉是以玉米粒为原料,通过亚硫酸浸泡、破碎筛选、分离洗涤、脱水烘干制成的产品,玉米淀粉除直接用于食品、造纸、纺织、医药等领域,绝大多数用于深加工。利于淀粉深加工产品主要有:淀粉糖、氨基酸、山梨醇、化工醇、燃料乙醇、有机酸等。另外,在玉米淀粉生产过程中,还可以得到玉米油、玉米纤维、蛋白粉和玉米浆等副产品。例如淀粉糖就有较高的经济价值和食用价值,被广泛应用于食品、医药、化工、发酵等行业中;山梨醇是淀粉糖的衍生物,主要用于生产维生素C,近年来国内需求旺盛;玉米浆是一种高蛋白营养物,同时含有丰富的维生素B和矿物质。国外利用玉米进行深加工而生产的产品有3000多种,而我国仅仅开发出90多种产品。近几年,由于变性淀粉及淀粉糖的大量投产及扩产有力地促进了全球玉米深加工的快速发展,2006年全球玉米淀粉产量为3940万吨,2007年为5400万吨,2010年超过了8000万吨,我国玉米淀粉的产量从2009年到2011年每年15%-20%的增速发展,2009年玉米淀粉产量为2170万吨,2010年产量为3350万吨,居世界第二位。但人均消费淀粉只有美国人均消费的8%,欧盟的32%。未来一定的时期,随着我国居民消费水平的提升机饮食习惯的转变,玉米淀粉的消费潜力仍有极大的空间。目前,国际上生产玉米淀粉普遍采用“湿法生产玉米淀粉法”,这种技术就是对玉米先行进行浸泡,然后通过粉碎、筛分、离心、挤压、过滤等机械方法进行分离和干燥来提取。这类生产技术的缺点是分离物的分离效果差、纯度有限,深加工提纯成本高,能耗大等。因此,如何提高玉米淀粉的得率、纯度和降低能耗(水、电、煤)生产技术已成为玉米淀粉生产企业迫切需求。近年来国内外科研人员不断研究改进玉米

密度在生活中的应用总结

密度在生活中的应用: 1、利用密度鉴别物质; 2、商业中鉴别牛奶的浓度、酒的浓度,农业生产中配制盐水选种的问题; 3、根据密度知识选择不同的材料: (1)汽车、飞机常采用高强度、低密度的材料(合金材料、玻璃钢); (2)产品包装中常采用密度小的泡沫塑料作填充物,防震、便于运输,价格低廉。 例题一:质量为1Kg的水结成冰后质量是多少?体积是多少? 变式训练:2m3的冰化成水后,质量是多少,体积是多少? 总结:由此可知一个物体的温度发生变化、或者状态发生变化,尽管质量不变,但体积要发生变化,所以根据密度计算公式可知密度要变化。 通常情况下,固体和液体在温度变化时体积变化不大,密度变化很小;这种变化往往忽略不计。而气体在温度变化时,体积变化较大,故密度也就变化较大。因而对于气体的密度,就必须限定条件,如在0?C和标准大气压下等。 相同质量的冰比水的体积大。虽然冰是由水凝结而成的,但是由于它们的温度不同,可以看出:一定质量的水凝结成冰后体积变大。这表明,水不简单遵守一般物质的“热胀冷缩”的规律。 例题二:甲乙两种物质的体积之比为5:2 ,密度之比为3:4 ,求他们的密度之比是多少? 变式训练:甲的质量是乙的4倍,乙的密度是甲的7倍,则甲的体积是乙的体积的多少? 总结:已知条件是比值或者倍数的问题,结果也是求比值或者倍数的,可以将比值或者倍数设为已知,然后利用公式求出另外的量。

例题三:一个瓶子能盛2Kg的水,求用这个瓶子能盛多少酒精? 已知酒精的密度是0.8×103kg/m3 变式训练:飞机设计师为减轻飞机重力,将一铜制零件改为铝制零件,使其质量减少104Kg,则所需铝的质量是多少? (ρ铜=7.9×103kg/m3 , ρ铝=2.7×103kg/m3 ) 总结:同一个瓶子,属于体积相同的问题。所以两种物质装在同一个瓶子里,他们的体积是相同的,这是做题的突破点。可以利用公式求解,也可以利用比例式。 例题四、一个铅球的质量是4kg,经测量知道它的体积是0.57dm3 。这个铅球是用铅制造的吗? 总结:要知道铅球是否用铅制造的,应先求出它的密度,再与金属铅的密度进行比较。如果求出的密度正好等于金属铅的密度,则是铅制造的,如果不等,则不是。

纤维素酶在纺织工业中的应用

纤维素酶在纺织工业中的应用 报告人:张雨菲16300270102 一、技术原理 纤维素酶(Cellulase)是一种复合酶,是由降解纤维素的一组酶的总称。 将纤维素酶分离可分为C1酶、Cx酶、葡萄糖苷等三种组分。用纤维素酶降解纤维素,C1酶仅能作用于纤维素的结晶部分,主要分解产物为纤维素二果糖;Cx酶仅能作用于可溶性纤维素的衍生物和膨胀或部分降解纤维素;葡萄糖苷分为外切β-1,4-葡聚糖酶和内切β-1,4-葡聚糖酶。内切β-1,4-葡聚糖酶可以随机切断纤维素链的β-1,4-苷键;外切β-1,4-葡聚糖酶可从纤维素链的非还原性末端分解下葡萄糖单位。它们的水解产物为纤维素二糖、纤维素寡糖和葡萄糖。葡萄糖苷酸可使C1酶、Cx酶的水解产物转化为葡萄糖。三种酶各有专一性,但能相互协调。 由纤维素酶催化的三种类型的反应:内切酶、外切纤维素酶、β-葡糖苷酶 纤维素酶的β-葡糖苷酶活性的细节

纤维素酶的作用机制非常复杂,现在为止还没有完全弄清楚。除了各组分对纤维素分子的分解作用,目前越来越多的研究显示纤维素酶各组分之间有协同作用。不过,大体上它的水解作用可以分为以下几步:(1)酶分子从水相转移到纤维的表面;(2)酶分子与纤维表面结合,形成E+S的复合物;(3)把水分子转移到酶与底物复合物的激活位点;(4)在酶与底物的复合物催化下,水与纤维的接触表面发生发应;(5)产生的产物转移到水相中。 二、技术应用 ①减量处理 纤维素织物用纤维素酶处理都伴随着纤维的减量或失重,并引起许多性能变化。减量处理主要是改善织物的柔软、弹性和悬垂性。棉织物经过纤维素酶整理后,手感和外观可以有很大的改善。因为织物表面的绒毛被去除,处理后的织物更光洁、颜色更鲜艳。织物的硬挺度和刚性降低,光滑度和悬垂性提高,使织物获得更好的手感。 ②生物抛光处理 生物抛光是一种用纤维素酶改善棉织物表面的整理工艺,以达到持久的抗起毛起球并增加织物的光洁度和柔软度。天然纤维素的结构复杂,结晶度高,在一定酶浓度和时间条件下很难把纤维素完全水解成葡萄糖单体,仅对织物表面或伸出织物表面的茸毛状短小纤维作用。生物抛光也就是去除从纤维表面伸出的细微纤维,经纤维素酶处理后稍经机械加工就可以得到表面平滑而茸毛少的织物。生物抛光的主要功效是使服装和面料长久保持光鲜、手感更柔软。 ③水洗和石磨处理 纤维素酶还广泛应用于牛仔裤产品的洗涤加工,代替石洗加工工艺。最早应用在靛蓝牛仔服装的洗涤整理上,以获得与石磨相同的染料脱色,洗白等褪色防旧效果。这种加工的原理是,首先将牛仔服装上的浆料充分去除,充分发挥纤维素酶对牛仔服装表面的剥蚀作用;纤维素酶仅对牛仔服装表面部分水解,造成纤维在洗涤时发生脱落,在纤维素酶处理时,牛仔服装在转鼓中不断发生摩擦,加速服装表面纤维的脱落,并使吸附在纤维表面的靛蓝等染料一起去除,产生石磨洗涤的效果,并具有独特的外观和柔软的手感。 ④其它处理 除上述处理外,纤维素酶还与脂肪酶、果胶酶共同应用于棉织物的精练加工,去除棉纤维中的天然杂质,为后续染色、印花和整理加工创造条件。酶精练后的织物润湿性、强度保留率与碱精练相同,失重率较少,耗水率低。纤维素酶整理也用于粘胶、Lyocell和醋酸纤维织物,能改善织物的手感、悬垂性,去除织物表面的绒毛,减少了粘胶织物的起球倾向和Lyocell织物的原纤化倾向。苎麻织物存在手感粗糙性差、穿着刺痒感问题,严重影响了苎麻织物的服用性能,通过纤维素酶减量整理,能够使织物获得柔软的手感和光洁的布面,刺痒感消失或改善。 三、技术优缺点 优点:①纤维素酶处理具有环保、节能、高效、无毒等特点,其副产品和废液可以作为肥料, 对环境无害。②酶具有专一性, 特定的酶只能水解特定的化学键。③酶在温和的温度、pH 和压力下使用。 缺点:①使用酶会提高成本,。②且酶对温度、pH 、湿度和污染物敏感。 ③酶的货架期比化学药品短。

相关文档
最新文档