08第八讲:分布参数系统的动力响应(II)

08第八讲:分布参数系统的动力响应(II)
08第八讲:分布参数系统的动力响应(II)

用有限元方法进行摩托车动力响应分析报告

用有限元方法进行摩托车动力响应分析 文>>月辉史春涛骞郝志勇 摘要本文采用有限元方法对某125型骑式摩托车进行了动力响应分析。文章首先建立了摩托车整车的有限元模型,并利用该模型进行摩托车整车的动态特性计算,取得了和实验模态分析一致的结果。而后分析了摩托车在发动机激励和路面不平度激励下的整车动力学响应特性,得出了具有工程参考价值的结论。 关键词摩托车应力有限元法 本文采用有限元方法研究了摩托车整车结构的动态特性,并进行了在各种激励作用下的动力响应分析,得到了发动机车架的应力场,可用于进一步的摩托车强度分析。 1、摩托车有限元模型的建立 摩托车有限元模型如图1所示。 摩托车的车架结构大多是由各种截面形状的梁组合而成的空间框架结构,而且其截面尺寸,包括直径、壁厚,与构件长度相比很小,因此选用空间的直梁或者曲梁单元来离散车架结构,而车架的一些板件和加强盘可以采用空间板元模拟,各种梁单元的截面力学特性可用有限元程序的前处理模块或CAD软件计算。 摩托车的发动机具有较大质量,同时也具有很大刚度。考虑到发动机在车体结构中所起的作用及变形小的特点,将发动机简化为若干个板单元,这些板的总质量应与发动机的质量相同。然后,根据发动机与车架的实际连接方式,将由这些板单元模拟的发动机与车架组装到一起。 摩托车的减振器主要作用是支撑车体并缓和振动与冲击。考虑到减振器的结构与作用,简化后减振器的模型在受到载荷时应具有较大的轴向位移,同时又要有较大抗弯刚度。本文把减振器简化为一种梁单元和弹簧阻尼单元的综合体——轴向刚度由弹簧阻尼单元提供,而抗弯刚度由梁单元提供。 摩托车车轮主要由轮胎和轮辋组成,其中轮胎直接与路面接触,与摩托车悬挂共同缓和摩托车行驶时所受到的冲击,并协助减振,轮辋是固定轮胎的骨架,它与轮胎共同承受作用在车轮上的负荷。轮辋可以采用若干个梁单元模拟,轮胎

均匀传输线的分布参数计算

均匀传输线的分布参数计算 0 引言 传输线作为一种输送能量和传递信号的装置,由于其应用十分广泛而成为了很有意义的研究对象。在长距离输电线路、远距离通信线路、高频测量线路、计算机信号传输以及高速数控系统中均应该考虑线路参数的分布性。[1] 均匀传输线模型是电路、电磁场理论中重要而又简单的简化模型。典型的均匀传输线是由在均匀媒质中放置的两根平行直导线构成的。常见的有平行双板、同轴线、和平行双线等。当然,实际中并不存在真实的均匀线,架空线的支架、导线自身的重力都会使传输线不均匀。为了简化问题,需要忽略这些次要因素。 以平行双线为例。假设传输线是均匀的,即两导体间的距离、截面形状以及介质的电磁特性沿着整个长线保持不变,单位长度的线路电阻和电感分别为0R 和0L ,单位长度的线间电容和电导分别为0C 和0G ,如图1所示。传输线最左端为起点,即0x =,选取距平行双线起点为x 的一小段x ?进行研究。虽然传输线本质上是一个分布参数系统,但可以采用一个长度为x ?的集中参数模型来描述。显然,x ?越小就越接近传输线的实际情况 当0x ?→时,该模型就逼近真实的分布参数系统。[2] 根据基尔霍夫定律,可以得到电报方程,它是均匀传输线上关于电压、电流的偏微分方程组。 00 00i R i L t u x i G u x u C t ??-=??????-=????+???+ 方程表明,电流在传输线上连续分布的电阻中引起电压降,并在导线周围 产生磁场,即沿线有电感的存在,变化的电流沿线产生电感电压降,所以,导线间的电压连续变化;又由于导线间存在电容,导线间存在电容电流,导线间的非理想电介质存在漏电导,所以还有电导电流,所以沿线的电流也连续变化。 图1 有损均匀传输线及其等效模型

动力响应理论

第2章 动力响应理论 2.1引言 机柜结构动力响应的计算机仿真分析是以设备动力响应理论为基础的,是进行设备结构动力响应研究的一种有效手段。论文中主要研究设备动力响应两个方面的内容:设备结构固有特性分析和结构在地震波作用下的响应分析。固有特性分析可以得到结构的固有频率和固有振型,是进行响应分析的基础;地震波响应分析将得到设备响应的时间历程变化。在使用有限元工具对结构进行建模、分析之前必须掌握结构动力响应的理论和相关的有限元基本原理。因此,本章重点叙述了与设备结构动力响应相关的机械振动学理论及其有限元仿真技术。 2.2结构动力响应分析相关理论 2.2.1结构固有特性分析理论 机柜设备结构的固有特性包括固有频率和振型,是响应分析的基础。通过进行结构的固有特性分析可以使设计有效地避开结构的共振频率。机柜设备是一个复杂振动系统,在理论分析过程中,常常可以把机柜设备简化为多自由度集中参数系统。 一般,多自由度系统的自由振动方程可以写成如下形式: {}... []()[]{()}[]{()}{0}M x t C x t K x t ++= (21)a - 式中:[]M , []C 和[]K 分别为系统的质量矩阵、阻尼矩阵和刚度矩阵;()x t 、 .()x t 、.. ()x t 分别为系统的位移列向量、速度列向量和加速度列向量。而多自由系统的无阻尼自由振动方程可以写成如下形式: {}.. []()[]{()}{0}M x t K x t += (21)b - 通常系统的自由振动是简谐振动,所以可以假设式 (21)b -的解为: {()}{}sin x t X pt = (22)- 式中:{}X 为系统的振幅列向量;p 为系统的自由振动频率。将(22)-代入(21)b -,就可以得到系统的振型方程,其具体形式如下: 2[][]{}{0}K M X p -= (23)- 可以看到,式(23)-是一个齐次线性方程组,根据线性代数知识,它具有非零解的充分必要条件为系数矩阵的行列式为零,亦即有下式成立。

大系统机械结构动力响应分析平台

大系统动力响应分析平台 2011/1/14

大系统动力仿真分析平台分析对象示意图特点:有多个子系统部分结构用超单元 分析类型:模态分析谐波响应随机振动冲击响应传递函数

平台功能概述 软件环境: CAD软件:Pro/E … CAE前处理软件:I-DEAS… CAE求解器:NASTRAN… 功能概述: 1.CAE工作小组的人员能够平行开展子装配CAE模型的处理 2.子装配CAE模型可以方便快速地汇总成总体模型,各人的修改可以快速地在总 体模型中反映 3.部件之间连接形式:一般连接,滑移,弹性(阻尼)连接 4.根据需要引入超单元,自动处理超单元之间的连接,自动生成超单元刚度、质 量、阻尼矩阵的NASTRAN计算input文件,并调用NASTRAN进行计算 5.可以方便地定义计算系统(整个系统或分系统) 6.可以方便地对计算系统进行模态分析、谐波响应、随机振动、冲击、传递函数 等设置和计算,自动生成NASTRAN计算input文件,并调用NASTRAN进行计算 7.能够自动生成计算报告的主要内容 特点:按规范流程,使用大系统动力响应分析平台软件,一般的CAE分析工程师都能正确快速完成大型复杂系统动力响应分析

按照使用平台进行分析的总体流程,简要说明各个功能模块的实现原理。 1.UNV子装配(部件)模型读取 平台与分析起点的接口。读入内容包括节点、单元、坐标系、材料、物理属性、符合命名规则的组、R类型单元主节点系数、截面定义参数、位移约束等。 可以读入多个UNV模型,并按次序对所有节点、单元、坐标系、材料、物理属性进行编号,保证在分析各子系统和整机系统时节点、单元号的统一。 2.子装配(部件)连接关系生成 可以生成普通连接(RBE3单元)、滑移(变化RBE3单元从节点自由度)、弹簧阻尼连接(RBE3单元、新生成节点、弹簧阻尼单元)。 选择连接节点组、单元节点组、连接属性生成连接关系。组的定义在起点UNV模型中定义完整,可以选择手工连接和自动连接。其中新生成节点号、单元号、物理属性号在平台现有基础上递增。

集总参数和分布参数

集总参数和分布参数 组成电路模型的元件,都是能反映实际电路中元件主要物理特征的理想元件,由于电路中实际元件在工作过程中和电磁现象有关,因此有三种最基本的理想电路元件:表示消耗电能的理想电阻元件R;表示贮存电场能的理想电容元件C;表示贮存磁场能的理想电感元件L,当实际电路的尺寸远小于电路工作时电磁波的波长时,可以把元件的作用集总在一起,用一个或有限个R、L、C元件来加以描述,这样的电路参数叫做集总参数。而集总参数元件则是每一个具有两个端钮的元件,从一个端钮流入的电流等于从另一个端钮流出的电流;端钮间的电压为单值量。 参数的分布性指电路中同一瞬间相邻两点的电位和电流都不相同。这说明分布参数电路中的电压和电流除了是时间的函数外,还是空间坐标的函数。 一个电路应该作为集总参数电路,还是作为分布参数电路,或者说,要不要考虑参数的分布性,取决于其本身的线性尺寸与表征其内部电磁过程的电压、电流的波长之间的关系。若用 l表示电路本身的最大线性尺寸,用λ表示电压或电流的波长,则当不等式 λ>>l 成立,电路便可视为集总参数电路,否则便需作为分布参数电路处理。电力系统中,远距离的高压电力传输线即是典型的分布参数电路,因50赫芝的电流、电压其波长虽为 6000 千米,但线路长度达几百甚至几千千米,已可与波长相比。通信系统中发射天线等的实际尺寸虽不太长,但发射信号频率高、波长短,也应作分布参数电路处理。 研究分布参数电路时,常以具有两条平行导线、而且参数沿线均匀分布的传输线为对象。这种传输线称为均匀传输线(或均匀长线)。作这样的选择是因为实际应用的传输线可以等效转换成具有两条平行导线形式的传输线,而且这种均匀的传输线容易分析。 传输线是传送能量或信号的各种传输线的总称。其中包括电力传输线、电信传输线、天线等。传输线又称长线。由于它具有在空间某个方向上其长度已可与其内部电压、电流的波长相比拟,而必须考虑参数分布性的特征,所以是典型的分布参数电路。在电路理论中讨论传输线时以均匀传输线作为对象。均匀传输线是指参数沿线均匀分布的二线传输线,其基本参数,或称原参数是R0、L0、C0和G0。其中R0代表单位长度线(包括来线与回线)的电阻;L0代表单位长度来线与回线形成的电感;C0和G0分别代表单位长度来线与回线间的电容和

随机分布模拟

随机过程与随机信号处理课程作业 ——对均匀分布和正态分布的模拟 随机数的在信息安全和通信系统以及其他现代系统中都有很重要的应用。但是在计算机上产生“真正”的随机数是不可能的,因为计算机所有的算法都是有程序来控制的,程序都是通过数学表达式来完成的。因此通常人们都是将计算机上产生的随机数称为“伪随机数”。本实验即是通过程序来模拟产生均匀分布的数据,并检验下是否符合真正的随机均匀分布的一些统计特性。产生的数列必须符合统计特性才能具有使用价值。其他常用的随机分布在计算机中,都可以通过均匀分布得到[3][4][5]。实验在后面将通过均匀分布得到正态分布。 一、计算机产生伪均匀分布数据的算法 常用的伪均匀分布产生的数学算法有取中法,移位法和同余法。具体见参考资料,这些算法都是具有各自的特点。参考资料1比较了几种算法,得出了其中比较好的算法是同余法,而其中最好的算法是混合同余法和乘同余法[1]。 所以本实验采用乘同余法实现均匀分布的模拟。下面简单介绍下乘同余法的数学表达。[0,1]区间上的均匀分布是连续型分布,它表示随机变量取[0 ,1]区间上任何一个小区间内的点的概率等于该区间的长度。产生[0 ,1]区间上随机数的递推公式如下: 10 ()m od /n n n n x ax M r x M x -=?? =?? ?初值 (1.1) 其中M 为模数,a 为乘子,0x 为初始值,其应小于M 。n r 即为所产生的均匀分布数列。从上述公式可以看出,要想产生符合均匀分布的数列,而不是一个周期性的数列,模数的取值必须大,这样才能不重复出现相同的余数。这里给出文献中给出的参数,也是一般性软件中常用的参数: 35231 3125 M a ?=-? =? (1.2) 其中初始值0x 可以取任意小于M 的正整数[2]。 二、实验模拟

用有限元方法进行摩托车动力响应分析报告

用有限元方法进行摩托车动力响应分析 文>>月辉史春涛骞郝志勇 摘要本文采用有限元方法对某125型骑式摩托车进行了动力响应分析。文章首先建立了摩托车整车的有限元模型,并利用该模型进行摩托车整车的动态特性计算,取得了和实验模态分析一致的结果。而后分析了摩托车在发动机激励和路面不平度激励下的整车动力学响应特性,得出了具有工程参考价值的结论。 关键词摩托车应力有限元法 本文采用有限元方法研究了摩托车整车结构的动态特性,并进行了在各种激励作用下的动力响应分析,得到了发动机车架的应力场,可用于进一步的摩托车强度分析。 1、摩托车有限元模型的建立 摩托车有限元模型如图1所示。 摩托车的车架结构大多是由各种截面形状的梁组合而成的空间框架结构,而且其截面尺寸,包括直径、壁厚,与构件长度相比很小,因此选用空间的直梁或者曲梁单元来离散车架结构,而车架的一些板件和加强盘可以采用空间板元模拟,各种梁单元的截面力学特性可用有限元程序的前处理模块或CAD软件计算。 摩托车的发动机具有较大质量,同时也具有很大刚度。考虑到发动机在车体结构中所起的作用及变形小的特点,将发动机简化为若干个板单元,这些板的总质量应与发动机的质量相同。然后,根据发动机与车架的实际连接方式,将由这些板单元模拟的发动机与车架组装到一起。 摩托车的减振器主要作用是支撑车体并缓和振动与冲击。考虑到减振器的结构与作用,简化后减振器的模型在受到载荷时应具有较大的轴向位移,同时又要有较大抗弯刚度。本文把减振器简化为一种梁单元和弹簧阻尼单元的综合体--- 轴向刚度由弹簧阻尼单元提供,而抗弯刚度由梁单元提供。 摩托车车轮主要由轮胎和轮辋组成,其中轮胎直接与路面接触,与摩托车悬挂共同缓和摩托车行驶时所受到的冲击,并协助减振,轮辋是固定轮胎的骨架,它与轮胎共同承受作用在车轮上的负荷。轮辋可以采用若干个梁单元模拟,轮胎则可用

双参数威布尔分布函数的确定及曲线拟合(精)

2007.NO.4. CN35-1272/TK 图 1威布尔函数拟合曲线的仿真系统模块 作者简介 :包小庆 (1959~ , 男 , 高级工程师 , 从事可再生能源的研究。 大型风电场的建设不但可以减缓用电短缺情况 , 而且并网后还能为电网提供很大一部分电能。而大型风电场的选址 , 与该地的风速分布情况有关。用于描述风速分布的模型很多 , 如瑞利分布、对数正态分布、 r 分布、双参数威布尔分布、 3参数威布尔分布 , 皮尔逊曲线拟合等。经过大量的研究表明 , 双参数威布尔分布函数更接近风速的实际分布。本文采用 4种方法计算威布尔分布函数的参数 , 并利用计算出的参数确定威布尔分布函数的实际数学模型进行曲线拟合。最后以白云鄂博矿区风电场拟选址为例 , 使用计算机软件 (MATLAB 对该地区风速威布尔分布函数进行曲线拟合 , 得到该地区不同高度的风速分布函数曲线。 1双参数威布尔分布函数的确定 双参数威布尔分布是一种单峰的正偏态分布函数 , 其概 率密度函数表达式为 : p(x=k x " exp-x " (1 式中 :k ———形状参数 , 无因次量 ; c ———

尺度参数 , 其量纲与速度相同。为了确定威布尔分布函数的实际模型 , 需计算出实际情况下对应函数的 2个参数。估算风速威布尔参数的方法很多 , 本文给出4种有效的方法以确定 k 和 c 值。 1.1HOMER 软件法 HOMER 是一个对发电系统优化配置与经济性分析的软件。通过输入 1a 逐时风速数据或者月平均风速数据 , 根据实际情况设置相应参数 , 即可计算得到 k 和c 值 , 此时计算出的 k 和 c 值是计算机系统认为的最佳值。 1.2Wasp 软件法 Wasp 是一个风气候评估、 计算风力发电机组年发电量、风电场年总发电量的软件。通过输入风速统计资料 , 计算机可以直接计算出 k 和 c 值。 1.3最小二乘法 通过风速统计资料计算出最小二乘法拟合直线 y=ax+b 的斜率 a 和截距 b 。由下式确定 k 和 c 的值 : k=b (2 c=esp a (3 1.4平均风速和最大风速估计法 从常规气象数据获得平均风速和时间 T 观测到的 10min 平均最大风速 V m ax , 设全年的平均风速为通过下式计算 k 和 c 值 : k=ln (lnT (4 c=(5

集总参数-分布参数.

什么是集总参数和分布参数 组成电路模型的元件,都是能反映实际电路中元件主要物理特征的理想元件,由于电路中实际元件在工作过程中和电磁现象有关,因此有三种最基本的理想电路元件:表示消耗电能的理想电阻元件R;表示贮存电场能的理想电容元件C;表示贮存磁场能的理想电感元件L,当实际电路的尺寸远小于电路工作时电磁波的波长时,可以把元件的作用集总在一起,用一个或有限个R、L、C元件来加以描述,这样的电路参数叫做集总参数。而集总参数元件则是每一个具有两个端钮的元件,从一个端钮流入的电流等于从另一个端钮流出的电流;端钮间的电压为单值量。 参数的分布性指电路中同一瞬间相邻两点的电位和电流都不相同。这说明分布参数电路中的电压和电流除了是时间的函数外,还是空间坐标的函数。 一个电路应该作为集总参数电路,还是作为分布参数电路,或者说,要不要考虑参数的分布性,取决于其本身的线性尺寸与表征其内部电磁过程的电压、电流的波长之间的关系。若用l表示电路本身的最大线性尺寸,用λ表示电压或电流的波长,则当不等式λ>>l 成立,电路便可视为集总参数电路,否则便需作为分布参数电路处理。电力系统中,远距离的高压电力传输线即是典型的分布参数电路,因5 0赫芝的电流、电压其波长虽为6000 千米,但线路长度达几百甚

至几千千米,已可与波长相比。通信系统中发射天线等的实际尺寸虽不太长,但发射信号频率高、波长短,也应作分布参数电路处理。研究分布参数电路时,常以具有两条平行导线、而且参数沿线均匀分布的传输线为对象。这种传输线称为均匀传输线(或均匀长线)。作这样的选择是因为实际应用的传输线可以等效转换成具有两条平行导线形式的传输线,而且这种均匀的传输线容易分析。 传输线是传送能量或信号的各种传输线的总称。其中包括电力传输线、电信传输线、天线等。传输线又称长线。由于它具有在空间某个方向上其长度已可与其内部电压、电流的波长相比拟,而必须考虑参数分布性的特征,所以是典型的分布参数电路。在电路理论中讨论传输线时以均匀传输线作为对象。均匀传输线是指参数沿线均匀分布的二线传输线,其基本参数,或称原参数是R0、L0、C0和G0。其中R 0 代表单位长度线(包括来线与回线)的电阻;L0代表单位长度来线与回线形成的电感;C0和G0分别代表单位长度来线与回线间的电容和漏电导。这些参数是由导线所用的材料、截面的几何形状与尺寸、导线间的距离,以及导线周围介质决定的。在高频和低频高电压下它们都有近似的计算公式。

什么是集总参数和分布参数

什么是集总参数和分布参数 什么是集总参数和分布参数 组成电路模型的元件,都是能反映实际电路中元件主要物理特征的理想元件,由于电路中实际元件在工作过程中和电磁现象有关,因此有三种最基本的理想电路元件:表示消耗电能的理想电阻元件R;表示贮存电场能的理想电容元件C;表示贮存磁场能的理想电感元件L,当实际电路的尺寸远小于电路工作时电磁波的波长时,可以把元件的作用集总在一起,用一个或有限个R、L、C元件来加以描述,这样的电路参数叫做集总参数。而集总参数元件则是每一个具有两个端钮的元件,从一个端钮流入的电流等于从另一个端钮流出的电流;端钮间的电压为单值量。 参数的分布性指电路中同一瞬间相邻两点的电位和电流都不相同。这说明分布参数电路中的电压和电流除了是时间的函数外,还是空间坐标的函数。 一个电路应该作为集总参数电路,还是作为分布参数电路,或者说,要不要考虑参数的分布性,取决于其本身的线性尺寸与表征其内部电磁过程的电压、电流的波长之间的关系。若用l表示电路本身的最大线性尺寸,用λ表示电压或电流的波长,则当不等式λ>>l 成立,电路便可视为集总参数电路,否则便需作为分布参数电路处理。电力系统中,远距离的高压电力传输线即是典型的分布参数电路,因50赫芝的电流、电压其波长虽为6000 千米,但线路长度达几百甚至几千千米,已可与波长相比。通信系统中发射天线等的实际尺寸虽不太长,但发射信号频率高、波长短,也应作分布参数电路处理。 研究分布参数电路时,常以具有两条平行导线、而且参数沿线均匀分布的传输线为对象。这种传输线称为均匀传输线(或均匀长线)。作这样的选择是因为实际应用的传输线可以等效转换成具有两条平行导线形式的传输线,而且这种均匀的传输线容易分析。 传输线是传送能量或信号的各种传输线的总称。其中包括电力传输线、电信传输线、天线等。传输线又称长线。由于它具有在空间某个方向上其长度已可与其内部电压、电流的波长相比拟,而必须考虑参数分布性的特征,所以是典型的分布参数电路。在电路理论中讨论传输线时以均匀传输线作为对象。均匀传输线是指参数沿线均匀分布的二线传输线,其基本参数,或称原参数是R0、L0、C0和G0。其中R0 代表单位长度线(包括来线与回线)的电阻;L0代表单位长度来线与回线形成的电感;C0和G0分别代表单位长度来线与回线间的电容和漏电导。这些参数是由导线所用的材料、截面的几何形状与尺寸、导线间的距离,以及导线周围介质决定的。在高频和低频高电压下它们都有近似的计算公式。

集总参数和分布参数

集总参数和分布参数 组成电路模型的元件,都是能反映实际电路中元件主要物理特征的理想元件,由于电路中实际元件在工作过程中和电磁现象有关,因此有三种最基本的理想电路元件:表示消耗电能的理想电阻元件R;表示贮存电场能的理想电容元件C;表示贮存磁场能的理想电感元件L,当实际电路的尺寸远小于电路工作时电磁波的波长时,可以把元件的作用集总在一起,用一个或有限个R、L、C元件来加以描述,这样的电路参数叫做集总参数。而集总参数元件则是每一个具有两个端钮的元件,从一个端钮流入的电流等于从另一个端钮流出的电流;端钮间的电压为单值量。 参数的分布性指电路中同一瞬间相邻两点的电位和电流都不相同。这说明分布参数电路中的电压和电流除了是时间的函数外,还是空间坐标的函数。 一个电路应该作为集总参数电路,还是作为分布参数电路,或者说,要不要考虑参数的分布性,取决于其本身的线性尺寸与表征其内部电磁过程的电压、电流的波长之间的关系。若用 l表示电路本身的最大线性尺寸,用λ表示电压或电流的波长,则当不等式λ>>l 成立,电路便可视为集总参数电路,否则便需作为分布参数电路处理。电力系统中,远距离的高压电力传输线即是典型的分布参数电路,因50赫芝的电流、电压其波长虽为 6000 千米,但线路长度达几百甚至几千千米,已可与波长相比。通信系统中发射天线等的实际尺寸虽不太长,但发射信号频率高、波长短,也应作分布参数电路处理。 研究分布参数电路时,常以具有两条平行导线、而且参数沿线均匀分布的传输线为对象。这种传输线称为均匀传输线(或均匀长线)。作这样的选择是因为实际应用的传输线可以等效转换成具有两条平行导线形式的传输线,而且这种均匀的传输线容易分析。 传输线是传送能量或信号的各种传输线的总称。其中包括电力传输线、电信传输线、天线等。传输线又称长线。由于它具有在空间某个方向上其长度已可与其内部电压、电流的波长相比拟,而必须考虑参数分布性的特征,所以是典型的分布参数电路。在电路理论中讨论传输线时以均匀传输线作为对象。均匀传输线是指参数沿线均匀分布的二线传输线,其基本参数,或称原参数是R0、L0、C0和G0。其中R0 代表单位长度线(包括来线与回线)的电阻;L0代表单位长度来线与回线形成的电感;C0和G0分别代表单位长度来线与回线间的电容和漏电导。这些参数是由导线所用的材料、截面的几何形状与尺寸、导线间的距离,以及导线周围介质决定的。在高频和低频高电压下它们都有近似的计算公式。

分布参数滤波器设计

杭州电子科技大学 《通信天线实验》 课程实验报告 实验三:分布参数滤波器设计 2016年11 月10日

实验名称:分布参数滤波器设计 1.实验目的 1)熟悉微带线电路和带状线电路的仿真过程和注意事项,理解微带线、带状线的特性和各种参数指标,熟悉微带线、带状线的各种分布参数元件的使用。 2)本次实验我们需要用到MWO2008的优化和Tune等工具,要求熟练掌握MWO提供的这些工具的使用方法和技巧。 3)本次实验我们需要用到TX Line工具,需要熟练掌握MWO提供TX Line 的使用方法和技巧。 2.实验内容 a.设计一个分布参数低通滤波器 b.设计一低通滤波器要求如下: 1、使用微带线电路或者带状线电路实现 2、指标: * 截止频率为3GHz; * 通带内增益大于-5dB; * 阻带内4.5GHz以上增益小于-50dB; * 通带内反射系数要求小于-25dB。 3.实验步骤 1)设置仿真的频率范围和间隔,设置全局变量的单位。

2)创建一个原理图,在原理图中放置5个MLEF,然后使用MLIN对开路线进行连接,添加一个MSUB元件,得到实验电路图。 3)确定MSUB(基板)参数,在tools下拉菜单中点击txline,确定MLIN的宽度w和MLEF 的长度L。

4)添加测量参数 5)设置优化目标参量 6)优化目标的单位确认(三个优化目标都要 确认) 7)设置变量为可优化可调谐 8)运行结果 4.实验结果 a.电路图

b.低通滤波器实验结果图: c.优化过程

5.问答题 1)如果要你设计的是高通滤波器,与前面相比,需要变化那几个步骤? 由于微带电线的特性阻抗与其线长线宽有关,随之而呈感性或者容性,因此利用原来的电路原理图,通过优化线长线宽,即可实现高通滤波器设计。 具体做法如下: 1.修改电路原理图中的微带开路线; 2.优化目标的设置和修改。 2)你在优化设计过程中,那些参量调解对优化结果影响最大?(最敏感)其中w4和w5对实验结果影响最大,他会使图形的形状改变最大。改变图形如下:

集总参数与分布参数

集总参数和分布参数 理想元件是抽象的模型,没有体积和大小,其特性集中表现在空间的一个点上,称为集总参数元件。其特点:集总参数元件的电磁过程都分别集中在元件内部进行。 集总电路(Lumped circuit):在一般的电路分析中,电路的所有参数,如阻抗、容抗、感抗都集中于空间的各个点上,各个元件上,各点之间的信号是瞬间传递的,这种理想化的电路模型称为集总电路。 这类电路所涉及电路元件的电磁过程都集中在元件内部进行。用集总电路近似实际电路是有条件的,这个条件是实际电路的尺寸要远小于电路工作时的电磁波长。 对于集总参数电路,由基尔霍夫定律唯一地确定了结构约束(又称拓扑约束,即元件间的联接关系决定电压和电流必须遵循的一类关系)。 集总参数元件是指有关电、磁场物理现象都由元件来“集总”表征。在元件外部不存在任何电场与磁场。如果元件外部有电场,进、出端子的电流就有可能不同;如果元件外部有磁场,两个端子之间的电压就可能不是单值的。集总(参数)元件假定:在任何时刻,流入二端元件的一个端子的电流一定等于从另一端流出的电流,且两个端子之间的电压为单值量。由集总元件构成的电路称为集总电路,或称具有集总参数的电路。 组成电路模型的元件,都是能反映实际电路中元件主要物理特征的理想元件,由于电路中实际元件在工作过程中和电磁现象有关,因此有三种最基本的理想电路元件:表示消耗电能的理想电阻元件R;表示贮存电场能的理想电容元件C;表示贮存磁场能的理想电感元件L,当实际电路的尺寸远小于电路工作时电磁波的波长时,可以把元件的作用集总在一起,用一个或有限个R、L、C元件来加以描述,这样的电路参数叫做集总参数。而集总参数元件则是每一个具有两个端钮的元件,从一个端钮流入的电流等于从另一个端钮流出的电流;端钮间的电压为单值量。 参数的分布性指电路中同一瞬间相邻两点的电位和电流都不相同。这说明分布参数电路中的电压和电流除了是时间的函数外,还是空间坐标的函数。 一个电路应该作为集总参数电路,还是作为分布参数电路,或者说,要不要考虑参数的分布性,取决于其本身的线性尺寸与表征其内部电磁过程的电压、电流的波长之间的关系。若用 L表示电路本身的最大线性尺寸,用λ表示电压或电流的波长,则当不等式λ>>L成立,电路便可视为集总参数电路,否则便需作为分布参数电路处理。电力系统中,远距离的高压电力传输线即是典型的分布参数电路,因50赫兹的电流、电压其波长虽为 6000 千米,

分布参数系统能控能观性问题的统一处理

论文中英文摘要 作者姓名:付晓玉 论文题目:分布参数系统能控能观性问题的统一处理 作者简介:付晓玉,女,1979年9月出生,2002年9月至2008年7月师从于四川大学张旭教授,先后获得硕士、博士学位。 中文摘要 数学控制论是由L. S. Pontryagin、R. Bellman和R. E. Kalman在上世纪50年代末创立的,可分为有限维系统的控制理论和无限维系统(亦称分布参数系统) 的控制理论两大部分;或者分为确定性系统的控制理论和随机系统的控制理论这两部分。在实际问题中,有限维系统往往只是无限维系统一定程度的近似。另一方面,绝大多数随机控制系统也都是无限维的。因此,可以说分布参数系统控制理论是整个数学控制论的关键部分。在2006年和2010年的ICM(国际数学家大会)上有1个大会报告和5个特邀报告是关于分布参数控制理论的工作。 分布参数控制系统的能控能观性理论起源于上世纪六十年代,它是分布参数控制理论的基础。该领域经典文献为D. L. Russell (SIAM Rev.,20 (1978), 639–739) 和J. L. Lions (SIAM Rev., 30 (1988), 1–68)等人的工作。由于刺激了偏微分方程相关问题的深入研究,J. L. Lions 的工作引发了关于分布参数控制系统能控能观性理论的大量工作。该理论40余年的历史,尤其是近20年的飞速发展,积累了很多方法和结果。但这些方法和结果“各自为政”,缺乏有机的联系和统一的处理。本文致力于用统一的观点和方法来研究确定性分布参数系统的能控能观性问题。 熟知,分布参数系统的能控能观性强烈地依赖于系统本身的特性,如时间可逆与否,典型的例子分别是波动方程与热传导方程。现在已经清楚,这两类方程的能控能观性有着本质的差别。自然地,人们希望知道这两类不同系统的能控能观性理论是否还有某种联系。特别地,如能建立抛物和双曲方程在某种意义下统一的能控能观性理论,则是一个很有意义的工作。该问题最早由分布参数系统理论的创始人之一D. L. Russell在“Studies in Appl. Math., 52 (1973), 189–212”中提出并给出初步结果。关于抛物和双曲方程能控能观性理论的有机联系,可见A. Lopez-X. Zhang-E. Zuazua (2000),X. Zhang (2001) 以及W. Li-X. Zhang (2005)等人的工作,但关于这两类方程的能控能观性问题的统一处理则没有进一步的工作。 在这篇学位论文中,我们发现;从同一类“类抛物”微分算子(即没有椭圆性条件)的逐点

结构动力学-第六章 分布参数体系

结构动力学Dynamics of Structures 第六章分布参数体系Chapter 6 Continuous Systems 华南理工大学土木工程系 马海涛/陈太聪

本章主要目的及内容 目的: 了解具有分布质量弹性连续体的动力分析方法; 初步掌握一维结构的运动方程的建立和简单问题求解. 内容: ?梁的偏微分运动方程 ?梁的自振频率和振型 ?振型的正交性 ?用振型叠加法计算梁的动力反应

§6.1 梁的偏微分运动方程 §6.1.1 弯曲梁(欧拉梁)的横向振动方程 剪切变形-Euler梁、Timoshenko梁转动惯量阻尼影响

()()() 2 2 ,I u x t f x m x t ?=?惯性力-分布强度: Euler 梁静力平衡方程: ()()()2 2 22 ,,u x t EI x P x t x x ????=?????? Euler 梁动力平衡方程: ()()()()()2 2 2 222 ,,,u x t u x t EI x P x t m x x x t ?????=????????

Euler 梁动力平衡方程: ()()()()()2 2 2 222 ,,,u x t u x t EI x P x t m x x x t ?????=???????? 运动方程: ()()()()()2 2 2 222 ,,,u x t u x t m x EI x P x t t x x ?? ???+=??????? 等截面梁的运动方程: ()()()2 4 24 ,,,u x t u x t m EI P x t t x ??+=??

powermill点分布参数讲解

powermill 点分布参数讲解
默认设置
1、点分离距离

观察两者外圈点分布的情况 点分布距离(Point separation distance)——用户可以设置刀具路径中点的最大距离。 最大距离(Maximum point separation)—— 刀具路径中连续点之间的最大距离。 这些选项当输出类型为“修圆”时不激活。

一、输出类型
1、公差并保留圆弧 2、公差并替换圆弧 3、重新分布 4、修圆 1、公差并保留圆弧:自动移除刀具路径中不必要的控制点并保留公差的计算精度
图中蓝色点为圆弧中心

2、公差并替换圆弧 这个选项与公差并保留圆弧相似,不同之处在于所有的圆弧用直线段的方式逼近。
比较细节

可见同样条件下——保持同样的精度,公差并保留圆弧更加精确,但是若后处理都是直线逼近的情况下就要选择 公差并替换圆弧(Tolerance and Replace Arcs) ,若后处理支持圆弧输出的情况下选择公差并保留圆弧(Tolerance and Keep Arcs) 3、重新分布 Redistribute - allows the insertion of new points. This ensures a constant distance between points, only inserting extra points if they are necessary to keep tolerance. This can be especially useful when using the Maximum Point Separationoption. Redistribute may increase toolpath creation time but reduce time on the machine tool. This option is suitable for machine tools that can handle large numbers of equispaced points. 允许系统自动插入新的控制点。当为了保持公差精度需要时,可以在两个连续点之间插入额外的控制点。此选项 在使用最大点分离距离选项的时候尤其有用。重新分布会使得刀具路径生成的计算时间增加,但是会减少实际加工 的时间。应用此选项的前提是机床控制系统能够较快的处理大量点。也就是说控制系统要与之相匹配。老系统反而 起不到作用。 具体观察下列两张图片

关于随机分布参数系统的变结构控制研究

文章编号:1674?7070(2015)02?0184?05 黄邦彦1一黄金花 1关于随机分布参数系统的变结构控制研究 摘要 研究了一类It?型随机时滞分布参数系统的滑动模控制问题,设计了该系统的变结构控制器,证明了系统的滑动模运动的存在性,并分析了在滑动切换面上滑动模控制系统关于不确定量的不变性特征及运动稳定性.与相关论文相比,所获结论与扩散系数相关,在实际应用中更具实践意义.运用文中方法,类似论文结论均可进行改进. 关键词 随机驱动;分布参数;变结构控制;扩散系数 中图分类号TP13 文献标志码A 收稿日期2015?03?15 资助项目国家自然科学基金(61340042);湖北省自然科学基金(2012FFB4102) 作者简介 黄邦彦,男,副教授,主要研究方向为船舶电气工程技术.397451765@qq.com 黄金花(通信作者),女,教授,主要从事控制理论及控制工程方面的研究工作. angela0412@126.com 1武汉船舶职业技术学院电气与电子工程学院,武汉,4300500一引言 一一滑模变结构控制的研究起源于20世纪50年代,如今已成为相对独立的科学研究方向.变结构控制[1]可以将一个复杂的高阶系统归结成两个低阶的二相对较简单的问题,是一种比较容易实现的控制系统的综合方法.近年来,变结构控制的应用越来越广泛[2?4].阅读相关文献不难发现,关于分布参数系统的变结构控制结论大都与扩散系数相关,而随机分布参数系统的变结构控制的部分结论与分布参数系数无关[5],显然,相关更有意义.仔细分析发现,造成与扩散系数无关的主要原因是由于在运用格林公式与边界条件后,含有分布参数系数的项恒为负,通常被直接舍去,从而造成估计不精细.本文将适当改进相关证明,使得不等式估计更加精细,即可获得与扩散系数相关的结论. 1一系统描述 考虑随机时滞分布参数系统 dv(x,t)=[dΔv(x,t)+Av(x,t)+Ev(x,t-τ)+Bu(x,t)]dt+emi=1σiFiv(x,t)dWi(t),一(x,t)?Ω?R+,(1)这里v(x,t)?Rn;u?Rr;A,E,Fi?Rn?n;B?Rn?r,B是列满秩的;σi?R;d>0为常数;Δ=emi=1?2?x2i是Ω上的Laplace扩散算子;W(t)=(W1, ,Wm)T是定义在完备的概率空间(Ω,F,(Ft)t?I,P)上具自然流{Ft}t?0的m维Brown运动;时滞τ>0为常数;Ω=x, x <l<+? {}?Rs是具有光滑边界?Ω的有界区域,R+ζ=[ζ,+?). 考虑初值条件 v(x,t)=φ(x,t),一(x,t)?Ω?[-τ,0](2)与Neuman型边值条件 ?v(x,t) ?N=0,一(x,t)??Ω?R+τ,(3)或者Dirichlet型边值条件 v(t,x)=0,一(t,x)?R+??Ω,(4)其中,φ(x,t)是适当光滑的已知函数.一一一一

相关文档
最新文档