国家973项目申请书 超高压下凝聚态物质的新结构与新性质

国家973项目申请书  超高压下凝聚态物质的新结构与新性质
国家973项目申请书  超高压下凝聚态物质的新结构与新性质

项目名称:超高压下凝聚态物质的新结构与新性质首席科学家:崔田吉林大学

起止年限:2011.1至2015.8

依托部门:教育部

二、预期目标

本项目的总体目标:

在超高压下凝聚态物质的新结构与新性质前沿领域做出重要原创性的工作,获得一批国际水平的研究成果,形成我国有特色的高压科学研究体系,造就一支具有创新思维的中青年高压研究队伍,使中国高压研究的总体水平进入国际先进行列,进一步提升在国际高压界地位。

五年预期目标:

为完成总体目标,集中进行以下几个方面的研究工作:1)超高压下凝聚体系的金属化与奇异性能,2)超高压下强关联体系中价电子的行为,3)超高压下纳米限域体系的结构演化,4)超高压下的化合物半导体的电输运与新效应,5)超高压下亚稳相的截获与材料的微结构及性能调控。

揭示超高压下纯氢以及富氢体系中分子的解离机制,探索可能产生金属氢的新途径,实现压制金属化;获得不同压力-温度-组分空间中,新型含3d、4d、5d关联体系的结构特征和奇异物性,揭示超高压关联体系材料磁、电和介电的物理机制和晶体及电子结构起源;总结在纳米尺度、空间受限条件下压致分子体系的键合规律;揭示高压下准一维纳米体系的结构演化以及力学、电学等性质随压力的变化规律;揭示化合物半导体的结构、电输运行为与其特殊功能性质之间的内在联系,诠释高压下电子驰豫、平均自由程、有效质量的新内涵以及各物理量之间的内在联系及其规律;在新型材料的超高压合成方面,由唯象研究上升到注重内在物理本质的探索,获取截获高压亚稳相的新方法及规律性认识。合成出3d、4d、5d族3种以上Mott有序化和Stoner型磁电新材料、3-5种有代表性高致密化超细微结构的高性能块体材料。

预期的科学研究成果:

拟在SCI收录的国内外著名学术刊物上发表论文300篇以上,撰写1-3部专著,申报高水平的奖励3-5项,申请发明专利15-25项。同时培养高压领域的拔尖人才以及学术带头人,培养博士研究生50名、硕士研究生200名。

三、研究方案

1)学术思路:

在前期973项目建立的多项高压技术的基础上,突出创新,发现新现象、新物质,创建新理论,形成有特色的高压科学研究体系。将若干个有重大科学意义的国际高压科学前沿基础问题作为重点,通过跨领域的紧密合作,在某课题上再利用动高压对静高压的补充作用,集成优势攻关。从构建研究体系入手,本着从常规体系到强关联体系、从小尺寸到体材料的原则,选择具有代表性、倍受关注的物质体系作为研究对象,确定高压相结构,获得超高压下的相变过程与规律。利用超高压下原位测量实验和高压理论,深入认识超高压下典型凝聚态物质新的原子空间分布和新的电子状态以及微观相互作用规律,揭示物质结构与性质的高压调制、演化过程以及截获特殊的高压相。

2)技术途径:

实验途径:利用高压原位x光衍射实验,研究高压下凝聚态物质的结构;利用金刚石对顶砧集成测量电路,研究超高压下的原位电导率、阻抗谱和霍尔效应等电输运性质;利用原位高压光谱学方法研究物质的电子结构,声子状态以及光学性质等;利用高压Mossbauer谱、X光非弹性散射方法,研究原子电子状态的变化;采用大体积高压设备如六面顶压机和二级推进压机,开展系统的高温高压合成实验研究,合成出理论上设计出的新型高压相材料。利用冲击波动高压原位结构与性能的探测,对静高压研究进行补充,实现热力学多路径高原位研究。

通过对多实验系统的综合协调来实现同一环境下的多物理量测量,实现准确的物理参数表征,构建物理量之间的客观联系。

理论途径:利用蒙特卡罗、分子动力学、从头算分子动力学等方法研究超高压力下凝聚态物质的结构、结构相变及其动力学过程;利用第一原理的密度泛函理论,研究高压相的能带结构、态密度、电子状态的变化,以及光学、电学以及力学等性质等。

3)创新点与特色:

(1)研究体系的构建:从常规体系到强关联体系,从小尺寸到体材料,选择具

有代表性的、倍受关注的凝聚态物质作为研究对象,研究体系物理现象丰富。(2)研究方法和技术:利用我国自己发展的、拥有自主知识产权的、国际领先的高压实验方法与技术和表征手段,进行多种高压下原位、微区、精密的物质结构和性质的测量。项目组率先建立了世界上第一台激光加热原位高温高压Raman 光谱实验系统,国内唯一的激光加热原位高温高压同步辐射与常规X光衍射实验系统以及高压布里渊散射等实验系统,拥有能够同时进行高压下物质结构和弹性、电学、光学等物理性质研究的、世界上先进的集成原位超高压技术。特别是在前期973项目的支持下建立并完善了具有国际先进技术水平高压原位电学及磁学测量技术,建立的可开展超高压高温合成的六八型二级推进高压高温合成装置,大大提升用于高压高温合成新材料的压力上限和创造新材料的可能。

我们邀请到我国动高压专家加盟本项目,研究方法和技术得到了进一步的扩充与发展。利用冲击波产生动高压,选择热力学可控的新的研究路径进行高温高压研究,为取得重大突破提供了新的途径。

(3)研究思路:利用压力对物质微观结构特有的调控作用,深入认识凝聚态物质的结构、电子状态、物理性质及其本质联系,发现高压下的新现象和新规律。找到常规条件无法发现的新的高压相,为合成新物质提供科学依据和理论指导。

在金属氢等重大科学问题的研究方面有独特的思路,将利用:静高压与其它极端条件结合、通过动高压尝试热力学可控的新的研究路径、利用纳米限域与高压的综合效应,探索新的研究之路。

(4)科学问题:研究内容是当前高压领域的热点和基础前沿问题。在电子状态、原子间键合方式及其动力学过程等深层次上开展物质压力效应的系统研究,能够揭示压力效应的物理本质。

4)取得重大突破的可行性分析:

(1)高压下物理量的原位测量,是高压科学赖以生存和发展的基石。高压科学研究水平的高低,强烈依赖于高压下原位物理量测量技术的先进程度。微型金刚石对顶砧实验技术的突破,使得在实验室中可产生百万大气压以上的静态压力的同时,能在高压条件下直接原位测量物质的结构和性质。参加研究的单位包括二个国家重点实验室、一个国防科技重点实验室和一个国家正负电子对撞中心同步辐射高压站,拥有国际先进和完备的高压实验条件,还自主发展了国际领先的实

验方法与技术,如激光加热高温高压拉曼光谱与X光衍射的原位测量方法、超高压下的瞬态测量和高灵敏高选择性测量技术、新一代集成高压技术,新六八型二级推进型超高压高温合成装置,这些实验条件,有的已经成功应用到前期973项目中,有的是在前期973项目中得以完善和发展的,为本项目的完成提供了可靠的技术保障。同时,也大大提高了做出国际领先、原创性成果的可能性。(1)选择的研究体系是凝聚态物质科学中倍受关注的对象,展现出的物理现象十分丰富,存在许多机遇与挑战,极有希望取得突破性进展。如对产生金属氢新机制的探索、新型关联体系的超高压研究等,为获得有影响的重要创新成果,提供了新的途径;纳米材料是当前的研究热点,超高压条件的介入,为创新成果的出现增加了新的机会。

(2)在超高压条件下揭示物质宏观性质与微观电子结构的关系,是一个非常活跃的新领域,容易产生原创性的科研成果,可能形成重大突破。前期973项目的研究中,已经取得这方面的主要成果,例如我们发现金属钠在高压的作用下改变成了新的结构,从而变成了透明的绝缘体,发表在Nature杂志上。

(3)通过研究凝聚态物质的相变规律,找到常规条件无法发现的新的高压相,再截获高压相,制备出新材料,是产生新物质的有效途径。在前期的973项目支持下,我们已经利用高压方法成功地制备出一些全新的高压相化合物,包括新型关联体系、新型超硬多功能材料等。在这个他人涉足不多的新领域,用自己研发的新的方法与技术,可以寻找出更多的高压新相材料。

(4)承担单位有长期的合作基础,曾完成了多项科研任务,包括前期973项目,取得了一批重要研究成果。有一支以年轻人为主、知识结构合理富有科技创新能力的研究队伍,具有丰富的研究经验,能掌握超高压凝聚态物质研究领域的趋势和前沿,发展了有自己特色的实验方法与技术,并且与国际高压界有良好的学术交流和紧密合作。本项目研究涉及到高压物理、材料科学、化学等多学科,不同学科的交叉融和,多种实验手段和技术的优势互补,能够针对同一问题进行多方位的协同研究,有利于获得原创性的科研成果。

5)项目组织形式

采用973项目管理的成功经验,由首席科学家负责,集中管理,分工实施,组织跨学科、跨单位的联合攻关。

6)可行性分析

(1)高压下物理量的原位测量,是高压科学赖以生存和发展的基石。高压科学研究水平的高低,强烈依赖于高压下原位物理量测量技术的先进程度。微型金刚石对顶砧实验技术的突破,使得在实验室中可产生百万大气压以上的静态压力的同时,能在高压条件下直接原位测量物质的结构和性质。参加研究的单位包括二个国家重点实验室、一个国防科技重点实验室和一个国家正负电子对撞中心同步辐射高压站,拥有国际先进和完备的高压实验条件,还自主发展了国际领先的实验方法与技术,如激光加热高温高压Raman光谱与X光衍射的原位测量方法、超高压下的瞬态测量和高灵敏高选择性测量技术、新一代集成高压技术,新六八型二级推进型超高压高温合成装置,这些实验条件,有的已经成功应用到前期973项目中,有的是在前期973项目中创建、完善和发展的,为本项目的完成提供了可靠的技术保障。同时,也大大提高了做出国际领先、原创性成果的可能性。(2)选择的研究体系是凝聚态物质科学中倍受关注的对象,展现出的物理现象十分丰富,存在许多机遇与挑战,极有希望取得突破性进展。如对产生金属氢新机制的探索、新型关联体系的超高压研究等,为获得有影响的重要创新成果,提供了新的途径;纳米材料是当前的研究热点,超高压条件的介入,为创新成果的出现增加了新的机会。

需要强调的是项目的研究是我们前期973项目的继承和发展,多个课题都是在前期取得的成果和建立的基础之上展开的,所选择的研究对象关联性很大,在完善的研究平台的支撑之下,完全有能力在更为宽广的压力温度区域和组分尺度范围开展和完成各个课题的任务,取得重大突破。

(3)在超高压条件下揭示物质宏观性质与微观电子结构的关系,是一个非常活跃的新领域,容易产生原创性的科研成果,可能形成重大突破。前期973项目的研究中,已经取得了多项重要成果,例如我们发现金属钠在高压的作用下改变成了新的结构,从而变成了透明的绝缘体,发表在Nature杂志上。

(4)通过研究凝聚态物质的相变规律,找到常规条件无法发现的新的高压相,再截获高压相,制备出新材料,是产生新物质的有效途径。在前期的973项目支持下,我们已经利用高压方法成功地制备出一些全新的高压相化合物,包括新型关联体系、新型超硬多功能材料等。在这个他人涉足不多的新领域,用自己开辟的已经成功的新方法,可以寻找出更多的高压新相材料。

(5)承担单位有长期的合作基础,曾完成了多项科研任务,包括前期973项目,取得了一批重要研究成果。有一支以年轻人为主、知识结构合理富有科技创新能力的研究队伍,具有丰富的研究经验,能掌握超高压凝聚态物质研究领域的趋势和前沿,发展了有自己特色的实验方法与技术,并且与国际高压界有良好的学术交流和紧密合作。本课题研究涉及到高压物理、材料科学、力学、化学等多学科,不同学科的交叉融和,多种实验手段和技术的优势互补,能够针对同一问题进行多方位的协同研究,有利于获得原创性的科研成果。

7)课题设置

根据本项目的总体思路和预期目标,侧重不同的研究体系和研究内容,充分利用前期奠定的基础,特别是在高压技术和方法方面,本着集中攻关和适当延展的原则,加强协作及实验平台的共享,设置了五个研究课题,包括:(1)超高压下纯氢以及富氢体系的金属化与奇异性质;(2)超高压下的新型关联体系;(3)超高压下纳米限域体系的新结构与新性质;(4)超高压下典型半导体材料的电输运特性;(5)超高压下亚稳相的截获与材料的组织与性能调控。

课题1、超高压下纯氢以及富氢体系的金属化与奇异性质

预期目标:

揭示超高压下纯氢以及富氢体系中分子的解离机制,探索可能的产生金属氢的新途径,实现压制金属化。深入认识凝聚态物质的电子状态、原子价态、原子间键合以及力学、电学及光学性质随压力的变化规律,为创造新型能源、功能材料,以及对新材料合成中的基本问题的理解提供理论支持。

研究内容:

利用原位、微区、精密的物质结构和性质的静高压实验、冲击波产生的动高压实验和第一原理密度泛函等理论研究相结合,以单核共价氢化物(如AlH3、NH3、CH4、SiH4)以及双核及多核的氢化物(如N2H4、B2H6、H2O2、C2H6、Si2H6等)为研究对象。探索在存在其它元素化学预压的情况下,这些富氢体系结构随外界压力的变化,以及金属化出现的条件及其性质的变化,探索氢的子体系的微观状态随压力的变化可能带来的新奇宏观性质,如高温超导特性等,为金属氢的研究提供新的物理图象和指导。研究压力对纯氢体系的结构与性质的影响,同时研究压力以及其它外界条件对氢分子内部氢原子间键合的综合影响,探索产生金属氢的新途径,从而实现氢的金属化。

承担单位:吉林大学、中国工程物理研究院

课题负责人:崔田

学术骨干:何志、蔡灵仓、马琰铭、经福谦、邹广田

课题2、超高压下的新型关联体系

预期目标:

制备3种以上3d、4d、5d族Mott有序化和Stoner型磁电新材料,获得不同压力-温度-组分空间中,新型含3d、4d、5d关联体系的结构特征和奇异物性,揭示超高压关联体系材料磁、电和介电的物理机制和晶体及电子结构起源。

研究内容:

利用高压条件,在拓宽的压力-温度-组分空间,进行3d、4d、5d关联体系Mott有序化和Stoner型磁电新材料的高压合成研究。结合多种极端条件综合测试平台,高压原位研究其异常化学价态、结构和磁性、电性、介电等物理性质及其相互作用和转化,总结高压下结构变化规律以及高压对材料稳定性的影响,建立高压下新型关联体系结构、化学组成、物理特性所产生的全新临界关系。针对Mott有序化和Stoner巡游磁体的热点问题,如多种有序及其相互作用和转化、配位体对电子结构的精细作用、d电子的局域和扩展,研究超高压电子关联和多体效应,同时从理论上预测与解释这些体系的高压行为,寻找电子结构参数与压力的关系,深入认识高压下含有3d、4d、5d的展宽关联体系中价电子的行为以及微观相互作用规律。

承担单位:中国科学院物理研究所、中国科学院高能物理研究所

课题负责人:董成

学术骨干:陈良辰、李晓东、杨立红、冯少敏、靳常青

课题3、超高压下纳米限域体系的新结构与新性质

预期目标:

总结在纳米尺度、空间受限条件下压致分子体系的键合规律;揭示高压下准一维纳米体系的结构演化以及力学、电学等性质随压力的变化规律,为高压下金属氢的产生提供新的图像。

研究内容:

采用高压原位实验技术,系统研究限域于碳/BN纳米管、分子筛道等纳米体系内I2、N2等典型双原子分子体系、H2O等含氢分子体系的高压结构变化,探索其相变的物理机制;寻找这些体系在准一维限域下发生金属化的条件,探索其金属化物理机制;研究它们在准一维限域下向原子相的转变的规律,揭示小分子体系在高压下由分子相到原子相的分子解离机制,弄清高压下金属相的形成过程,力争获得限域于纳米管内固态小分子体系全新的压致结构相变规律——全然不同于体材料的新规律。针对三聚氰胺、胍等超分子体系,重点研究高压原位结构变化,高压下结构稳定性的变化,获得分子间弱相互作用力与分子内强相互作用之间的相互变化规律。

该研究不仅有助于加深对纳米限域体系独特的结构变化、原子分子间键合以及光学、电学等物理性质随压力的变化规律的认识,也将为获得全新的纳米级新材料提供新途径。

承担单位:吉林大学、清华大学

课题负责人:刘冰冰

学术骨干:崔啟良、姚明光、王霖、邹勃、王治强

课题4、超高压下典型半导体材料的电输运特性

预期目标:

揭示化合物半导体的结构、电输运行为与其特殊功能性质之间的内在联系,诠释高压下电子驰豫、平均自由程、有效质量的新内涵以及各物理量之间的内在联系及其规律。

研究内容:

在已有的高压下多物理量分别测量的基础上,突破多物理量联合测量的技术难题,将电导率、介电常数、磁阻率、霍尔系数、载流子浓度、迁移率等描述物质电输运性质的物理量测量集成起来,实现多物理量的联合测量,在同等温度压力条件下对样品的多物理量进行全方位表征,使所测量的物理量能够准确反映物质的性质,进而建立高压下各物理量之间的关联和制约关系。课题将以典型的化合物半导体为对象,进行高压下结构和电输运性质的实验和理论研究。从高压下的结构、电导率、磁阻率、介电常数、霍尔效应表征入手,研究压力作用下载流子的形成、类型、迁移率、浓度、有效质量等物理性质随压力的变化关系和各物

理参数之间的联系,获得压力作用下从半导体到半金属直至金属化状态时载流子行为的演化规律和变化特征,建立带电粒子间相互作用与电输运性质转化之间的联系,比较ns、np、nd价电子间的相互作用随压力变化的差异和不同壳层价电子间相互作用随压力的变化规律。

承担单位:吉林大学、燕山大学

课题负责人:高春晓

学术骨干:彭刚、韩永昊、刘洪武、王欣、张湘义

课题5、超高压下亚稳相的截获与材料的组织与性能调控

预期目标:

研制3-5种有代表性高致密化超细微结构的高性能块体材料,获得这些新型功能晶体的状态方程和相变规律,积累这些晶体的晶体学、力学、电学、光学、热学等结构与性质的实验数据。

研究内容:

探索截获高压亚稳相的新方法及规律性认识。针对过渡金属硼化物、碳化物、氧化物及B-C-N-O轻元素体系,通过理论设计与实验的相互印证,认识超高压导致物质电子结构发生突变的物理本质;确定核外电子价键状态及原子排列方式在超高压下失稳的物理判据与边界条件;预测、设计和合成在超高压下可出现的化学物质及晶体/非晶体结构;探索超高压条件下材料内部原子/原子基团扩散、晶体成核和生长规律,由此调制材料的微结构与相组成。在高压下制备出3-5种新型过渡金属硼化物、碳化物、氧化物及B-C-N-O轻元素体系化合物亚稳相与相应的高性能纳米结构复合块体材料。利用超高压手段和原位测试技术,测量这些新型功能晶体的状态方程并研究压制相变规律。

承担单位:燕山大学、四川大学

课题负责人:田永君

学术骨干:何巨龙、于栋利、贺端威、于凤荣、彭放

课题间关系

根据本项目的总体思路和预期目标,侧重不同的研究体系和研究内容,充分利用前期奠定的基础,特别是在高压技术和方法方面,本着集中攻关和适当延展

的原则,加强协作及实验平台的共享,设置了五个研究课题,包括:(1)超高压下纯氢以及富氢体系的金属化与奇异性质;(2)超高压下的新型关联体系;(3)超高压下纳米限域体系的新结构与新性质;(4)超高压下典型半导体材料的电输运特性;(5)超高压下亚稳相的截获与材料的组织与性能调控。

从常规体系(课题1、3、4、5)到强关联体系(课题2),从小尺寸(课题3)到大尺寸体系(课题1、2、4、5),多层次、多角度地选择了凝聚态物质,形成了丰富的研究体系。全面而深入地认识常规体系的高压行为,以及电子强关联和小尺寸带来的新现象。课题间的联系可以由下面的框图很好地说明。

课题1、4、5针对常规体系的高压行为进行研究,这些课题间成果的交流与互补,易于认识高压下的基本规律,构建新的理论模型,建立新的方法。将他们的基本的数据与规律提供给课题2和课题3,有利于从众多复杂效应中,揭示出电子之间的强关联的压力效应(课题2)以及小尺寸与压力的协同效应(课题3)。而高压下强关联和小尺寸的规律,又可以反馈于常规体系的研究,对于发现压力下的新奇反常行为有益。同时各个课题之间还会有高压实验技术、理论方法方面的相互支撑。课题1、3、4将联合攻关,力争在物质压致金属化的研究方面取得突破。

四、年度计划

2020高考化学 考题 分子结构与性质

分子结构与性质 1.三硫化磷(P4S3)是黄绿色针状晶体,易燃、有毒,分子结构之一如下图所示,已知其燃烧热△H= -3677kJ/mol(P被氧化为P4O10),下列有关P4S3的说法中不正确的是 A.分子中每个原子最外层均达到8电子稳定结构 B.P4S3中硫元素为-2价,磷元素为+3价 C.热化学方程式为P4S3(s)+8O2(g)=P4O10(s)+3SO2(g);△H=-3677kJ/mol D.一个P4S3分子中含有三个非极性共价键 【答案】B 【解析】A、P原子最外层有5个电子,含3个未成键电子,S原子最外层有6个电子,含2个未成键电子,由P4S3的分子结构可知,每个P形成3个共价键,每个S形成2个共价键,分子中每个原子最外层均达到8电子稳定结构,A正确;B、由P4S3的分子结构可知,1个P为+3价,其它3个P都是+1价,正价总数为+6,而S为-2价,B错误;C、根据燃烧热的概念:1mol可燃物燃烧生成稳定氧化物放出的热量为燃烧热,则P4S3(s)+8O2(g)=P4O10(s)+3SO2(g);△H= -3677kJ/mol,C正确;D、由P4S3的分子结构可知,P-P之间的键为非极性键,P-S之间的键为极性键,一个P4S3分子中含有三个非极性共价键,D正确。 2.常温下三氯化氮(NCl3)是一种淡黄色的液体,其分子结构呈三角锥形,以下关于NCl3说法正确的是()A.该物质中N-C1键是非极性键 B.NCl3中N原子采用sp2杂化 C.该物质是极性分子 D.因N-C1键的键能大,所以NCl3的沸点高 【答案】C 【解析】A、N和Cl是不同的非金属,则N-Cl键属于极性键,故A错误;B、NCl3中N有3个σ键,孤 电子对数531 2 -? =1,价层电子对数为4,价层电子对数等于杂化轨道数,即NCl3中N的杂化类型为sp3, 故B错误;C、根据B选项分析,NCl3为三角锥形,属于极性分子,故C正确;D、NCl3是分子晶体,NCl3沸点高低与N-Cl键能大小无关,故D错误。 3.二氯化二硫(S2Cl2),非平面结构,常温下是一种黄红色液体,有刺激性恶臭,熔点80℃,沸点135.6℃,对干二氯化二硫叙述正确的是

新课标高中化学选修教材《物质结构与性质》—三种版本的

新课标高中化学选修教材《物质结构与性质》—三种版本的比较研究作者:蔡文联文章来源::《化学教学》2007年01期点击数:31 更新时间:2008-3-24 新课标高中化学选修教材《物质结构与性质》—三种版本的比较研究 蔡文联饶志明余靖知 摘要:根据2003年出版的《普通高中化学课程标准(实验》)编定的高中化学教材已通过审定的有三种版本,分别由人民教育出版社、江苏教育出版社、山东科技出版社出版。高中化学课程8个模块中选修3“物质结构与性质”是属于化学基本理论知识的模块。本文将对新版三种教材(选修3“物质结构与性质”)的设计思路、体系结构、栏目设置等方面进行比较研究,以期有助于教师理解新课标、选择教材、教法以及把握教学尺度。 为了适应我国21世纪初化学课程发展的趋势,化学课程标准研制组经过深入的调查研究,多次讨论修改,于2003年出版了《普通高中化学课程标准(实验)》。他们将高中化学课程采用模块的方式分为必修和选修两部分,共8个模块,其中必修模块2个,选修模块6个。新课程“在保证基础的前提下为学生提供多样的、可供选择的课程模块”,兼顾“学生个性发展的多样化需要”,适应不同地区和学校的条件。目前以高中化学课程标准和基础教育课程改革纲要为指导编写的新版高中化学教材经全国中小学教材审定委员会初审通过的共有3种,分别是由人民教育出版社出版(宋心琦主编,以下简称人教版),江苏教育出版社出版(王祖浩主编,以下简称苏教版),山东科技出版社出版(王磊主编,以下简称山东科技版)。 在6个选修模块中,选修3“物质结构与性质”模块突出化学学科的核心观念、基本概念原理和基本思想方法。在以“提高学生的科学素养”为主旨的高中化学课程改革中,如何将新课程理念很好地融合进化学基本概念和基础理论的教学中,转变学生的学习方式,培养学生的逻辑思维能力,提高学生学习本课程的意义,是值得广大化学教师研究、推敲的。因此,针对上述三种版本的教材(选修3物质结构与性质)进行具体的分析、比较、评价, 对教师在选择教材、教法以及把握教学尺度方面都具有十分重要的意义。 1.“物质结构与性质”模块教材的简介

高中化学分子的结构与性质

分子的结构与性质 【知识动脉】 知识框架 产生原因:共价键的方向性 Sp3 决定因素:杂化轨道方式sp2 分子的空间构型sp 空间构型的判断:VSEPR理论 空间构型决定性质等电子原理 手性分子 配合物 一、杂化轨道理论 1. 杂化的概念:在形成多原子分子的过程中,中心原子的若干能量相近的原子轨道重新组合,形成一组新的轨道,这个过程叫做轨道的杂化,产生的新轨道叫杂化轨道。 思考:甲烷分子的轨道是如何形成的呢? 形成甲烷分子时,中心原子的2s和2p x,2p y,2p z等四条原子轨道发生杂化,形成一组新的轨道,即四条sp3杂化轨道,这些sp3杂化轨道不同于s轨道,也不同于p轨道。 根据参与杂化的s轨道与p轨道的数目,除了有sp3杂化外,还有sp2杂化和sp杂化,sp2杂化轨道表示由一个s轨道与两个p轨道杂化形成的,sp杂化轨道表示由一个s轨道与一个p轨道杂化形成的。 思考: 应用轨道杂化理论,探究分子的立体结构。

C2H4 BF3 CH2O C2H2 思考:怎样判断有几个轨道参与了杂化? [讨论总结]:三种杂化轨道的轨道形状,SP杂化夹角为°的直线型杂化轨道,SP2杂化轨道为°的平面三角形,SP3杂化轨道为°′的正四面体构型。 小结:HCN中C原子以sp杂化,CH2O中C原子以sp2杂化;HCN中含有2个σ键和2π键;CH2O中含有3σ键和1个π键 【例1】(09江苏卷21 A部分)(12分)生物质能是一种洁净、可再生的能源。生物质气(主要成分为CO、CO2、H2等)与H2混合,催化合成甲醇是生物质能利用的方法之一。甲醛分子中碳原子轨道的杂化类型为。甲醛分子的空间构型是;1mol甲醛分子中σ键的数目为。 解析与评价:甲醛分子中含有碳氧双键,故碳原子轨道的杂化类型为sp2杂化;分子的空间构型为平面型;1mol甲醛分子中含有2mol碳氢δ键,1mol碳氧δ键,故含有δ键的数目为3N A 答案:sp2平面型3N A 【变式训练1】(09宁夏卷38)[化学—选修物质结构与性质](15分) 已知X、Y和Z三种元素的原子序数之和等于42。X元素原子的4p轨道上有3个未成对电子,Y元素原子的最外层2p轨道上有2个未成对电子。X跟Y可形成化合物X2Y3,Z元素可以形成负一价离子。请回答下列问题: (1)X与Z可形成化合物XZ3,该化合物的空间构型为____________; 2、价层电子对互斥模型 把分子分成两大类:一类是中心原子上的价电子都用于形成共价键。如CO2、CH2O、CH4等分子中的C 原子。它们的立体结构可用中心原子周围的原子数来预测,概括如下: ABn 立体结构范例 n=2 直线型CO2 n=3 平面三角形CH2O n=4 正四面体型CH4 另一类是中心原子上有孤对电子 ............)的分子。如 ....(未用于形成共价键的电子对 H2O和NH3中心原子上的孤对电子也要占据中心原子周围的空间,并参与互相排斥。因而H2O分子呈V型,NH3分子呈三角锥型。 练习2、应用VSEPR理论判断下表中分子或离子的构型。进一步认识多原子分子的立体结构。 化学式中心原子含有孤对电子对数中心原子结合的原子数空间构型 H2S

973项目申报书——2009CB930100-纳米生物材料的合成、组装及在生物医学领域的应用

项目名称:纳米生物材料的合成、组装及在生物医 学领域的应用 首席科学家:李峻柏国家纳米科学中心 起止年限:2009.1至2013.8 依托部门:中国科学院

一、研究内容 拟解决的关键科学问题 本项目研究的主要关键科学问题是:通过模拟生物膜的结构与功能,利用分子组装技术制备具有纳米孔隙的生物材料,研究它们在生物体中的兼容性,作为药物支架如何担载和释放药物及在体外的稳定性,确定其作用机理和影响因素;探索组装的生物材料在生物体中的状态与排除功能,建立合成体系与生物体之间的联系与作用机制,研究其代谢过程,具体地: 1.通过模拟生物膜(生物相容的磷脂/蛋白质复合双层囊泡)研究和揭示细胞膜 和其它生物膜的精细结构、生物功能及其相互关系; 2.分子组装,纳米模板合成和气/液界面相分离等组装单元的结构特征、组装过 程、驱动力、影响因素和调控技术; 3.处于这些组装体中的生物活性物质的状态和功能评价,它们与组装体之间的 相互作用和影响,寻求保持其生物活性的措施; 4.这些具有生物功能的组装体进入人体后的有益效果、作用机制、代谢过程和 可能危害。 考虑到各课题研究的具体对象、问题和目标不同,除上述共同的关键科学问题外,还各有其特殊的科学和技术问题要解决: 1.纳米孔隙的药物载体:构造生物兼容、生物降解的多功能化胶囊,包裹不同 类型药物的最佳方法及药物的缓释;生物界面化胶囊及包裹药物胶囊的靶向释放,不同的类型中空胶囊作为药物和基因载体;智能化微胶囊的构造以及可控性研究;负载药物微胶囊的体外细胞试验及动物试验;多功能微胶囊用于药物载体的包裹和释放机理研究。 2.红血球替代物 聚合物/血红蛋白纳米胶束(胶囊):官能化乳酸共聚物的 设计与合成,保证在水环境中实现自组装形成纳米胶束或胶囊;引入含有易与血红蛋白反应的官能团,保证反应不影响血红蛋白中的血红素活性中心; 反应基团有足够数量,保证组装体中有足够的血红蛋白浓度;构筑聚合物/

分子结构与性质教案

第二章分子结构与性质 第一节共价键 【学习目标】 1、了解共价键的形成过程。 2、知道共价键的主要类型δ键和π键。 3、能用键参数――键能、键长、键角说明简单分子的某些性质 4、知道等电子原理,结合实例说明“等电子原理的应用” 【学习重点】 1、δ键和π键的特征和性质 2、用键能、键长、键角等说明简单分子的某些性质。 【学习难点】 1、δ键和π键的特征; 2、键角 【教学过程】 复习引入: 1.NaCl、HCl的形成过程 2.离子键:阴阳离子间的相互作用。 3.共价键:原子间通过共用电子对形成的相互作用。 4.使离子相结合或原子相结合的作用力通称为化学键。 一、共价键 1、定义:原子间通过共用电子对形成的相互作用。 2、练习:用电子式表示H2、HCl、Cl2的形成过程 H2 HCl Cl2 思考:为什么H2、Cl2 是双原子分子,而稀有气体是单原子分子? 3、形成共价键的条件:两原子都有单电子 讨论(第一组回答):按共价键的共用电子对理论,是否有H3、H2Cl、Cl3的分子存在? 4、共价键的特性:饱和性 对于主族元素而言,内层电子一般都成对,单电子在最外层。 如:H 1s1 、Cl 1s22s22p63s23p5 H、Cl最外层各缺一个电子,于是两原子各拿一电子形成一对 共用电子对共用,由于Cl吸引电子对能力稍强,电子对偏向Cl(并非完全占有),Cl略带部分负电荷,H略带部分正电荷。

讨论(第二组回答):共用电子对中H、Cl的两单电子自旋方向是相同还是相反? 设问:前面学习了电子云和轨道理论,对于HCl中H、Cl原子形成共价键时,电子云如何重叠? 例:H2的形成 1s1 相互靠拢1s1 电子云相互重叠形成H2分子的共价键 (H-H)由此可见,共价键可看成是电子云重叠的结果。电子云重叠程度越大,则形成的共价键越牢固。 H2里的共价键称为δ键。形成δ键的电子称为δ电子。 5、共价键的种类 (1)δ键:(以“头碰头”重叠形式) a、特征:以形成化学键的两原子核的连线为轴作旋转操作,共价键电子云的图形不变,这种特征称为轴对称。 讲:H2分子里的δ键是由两个s电子重叠形成的,可称为S-Sδ键。 下图为HCl、Cl2中电子云重叠: 未成对电子的电子云相互靠拢电子云相互重叠形成的共价单 键的电子云图 像 未成对电子的电子云相互靠拢电子云相互重叠形成的共价 单键的电子 云图像 HCl分子里的δ键是由H的一个s电子和Cl的一个P电子重叠形成的,可称为S-P δ键。 Cl2分子里的δ键是由Cl的两个P电子重叠形成的,可称为P-P δ键。 b、种类:S-S δ键 S-P δ键 P-P δ键

国家重大科学研究计划项目申请书编写提纲

国家重大科学研究计划项目申请书编写提纲 项目摘要(1,000字左右) 简述项目所针对的指南方向、国家重大战略需求、拟解决的关键科学问题、主要研究内容和目标、课题设置、研究队伍、经费概算。 申请书正文(30,000字左右) 一、立项依据 项目针对的指南方向,项目所面向的我国经济、社会、国家安全和科学技术自身发展等的重大战略需求,项目研究的科学意义,在解决国家重大战略需求问题、引领未来科学和技术发展方面的预期贡献。 二、国内外研究现状和发展趋势 国内研究现状和水平,国际最新研究进展和发展趋势,相关研究领域取得突破的可能性。 三、拟解决的关键科学问题和主要研究内容 详细阐述围绕国家重大战略需求、引领未来科学和技术发展所要解决的关键科学问题的内涵。主要研究内容要围绕关键科学问题,系统、有机地形成一个整体来详细阐述,重点要突出,避免分散或拼盘现象。 四、预期目标 从对解决国家重大战略需求、引领未来科学和技术发展的预期贡献,在理论、方法等方面预期取得的进展、突破及其科学价值,优秀人才培养和基地建设等方面分别论述。 五、总体研究方案 结合主要研究内容阐述学术思路、技术途径及其创新性,与国内外同类研究相比的特色和取得重大突破的可行性分析等。 六、课题设置 应围绕项目所要解决的关键科学问题、主要研究内容和预期目标合理设置课题。需说明课题设置的思路、各课题间的有机联系以及与项目预期目标的关系;详细、具体叙述各课题的名称、主要研究内容和目标、承担单位、课题负责人及主要学术骨干和经费比例等。

七、研究队伍 1.研究队伍的规模和结构 研究队伍的规模,以及年龄、专业、职称等方面的结构,实验技术人员概况等。研究队伍规模要适度,人均资助强度应在20万元/人年以上。 2.推荐项目首席科学家和课题负责人 分别介绍推荐项目首席科学家和课题负责人的研究背景。包括:工作简历、主要学术业绩,近五年主持的与申请项目相关的各类国家科技计划项目情况(格式见下表),与申请项目相关的代表性论文(不超过5篇)、获得国家和省部级 3.其他中青年学术带头人概况 八、现有工作基础和条件 1.项目承担单位在所申报项目相关研究方面的工作基础和取得的主要研究成果。 2.项目实施所具备的工作条件,包括实验平台和大型仪器设备、国家实验室、国家重点实验室和重大科学工程等重要研究基地参与情况。 3.项目申报单位近五年承担的与所申报项目直接相关的国家科技计划项目、课题的完成情况,与所申报项目的关联和衔接。 九、经费概算 金额单位:万元

(完整版)苏教版化学选修3物质结构与性质专题3知识点

第一单元 金属键 金属晶体 金 属 键 与 金 属 特 性 [基础·初探] 1.金属键 (1)概念:金属离子与自由电子之间强烈的相互作用称为金属键。 (2)特征:无饱和性也无方向性。 (3)金属键的强弱 ①主要影响因素:金属元素的原子半径、单位体积内自由电子的数目等。 ②与金属键强弱有关的性质:金属的硬度、熔点、沸点等(至少列举三种物理性质)。 2.金属特性 特性 解释 导电性 在外电场作用下,自由电子在金属内部发生定向移动,形成电流 导热性 通过自由电子的运动把能量从温度高的区域传 到温度低的区域,从而使整块金属达到同样的 温度 延展性 由于金属键无方向性,在外力作用下,金属原 子之间发生相对滑动时,各层金属原子之间仍 保持金属键的作用 [核心·突破] 1.金属键????? 成键粒子:金属离子和自由电子 成键本质:金属离子和自由电子间 的静电作用 成键特征:没有饱和性和方向性存在于:金属和合金中

2.金属晶体的性质 3.金属键的强弱对金属物理性质的影响 (1)金属键的强弱比较:金属键的强度主要取决于金属元素的原子半径和外围电子数,原子半径越大,外围电子数越少,金属键越弱。 (2)金属键对金属性质的影响 ①金属键越强,金属熔、沸点越高。 ②金属键越强,金属硬度越大。 ③金属键越强,金属越难失电子。如Na的金属键强于K,则Na比K难失电子,金属性Na比K弱。 【温馨提醒】 1.并非所有金属的熔点都较高,如汞在常温下为液体,熔点很低,为-38.9 ℃;碱金属元素的熔点都较低,K-Na合金在常温下为液态。 2.合金的熔点低于其成分金属。 3.金属晶体中有阳离子,无阴离子。 4.主族金属元素原子单位体积内自由电子数多少,可通过价电子数的多少进行比较。

高三化学复习有机化学--结构与性质的关系

高三化学复习有机化学----结构与性质 一、掌握各类有机物的官能团及性质 ㈠烃类有机物的性质 1.烷烃: ⑴饱和烃---特征反应为与X2发生取代反应,条件光照,得到各种卤代烃的混合物。 ⑵氧化反应---燃烧(单不能被高锰酸钾酸性溶液氧化)。 ⑶高温分解(如甲烷高温分解得到碳黑和氢气,其它烷烃可以发生裂解反应)。 2.烯烃:官能团为 --- C═C ⑴不饱和烃---特征反应是与(H2、X2、HX、H2O)等的加成反应。 ⑵氧化反应---燃烧、被高锰酸钾酸性溶液氧化。 ⑶聚合反应---加成聚合反应。 3.炔烃:官能团为 --- C≡C ⑴不饱和烃---特征反应是与(H2、X2、HX、H2O)等的加成反应。注意加成时与烯烃比较。 ⑵氧化反应---燃烧(与乙烯燃烧的比较)、被高锰酸钾酸性溶液氧化。 4.芳香烃:以苯为例。 ⑴取代反应---卤代反应、硝化反应、磺化反应。 ⑵加成反应---与氢气在催化剂、加热的条件下加成得到环己烷。 ⑶氧化反应---燃烧。 ㈡烃的衍生物的性质 1.卤代烃:以一溴乙烷为例(CH3CH2Br)官能团为 ---卤原子─X。 ⑴水解反应---与NaOH的水溶液共热,是取代反应。 ⑵消去反应---与NaOH的醇溶液共热,是消去反应。规律略。 2.醇:以乙醇为例(C2H5OH)官能团为---羟基─OH ⑴与活泼金属的反应(如K、Na、Ca等)⑵与氢卤酸的反应---取代反应 ⑶催化氧化反应---条件、反应规律、断键位置等 ⑷分子间脱水反应---条件、取代反应、断键位置 ⑸分子内脱水反应---条件、消去反应、断键位置、反应规律 ⑹酯化反应---条件、取代反应、断键位置、酯的种类、书写、名称等 3.酚:以苯酚为例,官能团---酚羟基─OH ⑴酸性(与氢氧化钠溶液、碳酸钠溶液的反应)俗名石炭酸 ⑵苯环上的取代反应(比苯容易,由于羟基的影响)与浓溴水反应产生白色沉淀(应用) ⑶与铁盐的显色反应—用于检验苯酚 (─CHO) 4.醛和酮:官能团:羰基、醛基 ⑴醛、酮与氢气的加成反应 ⑵银镜反应(检验醛基的反应、氧化反应、银氨溶液的制备方法) ⑶与新制的氢氧化铜悬浊液的反应 5.羧酸和酯:羧酸的官能团是羧基─COOH ⑴酸性(有酸的通性,弱酸,比碳酸的酸性强

高中化学选修3 物质结构与性质 全册知识点总结

高中化学选修3知识点总结 主要知识要点: 1、原子结构 2、元素周期表和元素周期律 3、共价键 4、分子的空间构型 5、分子的性质 6、晶体的结构和性质 (一)原子结构 1、能层和能级 (1)能层和能级的划分 ①在同一个原子中,离核越近能层能量越低。 ②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。 ③任一能层,能级数等于能层序数。 ④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。 ⑤能层不同能级相同,所容纳的最多电子数相同。 (2)能层、能级、原子轨道之间的关系 每能层所容纳的最多电子数是:2n2(n:能层的序数)。

2、构造原理 (1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。 (2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。 (3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E (5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np (4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。 根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。 (5)基态和激发态 ①基态:最低能量状态。处于最低能量状态的原子称为基态原子。 ②激发态:较高能量状态(相对基态而言)。基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。处于激发态的原子称为激发态原子。 ③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。利用光谱分析可以发现新元素或利用特征谱线鉴定元素。 3、电子云与原子轨道 (1)电子云:电子在核外空间做高速运动,没有确定的轨道。因此,人们用“电子云”模型来描述核外电子的运动。“电子云”描述了电子在原子核外出现的概率密度分布,是核外电子运动状态的形象化描述。

化学选修3第二章-分子结构与性质--教案

化学选修3第二章-分子结构与性质--教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第二章分子结构与性质 教材分析 本章比较系统的介绍了分子的结构和性质,内容比较丰富。首先,在第一章有关电子云和原子轨道的基础上,介绍了共价键的主要类型σ键和π键,以及键参数——键能、键长、键角;接着,在共价键概念的基础上,介绍了分子的立体结构,并根据价层电子对互斥模型和杂化轨道理论对简单共价分子结构的多样性和复杂性进行了解释。最后介绍了极性分子和非极性分子、分子间作用力、氢键等概念,以及它们对物质性质的影响,并从分子结构的角度说明了“相似相溶”规则、无机含氧酸分子的酸性等。 化学2已介绍了共价键的概念,并用电子式的方式描述了原子间形成共价键的过程。本章第一节“共价键”是在化学2已有知识的基础上,运用的第一章学过的电子云和原子轨道的概念进一步认识和理解共价键,通过电子云图象的方式很形象、生动的引出了共价键的主要类型σ键和π键,以及它们的差别,并用一个“科学探究”让学生自主的进一步认识σ键和π键。 在第二节“分子的立体结构”中,首先按分子中所含的原子数直间给出了三原子、四原子和五原子分子的立体结构,并配有立体结构模型图。为什么这些分子具有如此的立体结构呢?教科书在本节安排了“价层电子对互斥模型”和“杂化轨道理论”来判断简单分子和离子的立体结构。在介绍这两个理论时要求比较低,文字叙述比较简洁并配有图示。还设计了“思考与交流”、“科学探究”等内容让学生自主去理解和运用这两个理论。 在第三节分子的性质中,介绍了六个问题,即分子的极性、分子间作用力及其对物质性质的影响、氢键及其对物质性质的影响、溶解性、手性和无机含氧酸分子的酸性。除分子的手性外,对其它五个问题进行的阐述都运用了前面的已有知识,如根据共价键的概念介绍了键的极性和分子的极性;根据化学键、分子的极性等概念介绍了范德华力的特点及其对物质性质的影响;根据电负性的概念介绍了氢键的特点及其对物质性质的影响;根据极性分子与非非极性分子的概念介绍了“相似相溶”规则;根据分子中电子的偏移解释了无机含氧酸分子的酸性强弱等;对于手性教科书通过图示简单介绍了手性分子的概念以及手性分子在生命科学和生产手性药物方面的应用 第二章分子结构与性质 第一节共价键 第一课时 教学目标: 1.复习化学键的概念,能用电子式表示常见物质的离子键或共价键的形成过程。 2.知道共价键的主要类型δ键和π键。

(完整版)物质结构与性质知识点总结

高中化学物质结构与性质知识点总结 一.原子结构与性质. 一.认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义. 1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小. 电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q. 原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7. 2.(构造原理) 了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布. (1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子. (2).原子核外电子排布原理. ①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道. ②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子. ③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1. (3).掌握能级交错图和1-36号元素的核外电子排布式. ①根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。 ②根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。基态原子核外电子的排布按能量由低到高的顺序依次排布。 3.元素电离能和元素电负性 第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能。常用符号I1表示,单位为kJ/mol。

分子结构与性质完美版

分子结构与性质 知识网络: 一、化学键 相邻的两个或多个原子之间强烈的相互作用,通常叫做化学键。例如:水的结构式为 , H -O 之间存在着强烈的相互作用,而H 、H 之间相互作用非常弱,没有形成化学键。 化学键类型: 1.三种化学键的比较: ※ 配位键:配位键属于共价键,它是由一方提供孤对电子,另一方提供空轨道所形成的共价 键,例如:NH 4+的形成 在NH 4+中,虽然有一个N -H 键形成过程与其它3个N -H 键形成过程不同,但是一旦 形成之后,4个共价键就完全相同。

键长、键能决定共价键的强弱和分子的稳定性:原子半径越小,键长越短,键能越大,分子越稳定。例如HF、HCl、HBr、HI分子中: X原子半径:FHCl>HBr>HI H-X分子稳定性:HF>HCl>HBr>HI 判断共价键的极性可以从形成分子的非金属种类来判断。 例1.下列关于化学键的叙述正确的是: A 化学键存在于原子之间,也存在于分子之间 B 两个原子之间的相互作用叫做化学键 C 离子键是阴、阳离子之间的吸引力 D 化学键通常指的是相邻的两个或多个原子之间强烈的相互作用 解析:理解化学键、离子键等基本概念是解答本题的关键。化学键不存在于分子之间,也不仅是两个原子之间的相互作用,也可能是多个原子之间的相互作用,而且是强烈的相互作用。所以A、B都不正确。C项考查的是离子键的实质,离子键是阴、阳离子间通过静电作用(包括吸引力和排斥力)所形成的化学键,故C项也不正确。正确选项为D。 二、分子间作用力 1、分子间作用力 把分子聚集在一起的作用力叫分子间作用力,又称范德华力。分子间作用力的实质是电性引力,其主要特征有:⑴广泛存在于分子间;⑵只有分子间充分接近时才存在分子间的相互作用力,如固态和液态物质中;⑶分子间作用力远远小于化学键;⑷由分子构成的物质,其熔点、沸点、溶解度等物理性质主要由分子间作用力大小决定。 2、影响分子间作用力大小的因素

国家973项目申请书 超高压下凝聚态物质的新结构与新性质

项目名称:超高压下凝聚态物质的新结构与新性质首席科学家:崔田吉林大学 起止年限:2011.1至2015.8 依托部门:教育部

二、预期目标 本项目的总体目标: 在超高压下凝聚态物质的新结构与新性质前沿领域做出重要原创性的工作,获得一批国际水平的研究成果,形成我国有特色的高压科学研究体系,造就一支具有创新思维的中青年高压研究队伍,使中国高压研究的总体水平进入国际先进行列,进一步提升在国际高压界地位。 五年预期目标: 为完成总体目标,集中进行以下几个方面的研究工作:1)超高压下凝聚体系的金属化与奇异性能,2)超高压下强关联体系中价电子的行为,3)超高压下纳米限域体系的结构演化,4)超高压下的化合物半导体的电输运与新效应,5)超高压下亚稳相的截获与材料的微结构及性能调控。 揭示超高压下纯氢以及富氢体系中分子的解离机制,探索可能产生金属氢的新途径,实现压制金属化;获得不同压力-温度-组分空间中,新型含3d、4d、5d关联体系的结构特征和奇异物性,揭示超高压关联体系材料磁、电和介电的物理机制和晶体及电子结构起源;总结在纳米尺度、空间受限条件下压致分子体系的键合规律;揭示高压下准一维纳米体系的结构演化以及力学、电学等性质随压力的变化规律;揭示化合物半导体的结构、电输运行为与其特殊功能性质之间的内在联系,诠释高压下电子驰豫、平均自由程、有效质量的新内涵以及各物理量之间的内在联系及其规律;在新型材料的超高压合成方面,由唯象研究上升到注重内在物理本质的探索,获取截获高压亚稳相的新方法及规律性认识。合成出3d、4d、5d族3种以上Mott有序化和Stoner型磁电新材料、3-5种有代表性高致密化超细微结构的高性能块体材料。 预期的科学研究成果: 拟在SCI收录的国内外著名学术刊物上发表论文300篇以上,撰写1-3部专著,申报高水平的奖励3-5项,申请发明专利15-25项。同时培养高压领域的拔尖人才以及学术带头人,培养博士研究生50名、硕士研究生200名。

高中化学选修三——分子结构与性质

分子结构与性质 一、共价键 1.本质:原子间形成共用电子对 分类{非极性共价键:两个相同的非金属元素的原子间形成的共价键 极性共价键:两个不相同的非金属元素的原子间形成的共价键 、HCl的形成 思考:用电子式表示H 2 共价键特征: ①饱和性:每个原子形成共价键的数目是确定的 ②方向性:原子轨道沿一定方向重叠使成键的原子轨道最大程度地重叠 2.σ键和π键 ①σ键--原子轨道沿着连线方向以“头碰头”方式重叠形成的共价键 特点:以形成化学键的两个原子核的连线为轴旋转,σ键电子云的图形不变 电子云描述氢原子形成氢分子的过程(s-s σ键) ②π键--原子轨道沿着连线方向以“肩并肩”方式重叠形成的共价键 特点:(1)电子云为镜像,即是每个π键的电子云由两块组成,分别位于由两个原子核构成的平面的两侧 (2)不稳定,容易断裂 p-p π键的形成

N 2 分子中的N≡N 思考:分析CH 3CH 3 、CH 2 =CH 2 、CH≡CH、CO 2 分子中键的类别和个数 3.键参数--键能、键长与键角 ①键能:气态基态原子形成1 mol化学键释放的最低能量 键能越大,即形成化学键时放出的能量越多,化学键越稳定 应用--计算化学反应的反应热ΔH=反应物键能总和-生成物键能总和 ②键长:形成共价键的两个原子之间的核间距 键长是衡量共价稳定性的另一个参数 规律:键长越短,一般键能越大,共价键越稳定 一般地,形成的共价键的键能越大,键长越短,共价键越稳定,含有该键的分子越稳定,化学性质越稳定 ③键角:两个共价键之间的夹角 键角是描述分子立体结构的重要参数,分子的许多性质与键角有关 思考:N 2、O 2 、F 2 跟H 2 的反应能力依次增强,从键能的角度如何理解 4.等电子原理 等电子体:原子总数相同、价电子(最外层电子)总数相同的分子如N 2 和CO 是等电子体,但N 2和C 2 H 4 不是等电子体 等电子体原理:原子总数、价电子总数相同的分子具有相似的化学键特征,它们的物理性质是相近的。例如N 2 和CO的熔沸点、溶解性、分子解离能等都非常接近 5.用质谱测定分子的结构 原理:不同质核比的粒子在磁场中运动轨迹不同 eg:1.下列物质中能证明某化合物中一定有离子键的是() A.可溶于水 B.熔点较高 C.水溶液能导电 D.熔融状态能导电 2.下列关于化学键的叙述中,正确的是() A.离子化合物可以含共价键 B.共价化合物可能含离子键 C.离子化合物中只含离子键 D.只有活泼金属与活泼非金属间才能形成离子键

973项目申报书——2009CB623200-环境友好现代混凝土的基础研究

项目名称:环境友好现代混凝土的基础研究首席科学家:李宗津东南大学 起止年限:2009.1至2013.8 依托部门:江苏省科技厅教育部

973项目申报书——2009CB623200-环境友好现代混凝土的基础 研究 一、研究内容 环境友好建筑材料的基本要求是低污染、低能耗及高性能。现代混凝土的发展实现了辅料(主要是工业废渣)的充分和高效利用,降低了环境污染,节约了能源和资源,同时大幅度的提高了抗压强度与流动性。从这一观点出发,现代混凝土属环境友好的建筑材料。但是现代混凝土又具有胶凝材料用量大,组分复杂,水胶比低的特点,早期易开裂,为有害物质侵入创造了条件,导致了其性能的严重衰减,甚至过早地退出服役,造成大量的经济损失、能源与资源的严重浪费及大量废弃物的污染。因此,要真正实现现代混凝土的环境友好,必须有效地提高现代混凝土的服役寿命。 关键科学问题一:现代混凝土微观结构形成机理及其与宏观性能的关系 现代混凝土结构的服役性衰退是一由材料到结构的渐进过程。对这一过程的正确描述依赖于对现代混凝土从微观到宏观的科学认识。在现代混凝土的组分中,水泥基胶凝材料起着将其它组分固结在一起的重要作用。胶凝材料在水化过程中形成的微结构是现代混凝土的基因,其分布与组合影响着现代混凝土的各项宏观性能。因此,探讨现代混凝土复杂的硬化浆体微观结构形成机理并提炼其微结构模型是本项目的重大科学问题。围绕这一科学问题,本项目将展开水泥熟料组成与水化活性关系的研究,水泥熟料组成与结构优化的研究,特别要研究高胶凝性水泥熟料与辅料复合优化,各组分对微结构形成的影响,组分之间的交互作用,水化速率与水化度对微结构的影响,提炼现代混凝土的微结构模型,研究微结构形成的诱导与控制途径。总之,通过先进测试技术及高效计算机模拟等研究手段,探索现代混凝土材料微结构形成机理。通过掌握微结构形成机理,研究微结构的优化理论,实现按终端用途对现代混凝土进行材料设计的飞跃。 建立现代混凝土的微结构模型之后,我们需要将其与宏观性能有机的联 系起来。围绕这一目标,我们将探讨微结构对现代混凝土弹性系数的影响,确 定典型的代表性体积单元,通过多尺度过渡途径,确定微结构与宏观本构之间 的联系,建立力学宏观本构关系及基于多孔介质力学的混凝土传输本构关系。

物质结构与性质汇总(精华版)

物质结构与性质补充练习 1.(1)中国古代四大发明之一——黑火药,它的爆炸反应为: 2KNO3 + 3C + S == A + N2↑+ 3CO2↑ (已配平) ①除S外,上列元素的电负性从大到小依次为; ②在生成物中,A的晶体类型为,含极性共价键的分子的中心原子轨道杂化类型 为; ③已知CN-与N2结构相似,推算HCN分子中σ键与π键数目之比为; (2)原子序数小于36的元素Q和T,在周期表中既处于同一周期又位于同一族,且原子序数T比Q 多2。T的基态原子外围电子(价电子)排布为,Q2+的未成对电子数是(3)在CrCl3的水溶液中,一定条件下存在组成为[CrCl n(H2O)6-n]x+(n和x均为正整数)的配离子,将其通过氢离子交换树脂(R-H),可发生离子交换反应: 交换出来的H+经中和滴定,即可求出x和n,确定配离子的组成。 将含0.0015 mol [CrCl n(H2O)6-n]x+的溶液,与R-H完全交换后,中和生成的H+需浓度为0.1200 mol·L-1 NaOH溶液25.00 mL,该配离子的化学式为。 2.(2010省质检)X元素在第3周期中电负性最大,Y、Z元素同主族且位置相邻,Y原子的最外层电子排布为ns n np n+2。请填写下列空白。 (1)第一电离能:Y Z(填“>”、“<”或“=”); (2)XY2是一种高效安全的消毒剂,熔点-59.5℃,沸点10℃,构成该晶体的微粒之间的作用力是; (3)ZX2常用于有机合成。已知极性分子ZX2中Z原子采用np3杂化,则该分子的空间构型是,分子中X、Z原子之间形成键(填“σ”或“π”); (4)胆矾晶体(CuSO4·5H2O)中4个水分子与铜离子 形成配位键,另一个水分子只以氢键与相邻微粒结合。 某兴趣小组称取2.500g胆矾晶体,逐渐升温使其失水, 并准确测定不同温度下剩余固体的质量,得到如右图所示 的实验结果示意图。以下说法正确的是(填标号); A.晶体从常温升至105℃的过程中只有氢键断裂 B.胆矾晶体中形成配位键的4个水分子同时失去 C.120℃时,剩余固体的化学式是CuSO4·H2O D.按胆矾晶体失水时所克服的作用力大小不同, 晶体中的水分子可以分为3种 (5)右图中四条曲线分别表示H2、Cl2、Br2、I2分子的 形成过程中能量随原子核间距的变化关系,其中表示v的是 曲线(填“a”、“b”或“c”),理由是。 3.(2010年厦门质检卷)A、B、C、D、E、F、G七种前 四周期元素,其原子序数依次增大。A的原子中没有成对 电子;B的基态原子中电子占据三种能量不同的原子轨道,

分子结构与性质 专题训练及答案

分子结构与性质专题训练及答案 非选择题(本题包括7小题,共100分) 1.(14分)(2018南充模拟)可以由下列反应合成三聚氰胺:CaO+3C CaC2+ CO↑,CaC2+N2CaCN2+C,CaCN2+2H2O NH2CN+Ca(OH)2,NH2CN与水反应生成尿素 [CO(NH2)2],尿素合成三聚氰胺。 (1)写出与Ca在同一周期且最外层电子数相同、内层排满电子的基态原子的电子排布式:________;CaCN2中阴离子为C错误!未找到引用源。,与C错误!未找到引用源。互为等电子体的分子有N2O和________(填化学式),由此可以推知C错误!未找到引用源。的空间构型为________。 (2)三聚氰胺()俗称“蛋白精”。动物摄入三聚氰胺和三聚氰酸 ()后,三聚氰酸与三聚氰胺分子相互之间通过________结合,在肾脏内易形成结石。 (3)CaO晶胞如图所示,CaO晶体中Ca2+的配位数为________,Ca2+采取的堆积方式为________,O2-处于Ca2+堆积形成的空隙中;CaO晶体和NaCl晶体的晶格能分别为3 401 kJ·mol-1、786 kJ·mol-1。导致两者晶格能差异的主要原因是 ________________。 (4)配位化合物K3[Fe(CN)n]遇亚铁离子会产生蓝色沉淀,因此可用于检验亚铁离子,已知铁原子的最外层电子数和配体提供电子数之和为14,求n=________。 【解析】(1)与Ca在同一周期且最外层电子数相同、内层排满电子的基态原子是锌,根据构造原理,基态的锌原子核外电子排布式为1s22s22p63s23p63d104s2或[Ar]3d104s2;与C错误!未找到引用源。互为等电子体的分子有N2O和CO2;等电子体具有相同的价电子数、原子总数,结构相似,二氧化碳分子是直线形,所以C错误!未找到引用源。离子的空间构型是直线形。 (2)三聚氰酸与三聚氰胺分子相互之间能形成氢键,所以是通过分子间氢键结合,在肾脏内易形成结石。 (3)以钙离子为中心,沿X、Y、Z三轴进行切割,结合图片知,钙离子的配位数是6,Ca2+采取的堆积方式为面心立方最密堆积,O2-处于Ca2+堆积形成的八面体空隙中;晶格能大小与离子带电量成正比,CaO晶体中Ca2+、O2-的带电量大于NaCl晶体中Na+、Cl-的带电量,导致的氧化钙晶格能大于氯化钠的晶格能。 (4)CN-是常见的配位体,在配位化合物K3[Fe(CN)n]中每个配体可以提供2个电子,而铁原子最外层有2个电子,根据铁原子的最外层电子数和配体提供电子数之和为14,可得2+2n=14,所以n=6。 答案:(1)1s22s22p63s23p63d104s2或[Ar]3d104s2CO2直线形(2)氢键(3)6 面心立方最密堆积CaO晶体中Ca2+、O2-的带电量大于NaCl晶体中Na+、Cl-的带电量(4)6 2.(14分)(2018·汉中模拟)X、Y、Z、W为原子序数递增的短周期主族元素,R为过渡元素。Y的最高价氧化物对应的水化物是强酸,Z元素基态原子中有2个未成对电子,基态W原子的价层电子排布式为n s n-1n p n-1,X与W为同主族元素。基态的R原子M能层全充满,核外有且仅有1个未成对电子。请回答下列问题: (1)基态R原子的核外价层电子排布式为________。 (2)X、Y、Z三种元素的第一电离能由大到小的顺序为________(填“元素符号”)。

位置、结构和性质的关系

位置、结构和性质的关系 一、位置、结构和性质的关系: 元素的原子结构,即核外电子排布,主要是电子层数和最外层电子数,决定了元素在周期表的位置,也就决定的元素及其化合物的物理性质和化学性质以及性质的递变。 而元素及其化合物的物理性质和化学性质以及性质的递变,反映了元素在周期表的位置,也就反应了元素的原子结构,特别是反映了核外电子排布中的电子层数和最外层电子数的特征。 一句话,就是结构决定位置和性质,位置和性质反映结构,位置决定性质,性质反映位置。 二、元素金属性的比较方法 1、用失去电子的难易比较:金属原子失去电子越容易,金属元素的金属性就越强;金属 原子失去电子越不容易,金属元素的金属性就越弱。 例如:钠比镁更容易失去电子,钠金属性比镁强。 2、用与水反应产生氢气的能力比较:金属越容易和水反应产生氢气,金属性就越强;金 属越难和水反应产生氢气,金属性就越弱。 例如:钠可以与冷水剧烈反应,而镁要与热水才反应,铝与热水不反应,要在氢氧化钠溶液中才与水反应,说明金属性Na>Mg>Al 3、用与H+反应产生氢气的能力比较:金属与H+反应越容易,越剧烈,说明金属性越强。 金属与H+反应越难,越不反应,说明金属性越弱。 例如:镁、铝、锌和同浓度的盐酸反应,镁剧烈反应,铝比较缓慢,而锌就更缓慢,说明金属性Mg>Al>Zn 4、用同一周期或同一主族最高价氧化物的水化物的碱性进行比较:同一周期或同一主族 最高价氧化物的水化物碱性越强,该金属元素的金属性越强。最高价氧化物的水化物碱性越弱,该金属元素的金属性越弱。 例如:碱性NaOH>Mg(OH)2>Al(OH)3说明金属性Na>Mg>Al 碱性Be(OH)2Be 6、通过元素周期表的位置进行比较:同一周期,自左而右,元素的金属性减弱;同一主 族,自上而下,元素的金属性依次增强。 例如:金属性K>Ca>Ga Rb>K>Na>Li 7、用彼此在水溶液中发生置换反应来比较:金属性强的金属能把金属性弱的金属从其可 溶性盐溶液中置换出来。 例如:Zn+CuSO4===ZnSO4+Cu 说明金属性Zn>Cu 8、用原电池的正负电极来比较:金属性越强的金属在构成原电池时作负极,发生氧化反 应,金属性越弱的金属在构成原电池时作正极,离子在它的表面发生还原反应。 例如:如果A、B两块金属,用导线连接后,放到稀硫酸中,B的表面有气泡产生,说明B作正极,金属性没有A强。 9、用电解池原理进行比较:用惰性电极电解等金属离子的盐溶液,越容易在阴极得到电 子被还原的,其金属性就越弱。 例如:电解硝酸银和硝酸铜的混合溶液,银先析出,说明金属性Cu>Ag 三、非金属性的比较方法:

相关文档
最新文档