正弦型函数y=Asin(ωx+φ)

正弦型函数y=Asin(ωx+φ)
正弦型函数y=Asin(ωx+φ)

正弦型函数y=Asin(ωx+φ)

课程教案

课程名称:数学

任课教师:邓芳

所属院部:中南

教学班级:中大连读1~13班(除12班)教学时间:2017 —2018 学年第1学期

中南科技财经管理学校

课程基本信息

中南科技财经管理学校教案用纸 1 P

第一章三角计算及其应用

1.2正弦型函数y=Asin(ψx+)

一、本次课主要内容

本节主要能借助计算机课件,通过探索、观察参数A、ω、对函数图象的

影响,并能概括出三角函数图象各种变换的实质和内在规律,画出函数

y=Asin(ωx+)的图象。

二、教学目的与要求

(1)理解:理解振幅变换、相位变换和周期变换,通过作图、观察、分析、

归纳等方法,形成规律,得出从函数的图象到正弦型函数y=Asin(ωx+φ)图象

的变换规律。

(2)掌握:正弦型函数性质,掌握“五点法”作图。

(3)应用:为后面高中物理研究《单摆运动》、《简谐运动》、《机械波》等知

识提供了数学模型

三、教学重点难点

(1)重点:考察参数ω、、A对函数图象的影响,理解由y=sinx的图象

到y=Asin(ωx+)的图象变化过程,并熟记正弦型函数性质。

(2)难点:对y=Asin(ωx+)的图象的影响规律的发现与概括

四、教学方法和手段

(1)采用问题解决教学模式,培养学生不断地发现问题、提出问题、分析

问题和解决问题的能力;

(2)注重类比、联想、构造、转化等数学方法在问题解决中的应用,

(3)注重整体意识、换元思想、方程思想在解题中的灵活应用,特别注重

中南科技财经管理学校教案用纸 2 P 对知识与方法的总结和提炼;

五、作业与习题布置

课本19页习题 1.2 1(2)、2(2)

中南科技财经管理学校教案用纸 3

P 1.2.1.正弦型函数的概念与性质

复习引入

通过作图、观察、分析、归纳等方法,形成规律,得出从函数 的图象到正弦型函数y=Asin(ωx+)图象的变换规律。提出问题正弦型函数和我们熟知的正弦函数,有什么联系呢?

导入新课

学生思考,交流,正弦函数就是函数 在A=1,ω=1,φ=0的特殊情况。 形如y=Asin(ωx+) (A>0,ω>0) 的函数称为正弦型函数.

正弦型函数主要有以下性质: (1)定义域为 R (全体实数) ;

(2)周期为 ω

π

2=

T ;

(3)值域为[-A ,A] ,即最大值为A ,最小值为-A .

例题讲解

例 求正弦型函数)6

π

2sin(+=x y 和

)52π2sin(+=x y 的周期. 解 根据正弦函数型函数的周期公式ω

π

2=T ,可知

)6π

2sin(+=x y 的周期为

π2

π

2==

=

ω

T ; )5

2sin(+=x y 的周期为

中南科技财经管理学校教案用纸 4

P π42

2==

=

ω

T . 例2、例3(略)

1.2.2.正弦型函数的图像

例 利用“五点法”作出正弦型函数

)3

π

2sin(+=x y 在一个周期内的简图. 解 在函数)3

π

2sin(+=x y 中2=ω,因此周期为

π2π2π2===ωT . 为求出图像上的五个关键点的横坐标,令3

π

2+=x z ,分别取

π2,2

π

3,π,2π,0=z ,找出一个周期π内五个特殊的点,求出对应的x 的

值与函数

y 的值,见下表.

以表中每组),(y x 为坐标描点,在直角坐标系中比较精确地描出对应的五

个关键点:)0,6

π

5(),1,12π7(

),0,3π(),1,12π(),0,6π(--.

中南科技财经管理学校教案用纸 5

P

1.2.3.正弦型函数的应用

复习引入

当sin()y A x ω?=+,[0,)x ∈+∞(其中0A >,0ω>)表示一个振动量时,A 表示这个量振动时离开平衡位置的最大距离,通常称为这个振动的振幅,往复振动一次需要的时间2T π

ω

=

称为这个振动的周期,单位时间内往复振动的次数

12f T ωπ

=

=,称为振动的频率。x ω?+称为相位,0x =时的相位?称为初相。

导入新课

中南科技财经管理学校教案用纸 6

P 在电学中,电流强度的大小和方向都是随时间变化的电流称为交变电流,简称交流电.最简单的是简谐交流电,其电流强度的大小和方向随时间而变化,可以用如下函数来表示:

)ππ,0,0()sin(00≤≤->>+=?ω?ωm m I t I I ,

其中m I 是电流强度的最大值,称为简谐交流电的峰值;ω称为角频率,单位为

rad/s ;0?ω+t

称为相位,0?称为初相位,简称初相;ω

π

2=

T 称为简谐交流

电的变化周期,表示交流电完成一次周期性变化所需要的时间,单位为s ;单位

时间内,交流电完成周期性变化的次数称为频率,用f

表示,

T

f 1

=

,单位

为Hz (赫兹).

例题

例 已知简谐交流电的电流强度随时间

t

的变化规律为

)3

π

π100sin(26+=t I ,求出它的峰值、周期、初相位和频率.

解 峰值A 26=m

I ;

周期s 02.0π

100π2π

2===

ωT ; 初相位3

π

0=?;

频率Hz 5002

.01

1===T f .

中南科技财经管理学校教案用纸7 P

作业与习题布置

课本19页习题 1.2 1(2)、2(2)

独立同分布随机变量序列的顺序统计方法(2019)

独立同分布随机变量序列的顺序统计方法 设有限长度离散随机变量序列12,,...,n x x x ,对其按从小到大的顺序排列,得到新的随机序列12,,...,n y y y ,满足:12...n y y y ≤≤≤;假设12,,...,n x x x 是独立同分布的连续取值型随机变量,每个变量的概率分布函数及概率密度分布函数分别为(),()F x f x 。 (1)求(1)k y k n ≤≤的概率密度分布函数()k y f y 解:k y 在y 处无穷小邻域取值的概率()k y f y dy 可以等效为这样一些事件发生的概率之 和:12,,...,n x x x 这n 个随机变量中有任意一个在y 处无穷小邻域取值,而剩余的n -1个随机变量中有任意k -1个的取值小于等于y ,对应的另外n -k 个变量的取值大于等于y 事件的个数(变量的组合数)为111n n k -???? ???-???? ,每个事件的概率为1[()]()[1()]k n k f y dy F y F y ---,则 11()()()[1()]11k k n k y n n f y dy f y dyF y F y k ---????=- ???-???? => 1!()()[1()]() (1)(1)!()! k k n k y n f y F y F y f y k n k n k --= -≤≤-- (2)求随机变量,(1)k l y y k l n ≤<≤的联合概率密度分布函数(,)k l y y f u v 解:(,) ()k l y y k l <在平面上的点(,) ()u v v u ≥处无穷小邻域取值的概率

excel表格的基本操作函数乘法

excel表格的基本操作函数乘法 乘法是没有快捷键的,看下边例子,求合价: C2输入公式=A1*B1,下拉公式,计算每一项的合价; 最后对合价进行求和,求和就有快捷键了,选中C8,点击工具栏上的求和按钮或者按快捷键“ALT+=”,excel会自动捕捉求和区域,填入=SUM(c2:c7),回车即可。 如果不求每一项的合价,直接求所有项目的价款总和,用sumproduct函数 我们先从简单的说起吧!首先教大家在A1*B1=C1,也就是说在第一个单元格乘以第二个单元格的积结果会显示在第三个单元格中。 ①首先,打开表格,在C1单元格中输入“=A1*B1”乘法公式。 ③现在我们在“A1”和“B1”单元格中输入需要相乘的数据来进行求积,如下图,我分别在A1和B1单元格中输入10和50进行相乘,结果在C1中就会显示出来,等于“500”。 上面主要讲解了两个单元格相乘求积的方法,但是在我们平常工作中,可能会遇到更多数据相乘,下面主要说说多个单元格乘法公式运用,如:“A1*B1*C1*D1”=E1。 2、Excel中多个单元格相乘的乘法公式 ①在E1单元格中输入乘法公式“=A1*B1*C1*D1”。 ②然后依次在A1、B1、C1、D1中输入需要相乘的数据,结果就会显示在“E1”中啦! 看看图中的结果是否正确呀!其实,这个方法和上面的差不多,只不过是多了几道数字罢了。 3、Excel混合运算的乘法公式

5加10减3乘2除3等于多少? 提示:加=+,减=-,乘=*,除=/。 ①首先,我们要了解这个公式怎么写,“5+10-3*2/3”这是错误的写法,正确写法应该是“(5+10-3)*2/3”。 ②好了,知道公式了,我们是不是应该马上来在Excel中的“F1”中输入“=(A1+B1-C1)*D1/E1”。 ③然后依次在A1、B1、C1、D1、E1中输入需要运算的数据。 好了,上面的一些基本乘法公式就已经讲玩了,下面教大家个小技巧,在有多行需要计算的时候该怎么办呢? 4、将公式复制到每行或每列 ②此时,从F1到下面的F2、F3、F4等等,都已经复制了“F1”中的公式,下次你需要运算的时候,直接在前面输入数据,在F2、 F3、F4等单元格中就会自动显示运算的结果了。

SQL常见语句及函数

1.求字持串的长度LENGTH 您可用LENGTH函数求字符串的长度。LENGTH返回一个数值。该值等于参数中的字符个数。 例:使用LENGTH函数 SQL>select Last_Name, length(Last_Name) from customer order by LastName; 2.使用SUBSTR函数从字符串中提取子串 语法: SUBSTR函数的语法如下: SUBSTR(string, string charcter, number of charcters) 变量定义如下: string为字符列或字符串表达式 string charcter为子串的起始位置 number of charcters为返回字符的个数c 例:说明了怎样使用SUBSTR函数取得教师的姓的前四个字符 SQL>select last_Name, substr(Last_Name, 1, 4) from instector order by Last_Name 例:在SUBSTR函数中使用LENGTH函数(取后三个字符) 5Qt.>select last_Name, substr(Last_Name, Length(Last_Name) - 2, 3) from instector order by Last_Name 3.在字符串中查找模式 例:使用LIKE运算符 SQL>column description format a40 word_wrapped SQL>column title format a35 SQL>select Title, Description from Course where Description like '%thory%' or Description like '%theories%'; 4.替换字符串的一部分 经常遇到的数据操纵任务是在特定的列中将数据由一种模式转换成另一种模式。 假设您希望在Course表中改变课程说明,将说明中的字seminar用字discussion替代.那么您可用oracle提供的函数REPLACE,该函数使得某列的字符串能被另一字符串代替。 语法: REPLACE函数的语法如下: REPLACE(string, existion_string, [replacement_string]) 变量定义如下: string为字符表达式c existion_string为已存在的字符串。 replacement_string为用来替代的可选字符串。 例:使用REPLACE函数 显示了在Course表中如何使用REPLACE来改变课程名称(title):首先使用查询显示当前课程名称,UPDATE语句中使用REPLACE函数将SEMINAR改变成

高中数学常见函数图像

高中数学常见函数图像1. 2.对数函数:

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k π π=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ??++???? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

EXCEL乘法函数公式使用方法

在Excel表格中,我们常常会利用Excel公式来统计一些报表或数据等,这时就少不了要用到加、减、乘、除法,在前面我们已经详细的讲解了求差公式使用方法。那么我们又如何利用公式来对一些数据进行乘法计算呢?怎样快速而又方便的来算出结果呢?下面小编就来教大家一步一步的使用Excel乘法公式! 我们先从简单的说起吧!首先教大家在A1*B1=C1,也就是说在第一个单元格乘以第二个单元格的积结果会显示在第三个单元格中。 1、A1*B1=C1的Excel乘法公式 ①首先,打开表格,在C1单元格中输入=A1*B1乘法公式。 ②输入完毕以后,我们会发现在 C1 单元格中会显示0,当然了,因为现在还没有输入要相乘的数据嘛,自然会显示0了。 ③现在我们在A1和B1单元格中输入需要相乘的数据来进行求积,如下图,我分别在A1和B1单元格中输入10和50进行相乘,结果在C1中就会显示出来,等于500。 上面主要讲解了两个单元格相乘求积的方法,但是在我们平常工作中,可能会遇到更多数据相乘,下面主要说说多个单元格乘法公式运用,如:A1*B1*C1*D1=E1。 2、Excel中多个单元格相乘的乘法公式 ①在E1单元格中输入乘法公式=A1*B1*C1*D1。 ②然后依次在A1、B1、C1、D1中输入需要相乘的数据,结果就会显示在E1中啦! 看看图中的结果是否正确呀!其实,这个方法和上面的差不多,只不过是多了几道数字罢了。 因为在工作中不止是乘法这么简单,偶尔也会有一些需要加减乘除一起运算的时候,那么当遇到这种混合运算的时候我们应当如何来实现呢?这里就要看你们小学的数学有没学好了。下面让我们一起来做一道小学时的数学题吧! 3、Excel混合运算的乘法公式,5加10减3乘2除3等于多少? 提示:加=+,减=-,乘=*,除=/。

Python语句、函数与方法的使用技巧总结

Python语句、函数与方法的使用技巧总结 显示有限的接口到外部 当发布python第三方package时,并不希望代码中所有的函数或者class可以被外部import,在__init__.py中添加__all__属性,该list中填写可以import 的类或者函数名,可以起到限制的import的作用,防止外部import其他函数或者类。 #!/usr/bin/env python # -*- coding: utf-8 -*- from base import APIBase from client import Client from decorator import interface, export, stream from server import Server from storage import Storage from util import (LogFormatter, disable_logging_to_stderr, enable_logging_to_kids, info) __all__ = ['APIBase', 'Client', 'LogFormatter', 'Server', 'Storage', 'disable_logging_to_stderr', 'enable_logging_to_kids', 'export', 'info', 'interface', 'stream'] with的魔力

with语句需要支持上下文管理协议的对象,上下文管理协议包含__enter__和__exit__两个方法。with语句建立运行时上下文需要通过这两个方法执行进入和退出操作。 其中上下文表达式是跟在with之后的表达式,该表达式返回一个上下文管理对象。 # 常见with使用场景 with open("test.txt", "r") as my_file: # 注意, 是__enter__()方法的返回值赋值给了my_file, for line in my_file: print line 知道具体原理,我们可以自定义支持上下文管理协议的类,类中实现__enter__和__exit__方法。 #!/usr/bin/env python # -*- coding: utf-8 -*- class MyWith(object): def __init__(self): print "__init__ method" def __enter__(self):

三角函数公式大全与证明

高中三角函数公式大全 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2 b a -

sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 2 1[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2 π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2(tan 1)2(tan 1a a +-

高中数学函数图象高考题

函数图象B1 .函数y = a| x | (a > 1)的图象是( ) B() B3.当a>1时,函数y=log a x和y=(1-a)x的图象只可能是() A4.已知y=f(x)与y=g(x)的图象如图所示 则函数F(x)=f(x)·g(x)的图象可以是(A) B5.函数(1) || x xa y a x =>的图像大致形状是()D

A B C D D 7.函数x x y cos -=的部分图象是( ) A 8.若函数f(x)=x 2+b x +c 的图象的顶点在第四象限,则函数f /(x)的图象是 ( ) A 9.一给定函数) (x f y =的图象在下列图中,并且对任意)1,0 (1∈a ,由关系式) (1n n a f a =+得到的数列}{n a 满足)(* 1N n a a n n ∈>+,则该函数的图象是 ( ) A B C D C 10.函数y=kx+k 与y=x k 在同一坐标系是的大致图象是( ) A D C

A 12. 当a >1时,在同一坐标系中,函数y =a - x 与y =log a x 的图像( ) B 13. 函数1 1 1--=x y 的图象是( ) D 14.函数b x a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是 ( ) A .0,1<>b a B .0,1>>b a C .0,10><

函数导数公式及证明

函数导数公式及证明

复合函数导数公式

) ), ()0g x ≠' ''2 )()()()() ()()f x g x f x g x g x g x ?-=?? ())() x g x , 1.证明幂函数()a f x x =的导数为''1()()a a f x x ax -== 证: ' 00()()()()lim lim n n x x f x x f x x x x f x x x →→+-+-== 根据二项式定理展开()n x x + 011222110(...)lim n n n n n n n n n n n n n x C x C x x C x x C x x C x x x ----→+++++-= 消去0n n n C x x - 11222110...lim n n n n n n n n n n x C x x C x x C x x C x x ----→++++= 分式上下约去x 112211210 lim(...)n n n n n n n n n n x C x C x x C x x C x -----→=++++ 因0x →,上式去掉零项 111 n n n C x nx --== 12210()[()()...()]lim n n n n x x x x x x x x x x x x x x ----→+-+++++++=

12210 lim[()()...()]n n n n x x x x x x x x x x ----→=+++++++ 1221...n n n n x x x x x x ----=++++ 1n n x -= 2.证明指数函数()x f x a =的导数为'ln ()x x a a a = 证: ' 00()()()lim lim x x x x x f x x f x a a f x x x +→→+--== 0(1)lim x x x a a x →-= 令1x a m -=,则有log (1)a x m =-,代入上式 00(1)lim lim log (1)x x x x x a a a a m x m →→-==+ 1000 ln ln lim lim lim ln(1)1ln(1)ln(1)ln x x x x x x m a m a a a a m m m a m →→→===+++ 根据e 的定义1lim(1)x x e x →∞ =+ ,则1 0lim(1)m x m e →+=,于是 1 ln ln lim ln ln ln(1) x x x x m a a a a a a e m →===+ 3.证明对数函数()log a f x x =的导数为''1 ()(log )ln a f x x x a == 证: '0 0log ()log ()() ()lim lim a a x x x x x f x x f x f x x x →→+-+-== 00log log (1)ln(1) lim lim lim ln a a x x x x x x x x x x x x x a →→→+++===

高中数学常见函数图像

高中数学常见函数图像 1.指数函数: 定义 函数 (0x y a a =>且1)a ≠叫做指数函数 图象 1a > 01a << 定义域 R 值域 (0,)+∞ 过定点 图象过定点(0,1),即当0x =时,1y =. 奇偶性 非奇非偶 单调性 在R 上是增函数 在R 上是减函数 2.对数函数: 定义 函数 log (0a y x a =>且1)a ≠叫做对数函数 图象 1a > 01a << 定义域 (0,)+∞ 值域 R 过定点 图象过定点(1,0),即当1x =时,0y =. 奇偶性 非奇非偶 单调性 在(0,)+∞上是增函数 在(0,)+∞上是减函数 x a y =x y (0,1) O 1 y =x a y =x y (0,1) O 1 y =x y O (1,0) 1 x =log a y x =x y O (1,0) 1 x =log a y x =

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

4. 函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k ππ=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ? ?++??? ? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

r语句常用函数汇总(1)

R-note 一、基本函数 1.函数c()—向量,length()—长度,mode()—众数,rbind()—组合,cbind()— 转置,mode()—属性(数值、字符等) 2.函数mean( )-中位数, sum( )-求和, min( )-最小 值, max( )-最大值, var( )-方差, sd( )-标准差, prod( ) –连乘 3.函数help()--帮助 4.正态分布函数rnorm( ) 、泊松分布函数rpois( ) 、指数分布函数rexp( ) 、 Gamma分布函数rgamma( ) 、均匀分布函数runif( ) 、二项分布函数rbinom( ) 、几何分布函数rgeom( ) (一)基本函数 1.>2:60*2+1 [1]5 7 9 11……..。。。(共60个数) 2. a[5]:a数列第5个数,a[-5]:删除a数列第5位数 a[-(1:5)]: 删除a数列第1-5位数 a[c(2,4,7)]:a数列第2,4,7位数 a[a<20]:a数列小于20的数 a[a[3]]:先查找a数列第3位数对应数值,然后找第该位数对应数值 5.Seq()函数---序列数产生器 Seq(5,20):产生5,6。。。。20的数集 Seq(5,100,by=2):产生5开始,步长为2的数集,最大值为100 Seq(5,100,length=10):产生从5开始,从第三个数开始等于第二个数加上第二个数减去第一个数的差值,最后一个数为100. 如:=+() 6.letters():产生字母序列 letters[1:30]:a,b,c,d…..30个字母 ()选择 (a):a数列里面最大数 which(a==2):查找a数列中等于2的数,并返回该数所对应位置

三角函数图像变换顺序详解(全面).

《图象变换的顺序寻根》 题根研究 一、图象变换的四种类型 从函数y = f (x)到函数y = A f ()+m,其间经过4种变换: 1.纵向平移——m 变换 2.纵向伸缩——A变换 3.横向平移——变换 4.横向伸缩——变换 一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样. 以下以y = sin x到y = A sin ()+m为例,讨论4种变换的顺序问题. 【例1】函数的图象可由y = sin x的图象经过怎样的平移和伸缩变换而得到? 【解法1】第1步,横向平移: 将y = sin x向右平移,得 第2步,横向伸缩: 将的横坐标缩短倍,得 第3步:纵向伸缩: 将的纵坐标扩大3倍,得 第4步:纵向平移: 将向上平移1,得 【解法2】第1步,横向伸缩: 将y = sin x的横坐标缩短倍,得y = sin 2x 第2步,横向平移:

将y = sin 2x向右平移,得 第3步,纵向平移: 将向上平移,得 第4步,纵向伸缩: 将的纵坐标扩大3倍,得 【说明】解法1的“变换量”(如右移)与参数值()对应,而解法2中有的变 换量(如右移)与参数值()不对应,因此解法1的“可靠性”大,而解法2的“风险性”大. 【质疑】对以上变换,提出如下疑问: (1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变? (2)在横向平移和纵向平移中,为什么它们增减方向相反—— 如当<0时对应右移(增方向),而m < 0时对应下移(减方向)? (3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反—— 如|| > 1时对应着“缩”,而| A | >1时,对应着“扩”? 【答疑】对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f ()+m 中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式 (y+) = f (),则x、y在形式上就“地位平等”了. 如将例1中的变成 它们的变换“方向”就“统一”了. 对于疑问(1):在不同的变换顺序中,为什么“伸缩量不变”,而“平移量有变”?这是因为在“一次”替代:x→中,平移是对x进行的. 故先平移(x→)对后伸缩(→)没有影响; 但先收缩(x→)对后平移(→)却存在着“平移”相关. 这

Intouch函数及语句介绍

Intouch函数及语句介绍 R 1: RecipeDelete() 从指定配方模板文件中删除配方名。 句法RecipeDelete(“Filename”,“RecipeName”); 参数描述 FileName 被函数所作用的配方模板文件。实际字符串或消息标记名。 RecipeName 在将被函数删除的指定配方模板文件中的特定配方。RecipeLoad()、RecipeSave() 和RecipeDelete() 函数需用户提供RecipeName 参数。 RecipeSelectRecipe() 函数返回此参数的值。实际字符串或消息标记名。 实例 下面的语句将配方“Recipel”从recfile.csv 文件中删除: RecipeDelete("c:\recipe\recfile.csv", "Recipe1"); 2: RecipeGetMessage()写给模拟标记名某一错误代码同时写给消息标记名相应的错误代码消息。 句法 RecipeGetMessage(Analog_T ag,Message_T ag,Number); 参数描述 Analog_T ag不带引号或常数的实际整型或实型标记名。 Message_T ag不带引号或常数的实际整型或实型标记名。 Number该参数设置返回给Message_Tag 的最大字符串长度。InTouch,消息标记名有131 字符的最大长度。除非你减小在InTouch 标记名称典中的Message_Tag 的最大字符串长度,该参数值为131。该参数可以是常数或包含一个数值的整型标记名。 实例 在“InTouch 数据更改脚本”中使用RecipeGetMessage() 函数,相应的错误代码可以被写到一个模拟标记名,并且关联的错误代码消息可以被写到一个消息标记名中。 Data Change Script Tagname[.field]:ErrorCode Script body:RecipeGetMessage(ErrorCode, ErrorMessage,131); 当模拟标记名ErrorCode 的值发生变化时,将自动执行此脚本。当此脚本执行时,RecipeGetMessage() 函数将读取标记名ErrorCode 的当前数字值,并且返回与此数字值关联的消息到标记名ErrorMessage。 ErrorCode = RecipeLoad ("c:\App\recipe.csv","Unit1","cookies"); RecipeGetMessage(ErrorCode, ErrorMessage, 131); 3: RecipeLoad() 将指定的配方加载到指定的标记名单元中。 句法 RecipeLoad(“Filename”,“UnitName”,“RecipeName”); 参数描述 Filename此函数所作用的配方模板文件的名称。FileName 可以是字符串常数或含有配方模板文件的消息标记名。 UnitName此函数使用的指定配方模板文件中指定的单元。RecipeLoad()函数需用户提供UnitName。RecipeSelectUuit() 函数返回此参数的值。UnitName 可以是字符常数或含有该单元名称的消息标记名。 RecipeName此函数使用的指定配方模板文件中指定的配方。RecipeLoad()、RecipeSave() 和RecipeDelete() 函数需用户提供RecipeName。RecipeSelectRecipe() 函数返回此参数的值。RecipeName 可以是字符常数或含有该配方名称的消息标记名。

三角函数图像变换顺序详解

三角函数图像变换顺序 详解 -CAL-FENGHAI.-(YICAI)-Company One1

《图象变换的顺序寻根》 题根研究 一、图象变换的四种类型 从函数y = f (x)到函数y = A f ()+m,其间经过4种变换: 1.纵向平移——m 变换 2.纵向伸缩——A变换 3.横向平移——变换 4.横向伸缩——变换 一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样. 以下以y = sin x到y = A sin ()+m为例,讨论4种变换的顺序问题. ? 【例1】函数的图象可由y = sin x的图象经过怎样的平移和伸缩变换而得到 【解法1】第1步,横向平移: 将y = sin x向右平移,得 第2步,横向伸缩: 将的横坐标缩短倍,得 第3步:纵向伸缩: 将的纵坐标扩大3倍,得 第4步:纵向平移: 将向上平移1,得 ?

【解法2】第1步,横向伸缩: 将y = sin x的横坐标缩短倍,得y = sin 2x 第2步,横向平移: 将y = sin 2x向右平移,得 第3步,纵向平移: 将向上平移,得 第4步,纵向伸缩: 将的纵坐标扩大3倍,得 ? 【说明】解法1的“变换量”(如右移)与参数值()对应,而解法 2中有的变换量(如右移)与参数值()不对应,因此解法1的“可靠性”大,而解法2的“风险性”大. ? 【质疑】对以上变换,提出如下疑问: (1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变 (2)在横向平移和纵向平移中,为什么它们增减方向相反—— 如当<0时对应右移(增方向),而m < 0时对应下移(减方向)(3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反——如|| > 1时对应着“缩”,而| A | >1时,对应着“扩” ? 【答疑】对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f ()+m中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式

(完整版)高中数学中的函数图象变换及练习题

高中数学中的函数图象变换及练习题 ①平移变换: Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左 (0)a >或向右(0)a <平移||a 个单位即可得到; 1)y =f (x )h 左移→y =f (x +h);2)y =f (x ) h 右移→y =f (x -h); Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上 (0)a >或向下(0)a <平移||a 个单位即可得到; 1)y =f (x ) h 上移→y =f (x )+h ;2)y =f (x ) h 下移→y =f (x )-h 。 ②对称变换: Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; y =f (x ) 轴 y →y =f (-x ) Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到; y =f (x ) 轴 x →y = -f (x ) Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到; y =f (x ) 原点 →y = -f (-x ) Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。 y =f (x ) x y =→直线x =f (y ) Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到 ③翻折变换: Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原 y 轴左边部分并保留()y f x =在y 轴右边部分即可得到 ④伸缩变换: Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐 标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y =f (x )a y ?→y =af (x ) Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐 标伸长(1)a >或压缩(01a <<)为原来的1 a 倍得到。f (x )y =f (x )a x ?→y =f (ax ) 1.画出下列函数的图像 (1))(log 2 1x y -= (2)x y )2 1(-= (3)x y 2log = (4)12-=x y (5)要得到)3lg(x y -=的图像,只需作x y lg =关于_____轴对称的图像,再向____平移 3个单位而得到。 (6)当1>a 时,在同一坐标系中函数x a y -=与x y a log =的图像( )

函数证明问题专题训练

函数证明问题专题训练 ⑴.代数论证问题 ⑴.关于函数性质的论证 ⑵.证明不等式 6.已知函数()f x 的定义域为R ,其导数()f x '满足0<()f x '<1.设a 是方程()f x =x 的根. (Ⅰ)当x >a 时,求证:()f x <x ; (Ⅱ)求证:|1()f x -2()f x |<|x 1-x 2|(x 1,x 2∈R ,x 1≠x 2); (Ⅲ)试举一个定义域为R 的函数()f x ,满足0<()f x '<1,且()f x '不为常数. 解:(Ⅰ)令g (x )=f (x ) -x ,则g`(x )=f `(x ) -1<0.故g (x )为减函数,又因为g (a )=f(a )-a =0,所以当x >a 时,g (x )<g (a )=0,所以f (x ) -x <0,即()f x x f ,求证: )(x f 在],0[π上单调递减; 2.已知函数()f x 的定义域为R ,其导数()f x '满足0<()f x '<1.设a 是方程 ()f x =x 的根. ⑴.当x >a 时,求证:()f x <x ; ⑵.求证:|1()f x -2()f x |<|x 1-x 2|(x 1,x 2∈R ,x 1≠x 2); ⑶.试举一个定义域为R 的函数()f x ,满足0<()f x '<1,且()f x '不为

数值分析编程及运行结果(高斯顺序消元法)

高斯消元法1.程序: clear format rat A=input('输入增广矩阵A=') [m,n]=size(A); for i=1:(m-1) numb=int2str(i); disp(['第',numb,'次消元后的增广矩阵']) for j=(i+1):m A(j,:)=A(j,:)-A(i,:)*A(j,i)/A(i,i); end A end %回代过程 disp('回代求解') x(m)=A(m,n)/A(m,m); for i=(m-1):-1:1 x(i)=(A(i,n)-A(i,i+1:m)*x(i+1:m)')/A(i,i); end x

2.运行结果:

高斯选列主元消元法1.程序: clear format rat A=input('输入增广矩阵A=') [m,n]=size(A); for i=1:(m-1) numb=int2str(i); disp(['第',numb,'次选列主元后的增广矩阵']) temp=max(abs(A(i:m,i))); [a,b]=find(abs(A(i:m,i))==temp); tempo=A(a(1)+i-1,:); A(a(1)+i-1,:)=A(i,:); A(i,:)=tempo disp(['第',numb,'次消元后的增广矩阵']) for j=(i+1):m A(j,:)=A(j,:)-A(i,:)*A(j,i)/A(i,i); end A end %回代过程 disp('回代求解')

x(m)=A(m,n)/A(m,m); for i=(m-1):-1:1 x(i)=(A(i,n)-A(i,i+1:m)*x(i+1:m)')/A(i,i); end x 2.运行结果:

高中函数图像大全

指数函数 概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。 注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。 ⒉指数函数的定义仅是形式定义。 指数函数的图像与性质: 规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶 性。 2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴; 当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。 在y轴右边“底大图高”;在y轴左边“底大图低”。

3.四字口诀:“大增小减”。即:当a >1时,图像在R 上是增函数;当0<a <1时,图像在R 上是减函数。 4. 指数函数既不是奇函数也不是偶函数。 比较幂式大小的方法: 1. 当底数相同时,则利用指数函数的单调性进行比较; 2. 当底数中含有字母时要注意分类讨论; 3. 当底数不同,指数也不同时,则需要引入中间量进行比较; 4. 对多个数进行比较,可用0或1作为中间量进行比较 底数的平移: 在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。 在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。 对数函数 1.对数函数的概念 由于指数函数y=a x 在定义域(-∞,+∞)上是单调函数,所以它存在反函数, 我们把指数函数y=a x (a >0,a ≠1)的反函数称为对数函数,并记为y=log a x(a >0,a ≠1). 因为指数函数y=a x 的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=log a x 的定义域为(0,+∞),值域为(-∞,+∞). 2.对数函数的图像与性质对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x . 据此即可以画出对数函数的图像,并推知它的性质. 为了研究对数函数y=log a x(a >0,a ≠1)的性质,我们在同一直角坐标系中作出函数 y=log 2x ,y=log 10x ,y=log 10x,y=log 2 1x,y=log 10 1x 的草图