矩阵乘法分治法

矩阵乘法分治法
矩阵乘法分治法

矩阵连乘最佳加括号方式-动态规划算法

矩阵连乘最佳加括号方式-动态规划算法 一、问题描述 给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2,…,n-1。要算出这n个矩阵的连乘积A1A2…A n。由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘积可递归地定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的矩阵连乘积B和C 的乘积并加括号,即A=(BC)。 例如,矩阵连乘积A1A2A3A4有5种不同的完全加括号的方式:(A1(A2(A3A4))),(A1((A2A3)A4)),((A1A2)(A3A4)),((A1(A2A3))A4),(((A1A2)A3)A4)。每一种完全加括号的方式对应于一个矩阵连乘积的计算次序,这决定着作乘积所需要的计算量。若A是一个p×q矩阵,B是一个q×r矩阵,则计算其乘积C=AB的标准算法中,需要进行pqr次数乘。 为了说明在计算矩阵连乘积时,加括号方式对整个计算量的影响,先考察3个矩阵 {A1,A2,A3}连乘的情况。设这三个矩阵的维数分别为10×100,100×5,5×50。加括号的方式只有两种:((A1A2)A3),(A1(A2A3)),第一种方式需要的数乘次数为10×100×5+10×5×50=7500,第二种方式需要的数乘次数为100×5×50+10×100×50=75000。第二种加括号方式的计算量时第一种方式计算量的10倍。由此可见,在计算矩阵连乘积时,加括号方式,即计算次序对计算量有很大的影响。于是,自然提出矩阵连乘积的最优计算次序问题,即对于给定的相继n个矩阵{A1,A2,…,A n}(其中矩阵A i的维数为p i-1×p i,i=1,2,…,n),如何确定计算矩阵连乘积A1A2…A n的计算次序(完全加括号方式),使得依此次序计算矩阵连乘积需要的数乘次数最少。 穷举搜索法的计算量太大,它不是一个有效的算法,本实验采用动态规划算法解矩阵连乘积的最优计算次序问题。 二、算法思路

矩阵连乘(数据结构)

动态规划——矩阵连乘的问题 《问题的引出》 看下面一个例子,计算三个矩阵连乘{A1,A2,A3};维数分别为10*100 , 100*5 , 5*50 按此顺序计算需要的次数((A1*A2)*A3):10X100X5+10X5X50=7500次 按此顺序计算需要的次数(A1*(A2*A3)):10X5X50+10X100X50=75000次 所以问题是:如何确定运算顺序,可以使计算量达到最小化。 枚举显然不可,如果枚举的话,相当于一个“完全加括号问题”,次数为卡特兰数,卡特兰数指数增长,必然不行。 《建立递归关系》 子问题状态的建模(很关键):令m[i][j]表示第i个矩阵至第j个矩阵这段的最优解。 显然如果i=j,则m[i][j]这段中就一个矩阵,需要计算的次数为0; 如果i>j,则m[i][j]=min{m[i][k]+m[k+1][j]+p[i-1]Xp[k]Xp[j]},其中k,在i与j 之间游荡,所以i<=k

所以计算顺序如上右图:相应的计算顺序对应代码为13-15行 m[1][n]即为最终求解,最终的输出想为((A1(A2 A3))((A4 A5)A6))的形式,不过没有成功,待思考... 1#include 2using namespace std; 3const int MAX = 100; 4//p用来记录矩阵的行列,main函数中有说明 5//m[i][j]用来记录第i个矩阵至第j个矩阵的最优解 6//s[][]用来记录从哪里断开的才可得到该最优解 7int p[MAX+1],m[MAX][MAX],s[MAX][MAX]; 8int n;//矩阵个数 9 10void matrixChain(){ 11for(int i=1;i<=n;i++)m[i][i]=0; 12 13for(int r=2;r<=n;r++)//对角线循环 14for(int i=1;i<=n-r+1;i++){//行循环 15int j = r+i-1;//列的控制 16 //找m[i][j]的最小值,先初始化一下,令k=i 17 m[i][j]=m[i][i]+m[i+1][j]+p[i-1]*p[i]*p[j]; 18 s[i][j]=i; 19//k从i+1到j-1循环找m[i][j]的最小值 20for(int k = i+1;k

矩阵的运算及其运算规则

矩阵基本运算及应用 牛晨晖 在数学中,矩阵是一个按照长方阵列排列的或集合。矩阵是高等代中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、、光学和中都有应用;中,制作也需要用到矩阵。矩阵的运算是领域的重要问题。将为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则 简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的.

1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或.特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB. 1.2.3典型举例 已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知

? 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即. (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和. 1.3.2典型例题 设矩阵 计算 解是的矩阵.设它为

矩阵连乘问题算法分析与设计

矩阵连乘问题《算法分析与设计》

设计性实验报告 课程名称:《算法分析与设计》矩阵连乘问题实验题目:长:组员一:成 二:成员成员三:数学与计算机科学系别:系专业班级:指导教师:实验日期: 一、实验目的和要求

实验目的 熟悉动态规划算法设计思想和设计步骤,掌握基 本的程序设计方法,培养学生用计算机解决实际问题的能力。 实验要求 1、根据实验内容,认真编写源程序代码、上机调试程序,书写实验报告。 2、本实验项目考察学生对教材中核心知识的掌握程度和解决实际问题的能力。 3、实验项目可

以采用集中与分散实验相结合的方式进行,学生利用平时实验课时间和课外时间进行 实验,要求在学期末形成完整的项目程序设计报告。 二、实验内容提要 矩阵连乘问题给定n个矩阵{A,A,…,A}, 其中,Ai与Ai+1是可乘的,n21A,A,…,A。由于矩阵乘法满足结n-1。考查这n个矩阵的连乘积i=1,2,…,n12合律,故计算矩阵的连乘积可以有 许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反 复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘积可 递归地定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的矩阵连乘积B和C的乘积并加括号,即A=(BC)。 三、实验步骤下面考虑矩阵连乘积的最优计算次序问题的动态规划方法。(1)分析最优解的结构(最优子结构性质)设计求解具体问题的动态规划算法的第一步是刻画该问 题的最优解结构特征。对于矩阵乘积的最优计算次序问题也不例外。首先,为方便起见,降- 1 - 矩阵乘积Ai Ai+1…Aj简记为A[i:j]。

【线性代数】之矩阵的乘法运算

Born T o Win 考研数学线性代数之矩阵的乘法运算 任意两个矩阵不一定能够相乘,即两个矩阵要相乘必须满足的条件是:只有当第一个矩阵A 的列数与第二个矩阵B 的行数相等时A ×B 才有意义。一个m ×n 的矩阵A 左乘一个n ×p 的矩阵B ,会得到一个m ×p 的矩阵C 。左乘:又称前乘,就是乘在左边(即乘号前),比如说,A 左乘E 即AE 。 一个m 行n 列的矩阵与一个n 行p 列的矩阵可以相乘,得到的结果是一个m 行p 列的矩阵,其中的第i 行第j 列位置上的数为第一个矩阵第i 行上的n 个数与第二个矩阵第j 列上的n 个数对应相乘后所得的n 个乘积之和。比如,下面的算式表示一个2行2列的矩阵乘以2行3列的矩阵,其结果是一个2行3列的矩阵。其中,结果矩阵的那个4(结果矩阵中第二(i )行第二(j)列)= 2(第一个矩阵第二(i)行第一列)*2(第二个矩阵中第一行第二(j)列) + 0(第一个矩阵第二(i)行第二列)*1(第二个矩阵中第二行第二(j)列): 矩阵乘法的两个重要性质:一,矩阵乘法满足结合律; 二,矩阵乘法不满足交换律。为什么矩阵乘法不满足交换律呢?这是由矩阵乘法定义决定的。因为矩阵AB=C ,C 的结果是由A 的行与B 的列相乘和的结果;而BA=D ,D 的结果是由B 的行与A 的列相乘和的结果。显然,得到的结果C 和D 不一定相等。同时,交换后两个矩阵有可能不能相乘。 因为矩阵乘法不满足交换律,所以矩阵乘法也不满足消去律。即由AB=AC 是得不到B=C 的,这是因为()AB AC A B C O =?-=是得不到A=O 或B-C=O 即B=C.例 111000010A B ????=≠=≠ ? ?-????0, 但0000AB O ??== ??? 那么由AB=O 一定得不到A=O 或B=O 吗?回答是否定的。比如A 是m ×n 阶矩阵,B 是n ×s 阶矩阵,若A 的秩为n ,则AB=O ,得B=O ;若B 的秩为m ,则AO ,得A=O.为什么吗?原因会在有关齐次线性方程组的文章里进行讲解.

并行计算-实验二-矩阵乘法的OpenMP实现及性能分析

深圳大学 实验报告 课程名称:并行计算 实验名称:矩阵乘法的OpenMP实现及性能分析姓名: 学号: 班级: 实验日期:2011年10月21日、11月4日

一. 实验目的 1) 用OpenMP 实现最基本的数值算法“矩阵乘法” 2) 掌握for 编译制导语句 3) 对并行程序进行简单的性能 二. 实验环境 1) 硬件环境:32核CPU 、32G 存计算机; 2) 软件环境:Linux 、Win2003、GCC 、MPICH 、VS2008; 4) Windows 登录方式:通过远程桌面连接192.168.150.197,用户名和初始密码都是自己的学号。 三. 实验容 1. 用OpenMP 编写两个n 阶的方阵a 和b 的相乘程序,结果存放在方阵c 中,其中乘法用for 编译制导语句实现并行化操作,并调节for 编译制导中schedule 的参数,使得执行时间最短,写出代码。 方阵a 和b 的初始值如下: ????????? ? ??????????-++++=12,...,2,1,..2,...,5,4,31,...,4,3,2,...,3,2,1n n n n n n n a ???????? ? ???????????= 1,...,1,1,1..1,...,1,1,11,...,1,1,11,..., 1,1,1b 输入: 方阵的阶n 、并行域的线程数 输出: c 中所有元素之和、程序的执行时间 提示: a,b,c 的元素定义为int 型,c 中所有元素之各定义为long long 型。 Windows 计时: 用中的clock_t clock( void )函数得到当前程序执行的时间 Linux 计时: #include

动态规划矩阵连乘算法

问题描述:给定n个矩阵:A1,A2,...,A n,其中A i与A i+1是可乘的,i=1,2...,n-1。确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。输入数据为矩阵个数和每个矩阵规模,输出结果为计算矩阵连乘积的计算次序和最少数乘次数。 问题解析:由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。 完全加括号的矩阵连乘积可递归地定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的矩阵连乘积B和C的乘积并加括号,即A=(BC) 例如,矩阵连乘积A1A2A3A4有5种不同的完全加括号的方式:(A1(A2(A3A4))),(A1((A2A3)A4)),((A1A2)(A3A4)),((A1(A2A3))A4),(((A1A2)A3)A4)。每一种完全加括号的方式对应于一个矩阵连乘积的计算次序,这决定着作乘积所需要的计算量。 看下面一个例子,计算三个矩阵连乘{A1,A2,A3};维数分别为10*100 , 100*5 , 5*50 按此顺序计算需要的次数

((A1*A2)*A3):10X100X5+10X5X50=7500次,按此顺序计算需要的次数(A1*(A2*A3)):10*5*50+10*100*50=75000次 所以问题是:如何确定运算顺序,可以使计算量达到最小化。 算法思路: 例:设要计算矩阵连乘乘积A1A2A3A4A5A6,其中各矩阵的维数分别是: A1:30*35; A2:35*15; A3:15*5; A4:5*10; A5:10*20; A6:20*25 递推关系: 设计算A[i:j],1≤i≤j≤n,所需要的最少数乘次数m[i,j],则原问题的最优值为m[1,n]。 当i=j时,A[i:j]=A i,因此,m[i][i]=0,i=1,2,…,n 当i

Matlab常用函数数组及矩阵的基本运算

实验一 Matlab 常用函数、数组及矩阵的基本运算 一、 实验目的 1. 了解Matlab7.0软件工作界面结构和基本操作; 2. 掌握矩阵的表示方法及Matlab 常用函数; 3. 掌握数组及矩阵的基本运算. 二、 实验内容 1. 了解命令窗口(command widow)和变量空间(workspace)的作用,掌握清 除命令窗口(clc )和变量空间(clear)的方法.掌握查询函数(help)的方法. 2. 掌握保存和加载变量的方法. 加载变量:load 变量名. 3. 掌握掌握矩阵的表示方法: 给a,b,c 赋如下数据: ]6,46,23,4,2,6,3,8,0,1[,356838241248 7,278744125431-=??????????--=??????????=c b a 4. 求a+b,a*b,a.*b,a/b,a./b,a^2,a.^2的结果. 5. 将str1=electronic; str2 = information; str3 = engineering; 三个字符串连接 在一起成str = electronic information engineering. 6. 求矩阵a 的逆矩阵a -1,行列式计算。 (inv(a),det(a)) 三、 实验要求 1.上机操作,熟练掌握清除命令窗口和变量空间的方法、查询变量的方法、加载变量的方法。 2.第2道题请写出步骤。 3.对实验内容中第3-6项,写出指令,上机运行. 记录运行结果(数据)。 4.写出实验报告。 四、 实验结果 2. 用save 函数,可以将工作空间的变量保存成txt 文件或mat 文件等. 比如: save peng.mat p j 就是将工作空间中的p 和j 变量保存在peng.mat 中. 用load 函数,可以将数据读入到matlab 的工作空间中. 比如:load peng.mat 就是将peng.mat 中的所有变量读入matlab 工作空间中。

矩阵连乘问题

一、问题描述给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2,…,n-1。要算出这n个矩阵的连乘积A1A2…An。由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘积可递归地定义为:(1)单个矩阵是完全加括号的;(2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的矩阵连乘积B和C的乘积并加括号,即A=(BC)。例如,矩阵连乘积A1A2A3A4有5种不同的完全加括号的方式:(A1(A2(A3A4))),(A1((A2A3)A4)),((A1A2)(A3A4)),((A1(A2A3))A4),(((A1A2)A3)A4)。每一种完全加括号的方式对应于一个矩阵连乘积的计算次序,这决定着作乘积所需要的计算量。若A是一个p×q矩阵,B是一个q×r矩阵,则计算其乘积C=AB 的标准算法中,需要进行pqr次数乘。为了说明在计算矩阵连乘积时,加括号方式对整个计算量的影响,先考察3个矩阵{A1,A2,A3}连乘的情况。设这三个矩阵的维数分别为10×100,100×5,5×50。加括号的方式只有两种:((A1A2)A3),(A1(A2A3)),第一种方式需要的数乘次数为10×100×5+10×5×50=7500,第二种方式需要的数乘次数为100×5×50+10×100×50=75000。第二种加括号方式的计算量时第一种方式计算量的10倍。由此可见,在计算矩阵连乘积时,加括号方式,即计算次序对计算量有很大的影响。于是,自然提出矩阵连乘积的最优计算次序问题,即对于给定的相继n个矩阵{A1,A2,…,An}(其中矩阵Ai的维数为pi-1×pi,i =1,2,…,n),如何确定计算矩阵连乘积A1A2…An的计算次序(完全加括号方式),使得依此次序计算矩阵连乘积需要的数乘次数最少。穷举搜索法的计算量太大,它不是一个有效的算法,本实验采用动态规划算法解矩阵连乘积的最优计算次序问题。 二、算法思路动态规划算法的基本思想是将待求解问题分成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,动态规划法经分解得到的子问题往往不是相互独立的,前一子问题的解为后一子问题的解提供有用的信息,可以用一个表来记录所有已解决的子问题的答案,不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。本实验的算法思路是: 1、计算最优值算法MatrixChain():建立两张表(即程序中的**m和**s,利用二维指针存放),一张表存储矩阵相乘的最小运算量,主对角线上的值为0,依次求2个矩阵、3个矩阵…、直到n个矩阵相乘的最小运算量,其中每次矩阵相乘的最小运算量都在上一次矩阵相乘的最小运算量的基础上求得,最后一次求得的值即为n个矩阵相乘的最小运算量;另

矩阵连乘问题

目录: 矩阵连乘问题: 1. 描述矩阵连乘问题 2. 分析矩阵连乘问题以及对递归式的推导(1)直接递归思路 (2)备忘录思路 (3)动态规划思路 3. 伪代码的方式描述算法: (1)直接递归算法 (2)备忘录算法 (3)动态规划算法 4. 把算法转换成程序实现的过程及结果(1)直接递归算法程序 (2)备忘录算法程序 (3)动态规划算法程序

1.描述矩阵连乘问题: 给定n 个矩阵{n A A A ?,2,1},其中i A 和1+i A 是可乘的,i=1,2,…,n-1。考察这n 个矩阵的连乘积n A A A ?,2,1。由于矩阵乘法具有结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说连乘积已完全加括号,则可依次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘可递归地定义为:(1)单个矩阵是完全加括号的;(2)矩阵连乘积A 是完全加括号的,则A 可表示为2个完全加括号的矩阵连乘B 和C 的乘积并加括号,即A=(BC )。 矩阵A 和B 可乘的条件是矩阵A 的列数等于矩阵B 的行数。若A 是一个p ×q 的矩阵,B 是一个q ×r 的矩阵,那么C=A ×B 就是一个p ×r 矩阵。它的计算是三重循环的,计算量是pqr 。如果加括号后矩阵的量是不同的,所以我们的问题就是要讨论如何给连乘的矩阵加括号才能使矩阵的计算量最少。 穷举搜索法:对于n 个矩阵的连乘积,设有不同的计算次序P(n)。由于可以先在第k 个和第k+1个矩阵之间将原矩阵序列分为两个矩阵子序列,k=1,2,...,n-1;然后分别对这两个矩阵子序列完全加括号;最后对所得的结果加括号,得到原矩阵序列的一种完全加括号方式。由此可得P(n)的递归式如下: 1 n=1 P (n )= ∑-=-1 1 )()(n k k n P k P n>1 解此递归方程可得,P(n)=C(n-1),而C(n)是一个指数增长的函数。因此穷举搜索法不是一个有效的算法。以下将用三种方法来解决矩阵连乘问题的最优加括号方式以及最优解。 2. 分析矩阵连乘问题以及对递归式的推导 将矩阵连乘积j i i A A A ?+,1,简记为A[i:j]。考察计算A[1:n]的最优计算次序。这个问题的一个关键特征是:计算A[1:n]的最优次序包含的计算矩阵子链A[1:k]和A[k+1:n]的次序也是最优的。这是因为:定义矩阵A i 的维数为p i-1×p i ,则A[i:k]的计算次数为p i-1×p k ,A[k+1,j]的计算次数为p k ×p j ,而这两个总的矩阵最后相乘时的计算量是固定的,为p i-1×p k ×p j 。所以,矩阵连乘计算次序问题的最优解包含着其子问题的最优解。这种性质称为最优子结构性质。 (1)、直接递归的思路:记计算A[i:j],1≤i ≤j ≤n ,所需最少数乘次数为m[i][j],则原问题的最优质为m[1][n]。由分析得知:m[i][j]可以递归的定义为: 0 i=j m[i][j]= }]][1[]][[{min 1j k i j k i p p p j k m k i m -≤≤+++ i

Excel 矩阵运算及引用

利用Excel中函数进行矩阵运算实验 一、实验目的与要求 了解Excel的函数应用并能够利用Excel进行常用的矩阵运算。掌握以Excel 中的几个主要矩阵运算函数的功能,即 MDETERM:用于计算矩阵行列式的值; MINVERSE:用于求解某个可逆矩阵的逆矩阵; MMULT:用于计算两个矩阵的乘积,进行两个矩阵的乘法时必须确保第一个乘积矩阵的列等于第二个乘积矩阵的行; TRANSPOSE:用来求解矩阵的转置或用于Excel中行列的互换。 二、实验内容及步骤 1.矩阵的数乘 用一个数乘以一个矩阵,必须将该数与矩阵的每一个元素相乘。将单元格B3中的数字乘以矩阵A,只需在单元格B10中输入公式“=$B$3*B5”(注意:单元格B3必须采用绝对引用,及固定单元格),然后将其复制到B10:D12区域(利用自拖功能也可以实现),最终结果见下表: 矩阵的数乘 2.矩阵的加法 具有相同行列的两个矩阵才能相加。要进行矩阵的加法,只需将两个矩阵相

同行、列的元素相加,即可得到新的矩阵。如下图,要将矩阵A和B相加,只需在单元格G4中输入公式“=A4+D4”,并将其复制到G4:H8区域(利用自拖功能也可以实现),就可得到最终结果。 矩阵的相加 3.矩阵的转置 对矩阵E进行转置,首先选中打算放置输出结果的整个单元格区域F4:H7,然后选择“插入-函数”,在“查找与引用”或“全部”函数中选择函数“TRANSPOSE”。在“函数参数”的对话框中输入“A4:D6”,同时按住[Ctrl]+[Shift]+[Enter]键,最终得到下列结果。 矩阵转置 也可以利用复制,选择性粘贴中选择转置即可得到上述结果。 4、矩阵相乘 做法一:进行矩阵乘法必须保证第一个乘积矩阵的列等于第二个乘积矩阵的行。首先选中打算放置输出结果的整个单元格区域A9:D10,然后选择“插入-函数”,在“数学与三角”或“全部”函数中选择函数“MMULT”。在“函数参数”的对话框中分别输入第一个数组“A4:C5”和第二个数组“E4:H6”,同时按住[Ctrl]+[Shift]+[Enter]键,最终得到下列结果。

矩阵的各种运算详细讲解

一、矩阵的线性运算 定义1 设有两个矩阵和,矩阵与的和记作, 规定为 注:只有两个矩阵是同型矩阵时,才能进行矩阵的加法运算. 两个同型矩阵的和,即为两个矩阵对应位置元素相加得到的矩阵. 设矩阵记 , 称为矩阵的负矩阵, 显然有 . 由此规定矩阵的减法为 . 定义2 数与矩阵A的乘积记作或, 规定为 数与矩阵的乘积运算称为数乘运算. 矩阵的加法与矩阵的数乘两种运算统称为矩阵的线性运算. 它满足下列运算规律:设都是同型矩阵,是常数,则 (1) (2) ; (3) (4) (5) (6) (7) (8) 注:在数学中,把满足上述八条规律的运算称为线性运算. 二、矩阵的相乘 定义3设

矩阵与矩阵的乘积记作, 规定为 其中,( 记号常读作左乘或右乘. 注: 只有当左边矩阵的列数等于右边矩阵的行数时, 两个矩阵才能进行乘法运算. 若,则矩阵的元素即为矩阵的第行元素与矩阵的第列对应元素乘积的和. 即 . 矩阵的乘法满足下列运算规律(假定运算都是可行的): (1) (2) (3) (4) 注: 矩阵的乘法一般不满足交换律, 即 例如, 设则 而 于是且 从上例还可看出: 两个非零矩阵相乘, 可能是零矩阵, 故不能从必然推出 或 此外, 矩阵乘法一般也不满足消去律,即不能从必然推出例如, 设 则 但 定义4如果两矩阵相乘, 有

则称矩阵A与矩阵B可交换.简称A与B可换. 注:对于单位矩阵, 容易证明 或简写成 可见单位矩阵在矩阵的乘法中的作用类似于数1. 更进一步我们有 命题1设是一个n阶矩阵,则是一个数量矩阵的充分必要条件是与任何n阶矩阵可换。 命题2设均为n阶矩阵,则下列命题等价: (1) (2) (3) (4) 三、线性方程组的矩阵表示 设有线性方程组 若记 则利用矩阵的乘法, 线性方程组(1)可表示为矩阵形式: (2) 其中矩阵称为线性方程组(1)的系数矩阵. 方程(2)又称为矩阵方程. 如果是方程组(1)的解, 记列矩阵 则 ,

并行计算矩阵分块乘法

目录 一、题目及要求 (1) 1、题目 (1) 2、要求 (1) 二、设计算法、算法原理 (1) 三、算法描述、设计流程 (2) 3.1算法描述 (2) 3.2设计流程 (4) 四、源程序代码及运行结果 (6) 1、超立方 (6) 1.1超立方的源程序代码 (6) 1.2运行结果 (11) 2、网孔连接 (11) 2.1源程序代码 (11) 2.2运行结果 (18) 3、在数学软件中的计算结果 (19) 五、算法分析、优缺点 (19) 1、简单的并行分块乘法的过程为 (19) 2、使用Cannon算法时的算法分析 (20) 3、算法的优缺点 (21) 六、总结 (22) 参考文献 (23)

一、题目及要求 1、题目 简单并行分块乘法:(1)情形1: 超立方连接;(2)情形2:二维环绕网孔连接 已知,177511195310135411274329,7563895712314 2120143321 ?????? ? ??----=??????? ??----=B A 求B A C ?=。 2、要求 (1)题目分析、查阅与题目相关的资料; (2)设计算法; (3)算法实现、代码编写; (4)结果分析和性能分析与改进; (5)论文撰写、答辩; 二、设计算法、算法原理 要考虑的计算问题是C=AB,其中A 与B 分别是n n ?矩阵。 ①A 、B 和C 分成p p p ?=的方块阵ij A ,ij B 和ij C ,大小均为p n p n ? ,p 个处理器编号为1 ,1, (1) 0,....,0,0---p p p p p p , ij P 存放ij A ,ij B 和ij C 。 ②通讯:每行处理器进行A 矩阵块的多到多播送(得到ik A , k=0~1-p ) 每列处理器进行B 矩阵块的多到多播送(得到kj B , k=0~ 1-p ) ③乘-加运算: ij P 做kj p k ik ij B A C ∑-== 1

MATLAB中矩阵常用的操作函数

MATLAB中矩阵常用的操作函数 1. zeos : 生成零矩阵 2. ones : 生成1矩阵 3. eye : 生成单位矩阵 4. rand : 返回[0,1]之间的平均分布的随机数(矩阵) 5. randn : 返回标准正态分布的随机数(矩阵) 6. mean : 返回列的均值 7. std : 返回列的方差 8. magic : 返回魔方矩阵,即行、列,对角线元素之和都相等的矩阵 9. hilb : 返回Hilbert矩阵,即H(i,j)=1/(i+j-1) 的矩阵 10. toeplitz : 返回toeplitz矩阵 11. 常用运算: 和:A+B 积:A*B 转置:A',注意:如果A是复矩阵,则A'是共轭转置 行列式:det(A) 逆:inv(A) 内积:dot(a, b) 秩:rank(A) 迹:trace(A) 12. 线性方程组:Ax=b,可以用左除运算:x=A\b;也可以用逆运算:x=inv(A)*b,但效率不如左除运算。 13. Jordan 标准型:jordan(A),返回A的Jordan标准型。或者用两个参数接收结果:[V, J] = jordan(A),那么J是A的Jordan标准型,V是用到的相似变换矩阵,即A=V*J*inv(V)。 14. SVD分解,即奇异值分解:[U, S, V] = svd(A),A=USV'。 15. 特征值:eig(A)返回A的所有特征值。如果用两个参数接收结果:[E, F] = eig(A),那么E 的列是A的特征向量,F是A的特征值。 16. 范数: 1范数:norm(A, 1) 2范数:norm(A, 2) 无穷范数:norm(A, inf) Frobenius范数(也叫Euclid范数,简称F-范数或者E-范数),即A全部元素平方和的平方根:norm(A, 'fro') 17. 矩阵函数:通用方法是funm(A, @fun),即计算矩阵A的fun函数。

矩阵连乘实验报告

华北电力大学科技学院 实验报告 实验名称矩阵连乘问题 课程名称计算机算法设计与分析 专业班级:软件12K1 学生姓名:吴旭 学号:121909020124 成绩: 指导老师:刘老师实验日期:2014.11.14

一、实验内容 矩阵连乘问题,给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2,3…,n-1。考察这n个矩阵的连乘A1,A2,…,A n。 二、主要思想 由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已经完全加括号,则可依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘积可递归的定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号 的矩阵连乘积B和C的乘积并加括号,即A=(BC)。 运用动态规划法解矩阵连乘积的最优计算次序问题。按以下几个步骤进行 1、分析最优解的结构 设计求解具体问题的动态规划算法的第1步是刻画该问题的最优解的结构特征。为方便起见,将矩阵连乘积简记为A[i:j]。考察计算A[1:n]的最优计算次序。设这个计算次序矩阵在A k和A k+1之间将矩阵链断开,1n,则其相应的完全加括号方式为((A1…A k)(A k+1…A n))。依此次序,先计算A[1:k]和A[k+1:n],然后将计

算结果相乘得到A[1:n]。 2、建立递归关系 设计动态规划算法的第二步是递归定义最优值。对于矩阵连乘积的最优计算次序问题,设计算A[i:j],1i n,所需的最少数乘次数为m[i][j],原问题的最优值为m[1][n]。 当i=j时,A[i:j]=A i为单一矩阵,无需计算,因此m[i][i]=0,i=1,2,…n。 当i

矩阵的乘法运算

沈阳航空航天大学课程设计 学号2009040603045 班级94060302 姓名崔建国 指导教师刘学平 2011年7 月 6 日

沈阳航空航天大学 课程设计任务书 学院:机电工程学院专业:车辆工程班级:94060302 学号:2009040603045 题目:矩阵的乘法运算 一、课程设计时间 2011年6月27日~7月1日(第17周),共计1周。 二、课程设计内容 在“file05_矩阵相乘.txt”文件中存放了两个矩阵,请读取这两个矩阵进行乘法运算,并显示结果矩阵。 三、课程设计要求 程序质量: ?贯彻事件驱动的程序设计思想。 ?用户界面友好,功能明确,操作方便;可以加以其它功能或修饰。 ?用户界面中的菜单至少应包括“读取矩阵”、“开始计算”、“显示结果”、“退 出”4项。 ?代码应适当缩进,并给出必要的注释,以增强程序的可读性。 课程设计说明书: ?课程结束后,上交课程设计说明书和源程序。课程设计说明书的内容参见提 供的模板。 四、指导教师和学生签字 指导教师:刘学平学生签名:崔建国 五、成绩 六、教师评语

目录 一、需求分析 (4) 二、设计分析 (4) 三、关键技术 (6) 四、总结 (10) 五、完整的源程序 (11) 六、参考文献 (13)

一、需求分析 矩阵乘法运算是通过读取文本文件的资料,将两个矩阵进 行乘法运算,并显示结果。要求: ①学生会编程读取文本文会运open ②会运用Do while loop 的循环语句 ③懂得矩阵运算的法则. 二、设计分析 (1) 基本原理:运用打开顺序文件 open 文件名For Input/ output/ As # 文件号, 在文本文件中读取数据矩阵相乘采用二维数组For 循环 结构。矩阵相乘是将每个数字赋予一个字符,然后把字符 用公式写出来,进而进行计算,将得出的结果按矩阵的形 式打印在窗体上。

动态规划法解矩阵连乘问题

动态规划法解矩阵连乘问题 实验内容 给定n个矩阵{A1,A2,….An},其中Ai与Ai+1是可乘的,i=1,2,3。。。,n-1。我们要计算这n个矩阵的连乘积。由于矩阵乘法满足结合性,故计算矩阵连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则我们可依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。 解题思路 将矩阵连乘积A(i)A(i+1)…A(j)简记为A[i:j],这里 i <= j。考察计算A[i:j]的最优计算次序。设这个计算次序在矩阵A(k)和A(k+1)之间将矩阵链断开,i <= k < j, 则其相应完全加括号方式为(A(i)A(i+1)…A(k)) * (A(k+1)A(k+2)…A(j))。 特征:计算A[i:j]的最优次序所包含的计算矩阵子链 A[i:k]和A[k+1:j]的次序也是最优的。 矩阵连乘计算次序问题的最优解包含着其子问题的最优解。 设计算A[i:j],1 <= i <= j <= n,所需要的最少数乘次数m[i,j],则原问题的最优值为m[1,n] 当i = j时,A[i:j]=Ai,因此,m[i,i] = 0,i = 1,2,…,n 当i < j时,m[i,j] = m[i,k] + m[k+1,j] + p(i-1)p(k)p(j)这里A(i)的维数为 p(i-1)*(i)(注:p(i-1)为矩阵A(i)的行数,p(i)为矩阵A[i]的列数) 实验 实验代码 #include #include using namespace std ; class matrix_chain { public: matrix_chain(const vector & c) { cols = c ; count = cols.size () ; mc.resize (count) ; s.resize (count) ; for (int i = 0; i < count; ++i) { mc[i].resize (count) ; s[i].resize (count) ; } for (i = 0; i < count; ++i) { for (int j = 0; j < count; ++j) { mc[i][j] = 0 ; s[i][j] = 0 ; }

矩阵的简单运算公式

矩阵的运算 (一) 矩阵的线性运算 特殊乘法:222()A B A AB BA B +=+++ 2 22 ()()() A B A B A B A B =≠ (二) 关于逆矩阵的运算规律 111 1 1 11 1 1(1)()(2)() /(3)( )( )(4)()( ) T T n n A B B A k A A k A A A A ---------==== (三) 关于矩阵转置的运算规律 (1)()(2)()T T T T T T A B B A A B B A =+=+ (四) 关于伴随矩阵的运算规律 **1 *2 ***1* **1*11**1(1)(2)(2)(3)()(4)(), ()(5)()1,()1 0,()2(6)()()()n n n AA A A A E A A n A A A kA k A n r A n r A r A n r A n A A A A A A A A A -------===≥===?? ==-??≤-?= ==若若若若可逆,则,, (五) 关于分块矩阵的运算法则 1 1 1 110000(2)000 0T T T T T A B A C C D B D B B B C C C C B -----?? ?? =????????????????==????????????????(1);, (六) 求变换矩阵 ()121 1 2 11121311111121222321121121313233313131100(a )(2)i n n i i i ij i i i i A T TAT T P P P AP P A a a a p p p a a a p p P p a a a p p p AP P P i λλλλλλλ--?? ? ?= ? ? ? ?===???????? ??? ? ? =→= ??? ? ? ??? ? ?????????=+≥已知矩阵,及其特征值求使得,设,则其中若有重根则时再1 T T -由求 (七) 特征值与矩阵

矩阵连乘问题

矩阵连乘问题(动态规划) 一、实验目的与要求 1、明确矩阵连乘的概念。 2、利用动态规划解决矩阵连乘问题。 二、实验题: 问题描述: 给定n个矩阵{A1,A2,...,An},其中Ai与Ai+1是可乘的,i=1,2...,n-1。确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。输入数据为矩阵个数和每个矩阵规模,输出结果为计算矩阵连乘积的计算次序和最少数乘次数。 三、实验代码 #include using namespace std; const int MAX = 100; //p用来记录矩阵的行列,main函数中有说明 //m[i][j]用来记录第i个矩阵至第j个矩阵的最优解 //s[][]用来记录从哪里断开的才可得到该最优解 int p[MAX+1],m[MAX][MAX],s[MAX][MAX]; int n;//矩阵个数 int matrixChain(){ for(int i=0;i<=n;i++) m[i][i]=0; for(int r=2;r<=n;r++)//对角线循环 for(int i=0;i<=n-r;i++){//行循环 int j = r+i-1;//列的控制 //找m[i][j]的最小值,先初始化一下,令k=i m[i][j]=m[i+1][j]+p[i+1]*p[i]*p[j +1]; s[i][j]=i; //k从i+1到j-1循环找m[i][j]的最小值 for(int k = i+1;k

相关文档
最新文档