CFD计算流体动力学入门教程选择

CFD计算流体动力学入门教程选择
CFD计算流体动力学入门教程选择

非流体、热动专业CFD新手入门

首先掌握流体力学基本原理,丁祖荣主编的流体力学这本教材,仔细看两天,这样就会知道gambit中为什么会有边界层设置,边界层厚度如何设置;雷诺系数如何确定来判断层流与湍流;马赫数如何确定来判断流体是可压还是不可压,这样就能解决Fluent,是基于压力还是基于密度求解。能够对实际中一些看似简单的流体现象有深刻的认识,能够准确判断是定常流还是非定常流。

CFD网格划分

网格划分对于初学者所接触案例,其实非常简单。但实际工程中,大项目,特别涉及到整套工程,如环保,飞机,网格质量与数量都要求非常高,往往服务器类的PC才能解决问题,所谓的内存128G,CPU四核主频3.0以上。初学者,简单的管道,一般的机器还是没问题。有机械三维软件基础的,对于gambit建模就非常容易了。往往大项目,复杂的结构gambit 建模显得力不从心,所以对于流体工作者来说,学习三维软件对于建模有莫大的帮助,如Proe。

1.1Gambit介绍

网格的划分使用Gambit软件,首先要启动Gambit,在Dos下输入Gambit,文件名如果已经存在,要加上参数-old。

一.Gambit的操作界面

图1 Gambit操作界面

如图1所示,Gambit用户界面可分为7个部分,分别为:菜单栏、视图、命令面板、命令显示窗、命令解释窗、命令输入窗和视图控制面板。

文件栏

文件栏位于操作界面的上方,其最常用的功能就是File命令下的New、Open、Save、Save as和Export等命令。这些命令的使用和一般的软件一样。Gambit可识别的文件后缀为.dbs,而要将Gambit中建立的网格模型调入Fluent使用,则需要将其输出为.msh文件

(file/export)。

视图和视图控制面板

Gambit中可显示四个视图,以便于建立三维模型。同时我们也可以只显示一个视图。视图的坐标轴由视图控制面板来决定。图2显示的是视图控制面板。

图2 视图控制面板

视图控制面板中的命令可分为两个部分,上面的一排四个图标表示的是四个视图,当激活视图图标时,视图控制面板中下方十个命令才会作用于该视图。

视图控制面板中常用的命令有:

全图显示、选择显示视图、选择视图坐标、选择显示项目、

渲染方式。

同时,我们还可以使用鼠标来控制视图中的模型显示。其中按住左键拖曳鼠标可以旋转视图,按住中键拖动鼠标则可以在视图中移动物体,按住右键上下拖动鼠标可以缩放视图中的物体。

命令面板

命令面板是Gambit的核心部分,通过命令面板上的命令图标,我们可以完成绝大部分网格划分的工作。

图3显示的就是Gambit的命令面板。

图3 Gambit的命令面板

从命令面板中我们就可以看出,网格划分的工作可分为三个步骤:一是建立模型,二是划分网格,三是定义边界。这三个部分分别对应着Operation区域中的前三个命令按钮Geometry(几何体)、mesh(网格)和Zones(区域)。Operation中的第四个命令按钮Tools 则是用来定义视图中的坐标系统,一般取默认值。命令面板中的各个按钮的含义和使用方法将在以后的具体例子中介绍。

命令显示窗和命令输入栏

命令显示窗和命令输入栏位于Gambit的左下方(如图4所示)。

图4命令显示窗和命令输入栏

命令显示窗中记录了每一步操作的命令和结果,而命令输入栏则可以直接输入命令,其效果和单击命令按钮一样。

命令解释窗

图5显示的是位于命令显示窗左方的命令解释窗,当我们将鼠标放在命令面板中任意一个按钮的上面,Description窗口中将出现对该命令的解释。

图5 命令解释窗

1.2二维建模

划分网格的第一步就是要建立模型。在命令面板中单击Geometry按钮,进入几何体面板。

图6显示了几何体面板中的命令按钮。

图6

图6中从左往右依次是创建点、线、面、体和组的命令。

对于二维网格的建立,一般要遵循从点到线,再从线到面的原则。

以二维轴对称单孔喷嘴的网格划分为例介绍二维网格的生成。]

首先要确定问题的计算域。

计算域的确立

图1是一个二维轴对称单孔喷嘴射流问题的计算区域。由于Fulent的边界提法比较粗糙,多为一类边界条件,因此建议在确定计算域时,可以适当加大计算范围。从图中我们可以看出,计算区域为4D*12D,其中在喷嘴的左边取了2D的计算区域,就是为了减小边界

条件对计算的影响。

图1 计算域的确定

对于上述的计算域,我们在建立计算模型时按照点、线、面的顺序来进行。

创建点(vertex)

单击命令面板中的Vertex按钮,进入Vertex面板(见图7)

图7 Vertex命令面板

单击Vertex Create按钮,在Create Real Vertex对话框中输入点的坐标,再单击Apply

按钮,就可以创建点。计算出计算域的各个顶点的坐标,依次创建这些顶点(见图8)。

图8 点的创建

在Gambit中点的创建方式有四种:根据坐标创建、在线上创建、在面上创建和在体上创建。我们可以根据不同的需要来选择不

同的创建方式(见图9)。

图9

Vertex中常用的命令还有:Move/Copy、Undo和Del。

Move/Copy命令

图9显示的是Move/Copy Vertex对话框。

图10

当我们要复制或移动一个点时,首先要选择需要作用的点。在命令面板中单击Vertices 右边的输入栏,输入栏以高亮黄色显示,表明可以选择需要的点。

在Gambit中选择一个对象的方法有两种:

1.按住Shift键,用鼠标左键单击选择的对象,该对象被选中,以红色显示。

2.单击输入栏右方的向上箭头,就会出现一个对话框,从对话框中可以选择需要的点的名称(见图11)。因此为了便于记忆,建议在创建对象的时候要起一个便于记住的名字。

图11

同时,Gambit还为我们提供了三种不同的坐标系,即直角坐标系、柱坐标和球坐标。在命令面板的坐标类型中,可以选择不同的坐标系。

●Undo

Undo命令可以消除上一步操作的内容,但需要注意的是,在Gambit中只有Undo命令而没有Redo命令。

●Del

Del命令用来删除一些误操作或不需要的对象。单击Del按钮,在视图中选择需要删除的对象,再单击Apply按钮即可。

线的创建(Line)

在命令面板中单击Edge按钮,就可以进行线的创建和编辑(见图12)。

在Gambit中,最常用的是直线的创建。

在Edge命令面板中单击Create Straight Edge按钮,在视图中选择需要连成线的点,单击Apply按钮即可(见图13)。这时视图中的线段是以黄色显示。当这些线段组成一个面时,将以蓝色显示。

图12

图13

除了创建直线外,Gambit还可以创建其他的一些线段,如圆弧、圆、倒角、椭圆等(见图14)

图14

Edge命令中常用的还有合并、分离等命令,即可以把两条线段合成一条,

也可以将一条线段分成两条,这些可以为面的创建和网格划分提供方便。因为面的创建需要一个封闭的曲面。

面(Face)的创建

面的创建工作十分简单,只须选择组成该面的线,单击Apply按钮即可(见图15)。需要注意的是这些线必须是封闭的,同时我们要创建一个二维的网格模型,就必须创建一个面,只有线是不行的。同样的道理,在创建三维的网格模型的时候,就必须创建体。

图15

在面的创建中,有一个布尔运算的操作,可以使我们创建不规则形状的面(见图16)。布尔运算包括三种方式:加、减、交。

图16

2.网格的划分

在命令面板中单击Mesh按钮,就可以进入网格划分命令面板。在Gambit中,我们可以分别针对

边界层、边、面、体和组划分网格。图17

所示的五个按钮分别对应着这五个命令。

图17

2.1边界层网格的创建

在命令面板中单击按钮,即可进入边界层网格创建(见图18)。

图18

边界层网格的创建需要输入四组参数,分别是第一个网格点距边界的距离(First Row),网格的比例因子(Growth Factor),边界层网格点数(Rows,垂直边界方向)以及边界层厚度(Depth)。这四个参数中只要任意输入三组参数值即可创建边界层网格。

同时,我们还可以选择边界层网格创建的形式。在命令面板的Transition Pattern区域,系统给我们提供了四种创建方式(见图19)。

a) 1:1b) 4:2

c) 3:1d) 5:1

图19

2.1.2创建一个边界层网格

以上述二维轴对称圆孔射流的计算模型为例,介绍边界层网格的生成。

1.单击Mesh按钮,选择Boundary layer选项,进入边界层网格创建命令面板。

2.按住Shift按钮,用鼠标左键单击图形中的线段1,选择其为创建对象。

3.输入参数值为:First Row:0.05,Growth Factor:1.01,Rows:10,选择创建形式为1:1,单击Apply按钮完成创建工作(见图20)。

2.2.2创建边上的网格点数

当我们划分的网格需要在局部加密或者划分不均匀网格时,我们首先要定义边上的网格点的数目和分布情况。

边上的网格点的分布可分为两种情况,一种是单调递增或单调递减,一种是中间密(疏)两边疏(密)。下面依然结合实例介绍边上网格点的创建。

1.单击命令面板中的按钮,进入Edge网格创建面板(见图21)。

图21

2.在图13中选择线段2。

3.在命令面板中单击Double Side按钮,设置Radio1和Radio2为1.05。

4.在命令面板中单击Interval Size按钮,选择Interval Count选项。

5.在Interval Count按钮的左边输入参数值为20。

6.单击Apply按钮,观察视图中边上的网格点的生成(见图22)。

tu

7.选择视图中的线段3,取消对Double Side按钮的选择,设置Radio为1.01,Interval Count为80,观察视图中网格点的分布情况。视图中选中线段上的红色箭头代表了Edge 上网格点分布的变化趋势。如果Radio大于1,则沿箭头方向网格点的分布变疏,小于1,则沿箭头方向网格点的分布变密。如果发现网格点的分布情况与预计的相反,可以采用两种方法解决:(1)按住Shift 按钮,在所选择的线段上单击鼠标中键改变箭头的方向;(2)在命令面板中单击Invert按钮,将Radio值变为其倒数值。

8.依次选择视图中的线段4、5、6、1,设置合理的网格点分布。

注意:在设置网格点分布的时候,一个封闭面的最后一条线段的网格点的分布可以通过系统自动计算得到。

2.2.3划分面的网格

Gambit对于二维面的网格的划分提供了三种网格类型:四边形、三角形和四边形/三角形混合,同时还提供了五种网格划分的方法。表1、2分别列举了五种网格划分的方法以及它们的适用类型。

表1

表2

下面仍然以二维轴对称自由射流的网格划分为例,来介绍各种网格的生成。

1.单击命令面板中的按钮(Mesh Face),进入面的网格创建命令面板(见图25)。

图25

2.选择视图中的面,系统中默认的网格点的类型为四边形结构网格。单击Apply按钮,观察网格的生成(见图26)。

图26

3.在命令面板的Type中选择网格类型为Pave,单击Apply按钮,观察网格的生成(见图27)。

图27

4.选择Element类型为Tri,单击Apply按钮,观察网格的生成(见图28)。

图28

(三)边界的定义

在Gambit中,我们可以先定义好各个边界条件的类型,具体的边界条件取值在Fluent中确定。

1.在菜单栏中选择Fluent/Fluent5。这个步骤是不可缺少的,它相当于给Gambit定义了一个环境变量,设置完之后,定义的边界条件类型和Fluent5中的边界类型相对应。

2.在命令面板中单击按钮,进入区域类型(Zone Type)定义面板。

3.单击按钮,出现Specify Boundary type对话框(见图29)。

图29

4.选择Entity类型为Edge。在视图中选择Edge1,在Name区域中输入Wall,选择Type 为Wall,即定义Edge1的边界条件为固壁条件,取名为Wall。

5.选择Edge2,定义边界条件为压力入流条件(Pressure Inlet),取名为Inflow。

6.选择Edge4,定义边界条件为压力出流条件(Pressure Outlet),取名为Outflow。

7.选择Edge5、6,定义边界条件为远场压力条件(Pressure Far-field),取名为Outflow1。

8.选择Edge3,定义边界条件为轴对称条件(Axis),取名为Axis。

(四)保存和输出

1.在菜单栏中选择File/Save as,在对话框中输入文件的路径和名称。(注意:在Gambit

中要往一个文本框中输入文字或数字,必须先将鼠标在文本框中单击选中文本框)2.选择File/Export/Mesh,输入文件的路径和名称。

1.3 三维建模

相对于二维建模而言,三维建模与二维建模的思路有着较大的区别。二维建模主要遵循点、线、面的原则,而三维建模则更象搭积木一样,由不同的三维基本造型拼凑而成,因此在建模的过程中更多的用到了布尔运算及Autocad等其他的建模辅助工具。

三视图的使用

在建立三维图形的时候,使用三视图有利于我们更好的理解图形。

图30显示的是Gambit的视图控制面板。

图30

在当前状况下,四个视图都是激活的(在Active栏中,显示红色),这时视图控制面板中的十个命令将同时作用于四个视图。

在创建三维图形之前,我们要做的第一项工作就是要将Gambit的四个视图设置为顶视图、前视图、左视图和透视图。

1.用鼠标单击Active右边的后三个视图,取消对它们的激活,激活取消后呈灰色(见图31)。

图31

2.用鼠标右键单击视图控制面板中的坐标按钮,弹出一组坐标系(见图32)。3.选择,则左上视图变成顶视图。如法炮制,设置其他视图(见图33)。4.单击控制面板中的,也可将视图设成三视图。

图32

图33

基本三维模型的建立

在Gambit控制面板中单击按钮,在Volume中用鼠标右键单击,弹出一组按钮(见图34),表示Gambit所能创建的基本三维几何体,主要有长方体、圆柱体等。

图34

布尔运算的基本概念

典型的布尔运算包括并、交、减。

并:将两个物体并成一个物体(两个物体的并集)

交:两个物体的交集

减:A物体减去B物体

下面用一个简单的例子来说明基本三维几何体的创建和布尔运算的运用

1.单击按钮,输入参数创建一个高60,半径6的圆柱体(见图35)。在Axial Loaction 栏中选取Positive X,使得圆柱体的法线指向x方向。在Gambit中创建的几何体,其基点都在坐标系的原点(见图36)。如果创建的几何体过大,在视图中无法显示全图,或者太小,

无法分辨,单击按钮即可。

计算流体动力学分析-CFD软件原理与应用_王福军--阅读笔记

计算流体动力学(简称CFD)是建立在经典流体动力学与数值计算方法基础之上的一门新型独立学科,通过计算机数值计算和图像显示的方法,在时间和空间上定量描述流场的数值解,从而达到对物理问题研究的目的。它兼有理论性和实践性的双重特点。 第一章节 流体流动现象大量存在于自然界及多种工程领域中,所有这些过程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。本章向读者介绍这些守恒定律的数学表达式,在此基础上提出数值求解这些基本方程的思想,阐述计算流体力学的任务及相关基础知识,最后简要介绍目前常用的计算流体动力学商用软件。 计算流体动力学((Computational Fluid Dynamics简称CFD)是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。CFD的基本思想可以归结为:把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值。 CFD可以看做是在流动基本方程(质量守恒方程、动量守恒方程、能量守恒方程)控制卜对流动的数值模拟。通过这种数值模拟,我们可以得到极其复杂问题的流场内各个位置上的基本物理量(如速度、压力、温度、浓度等)的分布,以及这些物理量随时间的变化情况,确定旋涡分布特性、空化特性及脱流区等。还可据此算出相关的其他物理量,如旋转式流体机械的转矩、水力损失和效率等。此外,与CAD联合,还可进行结构优化设计等。 1.1.2计算流体动力学的工作步骤 采用CFD的方法对流体流动进行数值模拟,通常包括如下步骤: (1)建立反映工程问题或物理问题本质的数学模型。具体地说就是要建立反映问题各个量之间关系的微分方程及相应的定解条件,这是数值模拟的出发点。没有正确完善的数 学模型,数值模拟就毫无意义。流体的基本控制方程通常包括质量守恒方程、动量守恒方程、能量守恒方程,以及这些方程相应的定解条件。 (2}}寻求高效率、高准确度的计算方法,即建立针对控制方程的数值离散化方法,如有限差分法、有限元法、有限体积法等。这里的计算方法不仅包括微分方程的离散化方法及求解方法,还包括贴体坐标的建立,边界条件的处理等。这些内容,可以说是c}}的核心。 (3})编制程序和进行计算。这部分工作包括计算网格划分、初始条件和边界条件的输入、控制参数的设定等。这是整个工作中花时间最多的部分。由于求解的问题比较复杂,比如Na}ier-Stakes方程就是一个讨,分复杂的非线性方程,数值求解方法在理论上不是绝对完善的,所以需要通过实验加以验证。正是从这个意义上讲.数值模拟又叫数值试验。应该指出,这部分工作不是轻而易举就可以完成的。 4})显示计算结果。计算结果一般通过图表等方式显示,这对检查和判断分析质量和结果有重要参考意义。 以上这些步骤构成了CFD数值模拟的全过程。其中数学模型的建立是理论

流体力学复习要点(计算公式)

D D y S x e P gh2 gh1 h2 h1 b L y C C D D y x P hc 第一章 绪论 单位质量力: m F f B m = 密度值: 3 m kg 1000=水ρ, 3 m kg 13600=水银ρ, 3 m kg 29.1=空气ρ 牛顿内摩擦定律:剪切力: dy du μ τ=, 内摩擦力:dy du A T μ= 动力粘度: ρυ μ= 完全气体状态方程:RT P =ρ 压缩系数: dp d 1dp dV 1ρρκ= -=V (N m 2 ) 膨胀系数:T T V V V d d 1d d 1ρρα - == (1/C ?或1/K) 第二章 流体静力学+ 流体平衡微分方程: 01;01;01=??-=??-=??- z p z y p Y x p X ρρρ 液体平衡全微分方程:)(zdz ydy xdx dp ++=ρ 液体静力学基本方程:C =+ +=g p z gh p p 0ρρ或 绝对压强、相对压强与真空度:a abs P P P +=;v a abs P P P P -=-= 压强单位换算:水银柱水柱mm 73610/9800012 ===m m N at 2/101325 1m N atm = 注: h g P P →→ρ ; P N at →→2m /98000乘以 2/98000m N P a = 平面上的静水总压力:(1)图算法 Sb P = 作用点e h y D +=α sin 1 ) () 2(32121h h h h L e ++= ρ 若01 =h ,则压强为三角形分布,3 2L e y D == ρ 注:①图算法适合于矩形平面;②计算静水压力首先绘制压强分布图, α 且用相对压强绘制。 (2)解析法 A gh A p P c c ρ== 作用点A y I y y C xc C D + = 矩形12 3 bL I xc = 圆形 64 4 d I xc π= 曲面上的静水总压力: x c x c x A gh A p P ρ==;gV P z ρ= 总压力z x P P P += 与水平面的夹角 x z P P arct an =θ 潜体和浮体的总压力: 0=x P 排浮gV F P z ρ== 第三章 流体动力学基础 质点加速度的表达式??? ? ? ? ??? ??+??+??+??=??+??+??+??=??+??+??+??=z u u y u u x u u t u a z u u y u u x u u t u a z u u y u u x u u t u a z z z y z x z z y z y y y x y y x z x y x x x x A Q V Q Q Q Q Q G A = === ? 断面平均流速重量流量质量流量体积流量g udA m ρρ 流体的运动微分方程: t z t y t x d du z p z d du y p Y d du x p X = ??-=??-=??- ρρρ1;1;1 不可压缩流体的连续性微分方程 : 0z u y u x u z y x =??+??+?? 恒定元流的连续性方程: dQ A A ==2211d u d u 恒定总流的连续性方程:Q A A ==2211νν 无粘性流体元流伯努利方程:g 2u g p z g 2u g p z 2 2 222 111++=++ρρ 粘性流体元流伯努利方程: w 2 2222111'h g 2u g p z g 2u g p z +++=++ρρ

高等流体力学重点

1.流体的连续介质模型:研究流体的宏观运动,在远远大于分子运动尺度的范围里考察流体运动,而不考虑个别分子的行为,因此我们可以把流体视为连续介质。 它有如下性质: (1)流体是连续分布的物质,它可以无限分割为具有均布质量的宏观微元体。 (2)不发生化学反应和离解等非平衡热力学过程的运动流体中,微元体内流体状态服 从热力学关系 (3)除了特殊面外,流体的力学和热力学状态参数在时空中是连续分布的,并且通常 认为是无限可微的 2.应力:有限体的微元面积上单位面积的表面力称为表面力的局部强度,又称为应力,定义如下:=n T A F A δδδlim 0→ 3.流体的界面性质:微元界面两侧的流体的速度和温度相等,应力向量的大小相等.方向相反或应力分量相等。 4.流体具有易流行和压缩性。 5.应力张量具有对称性。 6.欧拉描述法:在任意指定的时间逐点描绘当地的运动特征量(如速度、加速度)及其它的物理量的分布(如压力、密度等)。 7.拉格朗日描述法:从某个时刻开始跟踪质点的位置、速度、加速度和物理参数的变化,这种方法是离散质点的运动描述法称为拉格朗日描述法。 8.流线:速度场的向量线,该曲线上的任意一点的切向量与当地的的速度向量重合。 迹线:流体质点点的运动迹象。 差别:迹线是同一质点在不同时刻的位移曲线。 流线是同一时刻、不同质点连接起来的速度场向量线。 流线微分方程:ω dz v dy u dx == 迹线微分方程:t x U i i ??= 9.质点加速度:质点速度向量随时间的变化率。 U U t U a )(??+??= 质点加速度=速度的局部导数+速度的迁移导数。 物理量的质点导数=物理量的局部导数+物理量的对流导数。

《计算流体动力学分析》学习报告

《计算流体动力学分析》学习报告 计算流体力学基础: 本章主要讲解流体动力学的核心思想以及流体动力学的控制方程。 1、计算流体动力学(Computational Fluid Dynamic )基本思想:把原来在时间和空间上的连续的物理量,用一系列离散点上的变量值来代替,通过一定的原则和方式建立变量之间的代数方程式,求解之后获得变量的近似值。 2、CFD 控制方程: 质量守恒方程 0)·=?+??u t ρρ( 动量守恒方程(Navier-Stokes 方程) Fz z y x z u w div t w F z y x y u v div t v F z y x x u u div t u zz zx zx y zy yy xy x zx yx xx +??+??+??+??-=+??+??+??+??+??-=+??+??+??+??+??-=+??τττρρρτττρρρτττρρρ)()()()()()( 能量守恒方程 T p S gradT c k div T u div t +=+??)()(T ( ρρ) S T 为粘性耗散项。 方程含有u ,v ,w ,p ,T 和ρ六个未知量,所以还需要一个方程组,才能使其封闭,而这个方程组就是联系P 和ρ的状态方程组:P=(ρ,T )。 组分质量守恒方程(在一个系统中,可能存在质的交换,或者存在化学组分时使用。) ()s s s s S c grad D div c u div t +=+??)()(c (s ρρρ ) 为便于对控制方程进行计算和分析,对CFD 控制方程写成通用格式: ()S z z y y x x z w y v x u t S grad div u div t +??Γ??+??Γ??+??Γ??=??+??+??+??+Γ=+??)()()()()()())()(φφφφρφρφρρφφφρρφ 依次为瞬态项,对流项,扩散项和源项。 3、湍流控制方程 三维的N-S 方程无论对于层流还是湍流都是是使用的,但由于直接求解三维瞬态的控制方程,对计算机的内存和速度要求很高,因此在工程上广为采用的方法是对瞬态的N-S 方程进行实践平均处理,同时补充反应湍流特性的其他方程,例如湍动能方程以及湍流耗散率方程

计算流体力学教案

计算流体力学教案 Teaching plan of computational fluid mechanics

计算流体力学教案 前言:本文档根据题材书写内容要求展开,具有实践指导意义,适用于组织或个人。便于学习和使用,本文档下载后内容可按需编辑修改及打印。 一、流体地基本特征 1.物质地三态 在地球上,物质存在地主要形式有:固体、液体和气体。 流体和固体地区别:从力学分析地意义上看,在于它们对外力抵抗地能力不同。 固体:既能承受压力,也能承受拉力与抵抗拉伸变形。 流体:只能承受压力,一般不能承受拉力与抵抗拉伸变形。 液体和气体地区别:气体易于压缩;而液体难于压缩; 液体有一定地体积,存在一个自由液面;气体能充满任意形状地容器,无一定地体积,不存在自由液面。 液体和气体地共同点:两者均具有易流动性,即在任何 微小切应力作用下都会发生变形或流动,故二者统称为流体。 2.流体地连续介质模型

微观:流体是由大量做无规则运动地分子组成地,分子之间存在空隙,但在标准状况下,1cm3液体中含有3.3×1022个左右地分子,相邻分子间地距离约为3.1×10-8cm。1cm3气体中含有2.7×1019个左右地分子,相邻分子间地距离约为3.2×10-7cm。 宏观:考虑宏观特性,在流动空间和时间上所采用地一切特征尺度和特征时间都比分子距离和分子碰撞时间大得多。 (1)概念 连续介质(continuum/continuous medium):质点连续充满所占空间地流体或固体。 连续介质模型(continuum continuous medium model):把流体视为没有间隙地充满它所占据地整个空间地一种连续介质,且其所有地物理量都是空间坐标和时间地连续函数地一种假设模型:u =u(t,x,y,z)。 (2)优点 排除了分子运动地复杂性。物理量作为时空连续函数,则可以利用连续函数这一数学工具来研究问题。 3.流体地分类

流体力学计算公式

C3.6.2 达西摩擦因子 为了确定λ与Re 的关系,人们作了大量实验和理论研究,下面介绍有代表性的结果。 1.尼古拉兹实验 尼古拉兹(J.Nikuradse,1932)分析了达西的圆管沿程阻力实验数据后,发现壁面粗糙度对λ的影响很大,决定用人工粗糙度方法实现对粗糙度的控制。他用当地黄砂砂粒经筛选后分类均匀粘贴在管内壁上,相对粗糙度ε/d 从1/30—1/1014分6种,测得λ与Re 的关系,得到尼古拉兹图(图C3.6.1)。 2. 常用计算公式 从尼古拉兹图中看到在不同Re 数和ε/d 值的区域,λ有不同的变化规律。 图C3.6.1

(1)层流区 由泊肃叶定律推导的沿程水头损失(C3.4.10)式可得 代入达西公式(C3.6.3)式,可得层流区λ的解析式 上式表明层流区λ与管壁粗糙度无关,写成常用对数形式为 上式在双对数坐标系中是一条直线,与尼古拉兹图吻合。 (2)过渡区 该区是层流向湍流的转捩区(2000ε)时(图C3.6.2)摩擦因子同壁面粗糙度无关,称为湍流光滑管区。 布拉修斯(P.Blasius,1911)运用1/ 7次指数律速度分布式,结合实验数据导出经验公式: 上式称为布拉修斯公式,适用范围为4000

CFD—计算流体动力学软件介绍

CFD 流体动力学软件介绍 CFD—计算流体动力学,因历史原因,国一直称之为计算流体力学。其结构为: 提出问题—流动性质(流、外流;层流、湍流;单相流、多相流;可压、不可压等等),流体属性(牛顿流体:液体、单组分气体、多组分气体、化学反应气体;非牛顿流体) 分析问题—建模—N-S方程(连续性假设),Boltzmann方程(稀薄气体流动),各类本构方程与封闭模型。 解决问题—差分格式的构造/选择,程序的具体编写/软件的选用,后处理的完成。 成果说明—形成文字,提交报告,赚取应得的回报。 CFD实现过程: 1.建模——物理空间到计算空间的映射。 主要软件: 二维: AutoCAD: 大家不要小看它,非常有用。一般的网格生成软件建模都是它这个思路,很少有参数化建模的。相比之下AutoCAD的优点在于精度高,草图处理灵活。可以这样说,任何一个网格生成软件自带的建模工具都是非参数化的,而对于非参数化建模来说,AutoCAD应该说是最好的,毕竟它发展了很多很多年! 三维: CATIA:航空航天界CAD的老大,法国人的东西,NB,实体建模厉害,曲面建模独步武林。本身可以生成有限元网格,前几天又发布了支持ICEM-CFD的插件ICEM-CFD CAA V5。有了它和ICEM-CFD,可以做任何建模与网格划分! UG:总觉得EDS脑袋进水了,收了I-deas这么久了,也才发布个几百M的UG NX 2.0,还被大家争论来争论去说它如何的不好用!其实,软件本身不错,大公司用得也多,可是就这么打市场,早晚是走下坡路。按CAD建模的功能来说它排不上第一,也不能屈居第二,尤其是加上了I-DEAS更是如虎添翼。现

流体力学公式总结

工程流体力学公式总结 第二章流体得主要物理性质 ?流体得可压缩性计算、牛顿内摩擦定律得计算、粘度得三种表示方法。1.密度ρ= m/V 2.重度γ= G /V 3.流体得密度与重度有以下得关系:γ= ρg或ρ= γ/ g 4.密度得倒数称为比体积,以υ表示υ= 1/ ρ= V/m 5.流体得相对密度:d = γ流/γ水= ρ流/ρ水 6.热膨胀性 7.压缩性、体积压缩率κ 8.体积模量 9.流体层接触面上得内摩擦力 10.单位面积上得内摩擦力(切应力)(牛顿内摩擦定律) 11.、动力粘度μ: 12.运动粘度ν:ν=μ/ρ 13.恩氏粘度°E:°E = t 1 /t 2 第三章流体静力学 ?重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体得压强计算、流体静压力得计算(压力体)。 1.常见得质量力: 重力ΔW = Δmg、 直线运动惯性力ΔFI =Δm·a 离心惯性力ΔFR =Δm·rω2、 2.质量力为F。:F= m·am= m(fxi+f yj+fzk) am =F/m = f xi+f yj+fzk为单位质量力,在数值上就等于加速度 实例:重力场中得流体只受到地球引力得作用,取z轴铅垂向上,xoy为水平面,则单位质量力在x、y、z轴上得分量为 fx= 0,fy=0 , fz=-mg/m= -g式中负号表示重力加速度g与坐标轴z方向相反 3流体静压强不就是矢量,而就是标量,仅就是坐标得连续函数。即:p=p(x,y,z),由此得静压强得全微分为: 4.欧拉平衡微分方程式 单位质量流体得力平衡方程为:

计算流体力学课后题作业

课后习题 第一章 1.计算流体动力学的基本任务是什么 计算流体动力学是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。 2.什么叫控制方程?常用的控制方程有哪几个?各用在什么场合? 流体流动要受物理守恒定律的支配,基本的守恒定律包括:质量守恒定律、动量守恒定律、能量守恒定律。如果流动包含有不同组分的混合或相互作用,系统还要遵守组分守恒定律。如果流动处于湍流状态,系统还要遵守附加的湍流输运方程。控制方程是这些守恒定律的数学描述。 常用的控制方程有质量守恒方程、动量守恒方程、能量守恒方程、组分质量守恒方程。质量守恒方程和动量守恒方程任何流动问题都必须满足,能量守恒定律是包含有热交换的流动系统必须满足的基本定律。组分质量守恒方程,在一个特定的系统中,可能存在质的交换,或者存在多种化学组分,每种组分都需要遵守组分质量守恒定律。 4.研究控制方程通用形式的意义何在?请分析控制方程通用形式中各项的意义。 建立控制方程通用形式是为了便于对各控制方程进行分析,并用同一程序对各控制方程进行求解。

各项依次为瞬态项、对流项、扩散项、源项。 6.CFD商用软件与用户自行设计的CFD程序相比,各有何优势?常用的商用CFD软件有哪些?特点如何? 由于CFD的复杂性及计算机软硬件条件的多样性,用户各自的应用程序往往缺乏通用性。 CFD商用软件的特点是 功能比较全面、适用性强。 具有比较易用的前后处理系统和其他CAD及CFD软件的接口能力,便于用户快速完成造型、网格划分等工作。 具有比较完备的容错机制和操作界面,稳定性高。 可在多种计算机、多种操作系统,包括并行环境下运行。 常用的商用CFD软件有PHOENICS、CFX、SRAR-CD、FIDAP、FLUENT。PHOENICS除了通用CFD软件应该拥有的功能外,PHOENICS软件有自己独特的功能:开放性、CAD接口、运动物体功能、多种模型选择、双重算法选择、多模块选择。 CFX除了可以使用有限体积法外,还采用基于有限元的有限体积法。用于模拟流体流动、传热、多相流、化学反应、燃烧问题。其优势在于处理流动物理现象简单而几何形状复杂的问题。 SRAR-CD基于有限体积法,适用于不可压流体和可压流的计算、热力学的计算及非牛顿流的计算。它具有前处理器、求解器、后处理器三大模块,以良好的可视化用户界面把建模、求解及后处理与全部的物理模型和算法结合在一个软件包中。

CFD计算流体动力学入门教程选择

非流体、热动专业CFD新手入门 首先掌握流体力学基本原理,丁祖荣主编的流体力学这本教材,仔细看两天,这样就会知道gambit中为什么会有边界层设置,边界层厚度如何设置;雷诺系数如何确定来判断层流与湍流;马赫数如何确定来判断流体是可压还是不可压,这样就能解决Fluent,是基于压力还是基于密度求解。能够对实际中一些看似简单的流体现象有深刻的认识,能够准确判断是定常流还是非定常流。 CFD网格划分 网格划分对于初学者所接触案例,其实非常简单。但实际工程中,大项目,特别涉及到整套工程,如环保,飞机,网格质量与数量都要求非常高,往往服务器类的PC才能解决问题,所谓的内存128G,CPU四核主频3.0以上。初学者,简单的管道,一般的机器还是没问题。有机械三维软件基础的,对于gambit建模就非常容易了。往往大项目,复杂的结构gambit 建模显得力不从心,所以对于流体工作者来说,学习三维软件对于建模有莫大的帮助,如Proe。 1.1Gambit介绍 网格的划分使用Gambit软件,首先要启动Gambit,在Dos下输入Gambit,文件名如果已经存在,要加上参数-old。 一.Gambit的操作界面 图1 Gambit操作界面 如图1所示,Gambit用户界面可分为7个部分,分别为:菜单栏、视图、命令面板、命令显示窗、命令解释窗、命令输入窗和视图控制面板。 文件栏 文件栏位于操作界面的上方,其最常用的功能就是File命令下的New、Open、Save、Save as和Export等命令。这些命令的使用和一般的软件一样。Gambit可识别的文件后缀为.dbs,而要将Gambit中建立的网格模型调入Fluent使用,则需要将其输出为.msh文件

计算流体力学常用数值方法简介[1]

计算流体力学常用数值方法简介 李志印 熊小辉 吴家鸣 (华南理工大学交通学院) 关键词 计算流体力学 数值计算 一 前 言 任何流体运动的动力学特征都是由质量守恒、动量守恒和能量守恒定律所确定的,这些基本定律可以由流体流动的控制方程组来描述。利用数值方法通过计算机求解描述流体运动的控制方程,揭示流体运动的物理规律,研究流体运动的时一空物理特征,这样的学科称为计算流体力学。 计算流体力学是一门由多领域交叉而形成的一门应用基础学科,它涉及流体力学理论、计算机技术、偏微分方程的数学理论、数值方法等学科。一般认为计算流体力学是从20世纪60年代中后期逐步发展起来的,大致经历了四个发展阶段:无粘性线性、无粘性非线性、雷诺平均的N-S方程以及完全的N-S方程。随着计算机技术、网络技术、计算方法和后处理技术的迅速发展,利用计算流体力学解决流动问题的能力越来越高,现在许多复杂的流动问题可以通过数值计算手段进行分析并给出相应的结果。 经过40年来的发展,计算流体力学己经成为一种有力的数值实验与设计手段,在许多工业领域如航天航空、汽车、船舶等部门解决了大量的工程设计实际问题,其中在航天航空领域所取得的成绩尤为显著。现在人们已经可以利用计算流体力学方法来设计飞机的外形,确定其气动载荷,从而有效地提高了设计效率,减少了风洞试验次数,大大地降低了设计成本。此外,计算流体力学也己经大量应用于大气、生态环境、车辆工程、船舶工程、传热以及工业中的化学反应等各个领域,显示了计算流体力学强大的生命力。 随着计算机技术的发展和所需要解决的工程问题的复杂性的增加,计算流体力学也己经发展成为以数值手段求解流体力学物理模型、分析其流动机理为主线,包括计算机技术、计算方法、网格技术和可视化后处理技术等多种技术的综合体。目前计算流体力学主要向二个方向发展:一方面是研究流动非定常稳定性以及湍流流动机理,开展高精度、高分辩率的计算方法和并行算法等的流动机理与算法研究;另一方面是将计算流体力学直接应用于模拟各种实际流动,解决工业生产中的各种问题。 二 计算流体力学常用数值方法 流体力学数值方法有很多种,其数学原理各不相同,但有二点是所有方法都具备的,即离散化和代数化。总的来说其基本思想是:将原来连续的求解区域划分成网格或单元子区

高等流体力学试题

1.简述流体力学有哪些研究方法和优缺点? 实验方法就是运用模型实验理论设计试验装置和流程,直接观察流动现象,测量流体的流动参数并加以分析和处理,然后从中得到流动规律。实验研究方法的优点:能够直接解决工程实际中较为复杂的流动问题,能够根据观察到的流动现象,发现新问题和新的原理,所得的结果可以作为检验其他方法的正确性和准确性。实验研究方法的缺点主要是对于不同的流动需要进行不同的实验,实验结果的普遍性稍差。 理论方法就是根据流动的物理模型和物理定律建立描写流体运动规律的封闭方程组以及相应初始条件和边界条件,运 用数学方法准确或近似地求解流场,揭示流动规律。理论方法的优点是:所得到的流动方程的解是精确解,可以明确地给出各个流动参数之间的函数关系。解析方法的缺点是:数学上的困难比较大,只能对少数比较简单的流动给出解析解,所能得到的解析解的数目是非常有限的。 数值方法要将流场按照一定的规则离散成若干个计算点,即网格节点;然后,将流动方程转化为关于各个节点上流动 参数的代数方程;最后,求解出各个节点上的流动参数。数值方法的优点是:可以求解解析方法无能为力的复杂流动。数值方法的缺点是:对于复杂而又缺乏完整数学模型的流动仍然无能为力,其结果仍然需要与实验研究结果进行对比和验证。 2.写出静止流体中的应力张量,解释其中非0项的意义. 无粘流体或静止流场中,由于不存在切向应力,即p ij =0(i ≠j ),此时有 P =00000 0xx yy zz p p p ??????????=000000p p p -????-????-??=-p 00000011????1?????? = -p I 式中I 为单位张量,p 为流体静压力。 流体力学中,常将应力张量表示为 p =-+P I T (2-9) 式中p 为静压力或平均压力,由于其作用方向与应力定义的方向相反,所以取负值;T 称为偏应力张量,即 T =xx xy xz yx yy yz zx zy zz τττττττττ?????????? (2-10) 偏应力张量的分量与应力张量各分量的关系为:i =j 时,p ij 为法向应力,τii = p ij - p ;当i ≠j 时p ij 为粘性剪切应力,τij =p ij 。τii =0的流体称为非弹性流体或纯粘流体,τii ≠0的流体称为粘弹性流体。 3.分析可压缩(不可压缩)流体和可压缩(不可压缩)流动的关系. 当气体速度流动较小(马赫数小于0.3)时,其密度变化不大,或者说对气流速度的变化不十分敏感,气体的压缩性没有表现出来。因此,在处理工程实际问题时,可以把低速气流看成是不可压缩流动,把气体可以看作是不可压缩流体。而当气体以较大的速度流动时,其密度要发生明显的变化,则此时气体的流动必须看成是可压缩流动。 流场任一点处的流速v 与该点(当地)气体的声速c 的比值,叫做该点处气流的马赫数,用符号Ma 表示: Ma /v c v == (4-20) 当气流速度小于当地声速时,即Ma<1时,这种气流叫做亚声速气流;当气流速度大于当地声速时,即Ma>l 时,这种气流称为超声速气流;当气流速度等于当地声速时,即Ma=l 时,这种气流称为声速气流。以后将会看到,超声速气流和亚声速气流所遵循的规律有着本质的不同。 马赫数与气流的压缩性有着直接的联系。由式(4-11)可得 所以有 222Ma d ρv dv dv ρc v v =-=-。 (4-21) 当Ma≤0.3时,dρ/ρ≤0.09dv /v 。由此可见,当速度变化一倍时,气体的密度仅仅改变9%以下,一般可以不考虑密度的变化,即认为气流是不可压缩的。反之,当Ma>0.3时,气流必须看成是可压缩的。 4.试解释为什么有时候飞机飞过我们头顶之后才能听见飞机的声音. 5.试分析绝能等熵条件下截面积变化对气流参数(v ,p ,ρ,T )的影响.

计算流体力学过渡到编程的傻瓜入门教程

借宝地写几个小短文,介绍CFD的一些实际的入门知识。主要是因为这里支持Latex,写起来比较便。 CFD,计算流体力学,是一个挺难的学科,涉及流体力学、数值分析和计算机算法,还有计算机图形学的一些知识。尤其是有关偏微分程数值分析的东西,不是那么容易入门。大多数图书,片中数学原理而不重实际动手,因为作者都把读者当做已经掌握基础知识的科班学生了。所以数学基础不那么好的读者往往看得很吃力,看了还不知道怎么实现。本人当年虽说是学航天工程的,但是那时本科教育已经退步,基础的流体力学课被砍得只剩下一维气体动力学了,因此自学CFD的时候也是头晕眼花。不知道怎么实现,也很难找到教学代码——那时候网络还不发达,只在教研室的故纸堆里搜罗到一些完全没有注释,编程风格也不好的冗长代码,硬着头皮分析。后来网上淘到一些代码研读,结合书籍论文才慢慢入门。可以说中间没有老师教,后来赌博士为了混学分上过CFD专门课程,不过那时候我已经都掌握课堂上那些了。 回想自己入门艰辛,不免有一个想法——写点通俗易懂的CFD入门短文给师弟师妹们。本人不打算搞得很系统,而是希望能结合实际,阐明一些最基本的概念和手段,其中一些复杂的道理只是点到为止。目前也没有具体的计划,想到哪里写到哪里,因此可能会很零散。但是我争取让初学CFD 的人能够了解一些基本的东西,看过之后,会知道一个CFD代码怎么炼成的(这“炼”字好像很流行啊)。欢迎大家提出意见,这样我尽可能的可以追加一些修改和解释。

言归正传,第一部分,我打算介绍一个最基本的算例,一维激波管问题。说白了就是一根两端封闭的管子,中间有个隔板,隔板左边和右边的气体状态(密度、速度、压力)不一样,突然把隔板抽去,管子面的气体怎么运动。这是个一维问题,被称作黎曼间断问题,好像是黎曼最初研究双曲微分程的时候提出的一个问题,用一维无粘可压缩Euler程就可以描述了。 这里 这个程就是描述的气体密度、动量和能量随时间的变化()与它们各自的流量(密度流量,动量流量,能量流量)随空间变化()的关系。 在CFD常把这个程写成矢量形式 这里 进一步可以写成散度形式

流体力学计算公式

1、单位质量力:m F f B B = 2、流体的运动粘度:ρ μ=v (μ[动力]粘度,ρ密度) 3、压缩系数:dp d dp dV V ρρκ?=?-=11(κ的单位是N m 2)体积模量为压缩系数的倒数 4、体积膨胀系数:dT d dT dV V v ρρα?-=?=11(v α的单位是C K ?1,1) 5、牛顿内摩擦定律:为液体厚)为运动速度,以应力表示为y u dy du dy du A T (,μτμ== 6、静止液体某点压强:为该点到液面的距离)h gh p z z g p p ()(000ρρ+=-+= 7、静水总压力: )h (为受压面积,为受压面形心淹没深度为静水总压力,A p ghA A p p c ρ== 8、元流伯努利方程;'2221112w h g p z g u g p z ++=++ρρ('w h 为粘性流体元流单位重量流体由过流断面1-1运动至过流断面2-2的机械能损失,z 为某点的位置高度或位置水头,g p ρ为测压管高度或压强水头,g u ρ2是单位流体具有的动能,u gh g p p g u 22'=-=ρ,u gh C g p p g C u 22'=-=ρC 是修正系数,数值接近于1) 9、总流伯努利方程:w h g v g p z g v g p z +++=++222 221221111αραρ(α为修正系数通常取1) 10、文丘里流量计测管道流量:)21)(41()()(42 122211g d d d k h k g p z g p z k Q -=?=+-+=πμρρμ 11、沿程水头损失一般表达式:g v d l h f 22 λ=(l 为管长,d 为管径,v 为断面平均流速,g

高等流体力学

高等流体力学 第一章 流体力学的基本概念 连续介质:流体是由一个紧挨着一个的连续的质点所组成的,没有任何空隙的连续体,即所 谓的连续介质。 流体质点:是指微小体积内所有流体分子的总和。 欧拉法质点加速度:时变加速度与位变加速度和 z u u y u u x u u t u dt du a x z x y x x x x x ??+??+??+??== 质点的随体导数:质点携带的物理量随时间的变化率称为质点的随体导数,用dt d 表示。在欧拉法描述中的任意物理量Q 的质点随体导数表述如下: x k k Q u t Q dt dQ ??+??= 式中Q 可以是标量、矢量、张量。质点的随体导数公式对任意物理量都成立,故将质点的 随体导数的运算符号表示如下: x k k u t dt d ??+??= 其中 t ?? 称为局部随体导数,x k k u ??称为对流随体导数,即在欧拉法描述的流动中,物理 量的质点随体导数等于局部随体导数与对流随体导数之和。 体积分的随体导数:质点携带的物理量随时间的变化率称为质点的随体导数。则在由流体质点组成的流动体积V 中标量函数Φ(x, t )随时间的变化率就是体积分的随导函数。 由两部分组成①函数Φ 对时间的偏导数沿体积V 的积分,是由标量场的非恒定性引起的。②函数Φ通过表面S 的通量。由体积V 的改变引起的。 ()dV divv dt d dV v div t dS u dV t dV dt d v v n s v v ?? ? ???Φ+Φ=??????Φ+?Φ?=Φ+?Φ?=Φ??????????????()dV adivv dt da dV av div t a dS au dV t a adV dt d v v n s v v ?? ????+=??????+??=+??=?????????????? 变形率张量: 11ε 12ε13ε D ij = 21ε 22ε 23ε 31ε 32ε 33ε

高等流体力学考试大纲

《高等流体力学》考试大纲 一、考试性质 《高等流体力学》是我校相关专业博士入学专业基础课考试科目。 二、考试形式与试卷结构 1、答卷方式:闭卷,笔试 2、答题时间;180分钟 3、题型比例 概念20% 计算与应用80% 4、参考书目 《高等流体力学》高学平,天津大学出版社,2005. 《高等工程流体力学》张鸣远等,西安交通大学出版社,2006. 三、考试要点 1、流体力学的基本概念 连续介质、欧拉法质点加速度、质点随体导数、体积分的随体导数、变形率张量、旋转角速度、判断有旋流与无旋流、涡量与速度环量的关系、应力张量的概念(包括切应力的特性、压应力的特性)、牛顿流体的本构方程(本构方程的概念、切应力和法向应力与变形的关系)。 2、流体运动的基本方程 微分形式的连续方程的表达形式、不可压缩流体的确切定义、理解其含义。N-S方程的各种表示形式、流体的能量包括哪几种形式,

并对各种形式进行解释,写出单位质量流体能量的表达式、流体运动微分形式的基本方程组有哪些方程组成,通常有几个未知量,方程组是否封闭、对于不可压缩流体,如何求解速度场、压强场以及温度场,说明其求解步骤。 3、势流运动 势流运动控制方程及求解步骤;势流求解常用的方法有哪些。速度势函数与流函数;复势与复速度;恒定平面势流的解析方法有哪几种途径;保角变换法的思路。 4、粘性流体运动 基本方程及求解途径;黏性流体运动的基本性质;黏性流体运动的解析解(如两平行板间的层流、普阿塞流的流速分布的推导)、小雷诺数流动近似解的思路;边界层的概念;边界层厚度(名义厚度、位移厚度);边界层方程的相似性解的概念;边界层的分离现象。5、紊流运动 紊流的特征及分类;壁面剪切紊流的发生过程及紊流结构;时间平均法和系综平均法的概念。紊流运动方程—雷诺方程的推导思路,雷诺方程的形式及与N-S方程的区别,雷诺应力项的意义。紊流模型的用途,紊流模型通常有哪几类(零方程模型、一方程模型、二方程模型、其他模型);紊流动能k、能量耗散率ε。 6、涡旋运动 涡旋的运动学性质、涡旋运动的基本方程;涡旋的形成。

流体力学的计算公式

流体力学的计算公式 众所周知,锅炉之类的热力设备可以采用水封管作为限压装置。设备工作时,水封管内的水将设备与大气隔绝,使设备保持一定的压力。水封管内水的多少,即水封管内的实际水位的高低与设备汽压大小有关。汽压大,水位就高;汽压小,水位就低。当设备压力升至额定蒸汽压力时,水封管内的水位应该达到最高水位;而在设备压力稍微大于额定蒸汽压力时,水封管内的水应能立即被冲除掉,使设备内的蒸汽能够迅速得到排放。但是,水封管的内径必须足够大;以保证它的排汽能力大于设备的最大蒸发量,从而防止设备发生超压事故。《蒸汽锅炉安全技术监察规程》第132条规定:“对于额定蒸汽压力小于等于0.1MPa的锅炉可以采用静重式安全阀或水封式安全装置。水封装置的水封管内径不应小于25mm”。《小型和常压热水锅炉安全监察规定》第二十八条要求:“水封管的内径应当根据锅炉的额定容量和压力确定,且内径不得小于25毫米”。 但是,水封管的内径究竟应该根据什么样的公式去计算?这里没有具体加以规定。水封管的内径为何不能小于25mm?这里没有加以说明。 1 确定水封管内径的一种错误观点 有人说,可以按安全阀的排放量计算公式去间接确定水封管的内径。笔者认为这是不对的。理由如下: 其一,按流体力学,安全阀的局部阻碍因为其进出口呈直角型式,边壁是突变的,主流与边壁之间形成大尺度旋涡,蒸汽排放时能量损失很大;而水封管的边壁是渐变的,又不出现减速增压现象的部位,故蒸汽排放时的能量损失很小。其二,安全阀的出口之外肯定还有排汽管,它的排放量计算公式应该考虑这一额外的因素;而水封管却只相当于它的排汽管。其三,安全阀在排汽时,汽流还自始至终受到弹簧或者重锤施加的反方向作用力,能量损失非常之大;而水封管在排汽时却不会受到这样的反作用力,无此项能量损失。显然,安全阀排汽与水封管排汽区别太大,不能按安全阀排放量计算公式去确定水封管的内径。 2 用流体力学理论建立水封管内径计算方法 为了正确确定水封管的应有内径,我们有必要按流体力学的理论来分析一下水封管的流动阻力和能量损失。蒸汽流过水封管时的阻力损失ΔP等于水封管进口压力P1与出口压力P2之差。管道的阻力损失 ΔP=Pa(1) 式中λ—管道摩擦系数; d —管道内径,m; ρ—流体的密度,k g/m3; u —流体在管内的流速,m/s; L—平直管段的总长度,m; Σξ—管道中各种局部阻力之和。 管道的摩擦系数λ值取决于流体流动的雷诺数Re 和管壁的相对粗糙度。管壁的相对粗糙度等于管壁的绝对粗糙度(即管壁内凸起高度)K与管内径d之比。雷诺数Re =(2) 式中ν-流体运动粘滞系数,m2/s; 其他符号说明同上。 由于水封管进出口压差通常大于40000Pa,排汽时的流速都大于100m/s ,雷诺数Re 都大于80000000,所以蒸汽的流动状态为紊流流动,而且位于阻力平方区。在此区域内,摩擦阻力系数λ值仅取决于管壁的相对粗糙度,可以用尼古拉兹公式进行计算:λ=(3)

流体力学复习要点(计算公式)

第一章 绪论 单位质量力: m F f B m = 密度值: 3 m kg 1000=水ρ, 3 m kg 13600=水银ρ,3 m kg 29.1=空气 ρ 牛顿内摩擦定律:剪切力: dy du μ τ=, 内摩擦力:dy du A T μ= 动力粘度:ρυμ= 完全气体状态方程:RT P =ρ 压缩系数: dp d 1dp dV 1ρρκ= -=V (N m 2 ) 膨胀系数:T T V V V d d 1d d 1ρρα - == (1/C ?或1/K) 第二章 流体静力学+ 流体平衡微分方程: 01;01;01=??-=??-=??- z p z y p Y x p X ρρρ 液体平衡全微分方程:)(zdz ydy xdx dp ++=ρ 液体静力学基本方程:C =+ +=g p z gh p p 0ρρ或 绝对压强、相对压强与真空度:a abs P P P +=;v a abs P P P P -=-= 压强单位换算:水银柱水柱m m 73610/9800012===m m N at 2/1013251m N atm = 注: h g P P →→ρ ; P N at →→2m /98000乘以 2/98000m N P a = 平面上的静水总压力:(1)图算法 Sb P = 作用点e h y D += 1 ) () 2(32121h h h h L e ++= 3 2L e y D = = (2)解析法 A gh A p P c c ρ== 作用点A y I y y C xc C D + = 矩形 12 3 bL I xc = 圆形 64 4 d I xc π= 曲面上的静水总压力: x c x c x A gh A p P ρ==;gV P z ρ= 总压力 z x P P P += 与水平面的夹角 x z P P arctan =θ 潜体和浮体的总压力: 0=x P 排浮gV F P z ρ== 第三章 流体动力学基础 质点加速度的表达式??? ? ?? ?????+??+??+??=??+??+??+??= ??+??+??+??=z u u y u u x u u t u a z u u y u u x u u t u a z u u y u u x u u t u a z z z y z x z z y z y y y x y y x z x y x x x x A Q V Q Q Q Q Q G A = === ? 断面平均流速重量流量质量流量体积流量g udA m ρρ 流体的运动微分方程: t z t y t x d du z p z d du y p Y d du x p X = ??-=??-=??- ρρρ1;1;1 不可压缩流体的连续性微分方程 : 0z u y u x u z y x =??+??+?? 恒定元流的连续性方程: dQ A A ==2211d u d u 恒定总流的连续性方程:Q A A ==2211νν 无粘性流体元流伯努利方程:g 2u g p z g 2u g p z 2 2 222 111++=++ρρ 粘性流体元流伯努利方程: w 2 2222111'h g 2u g p z g 2u g p z +++=++ρρ

流体主要计算公式

1738年瑞士数学家:伯努利在名著《流体动力学》中提出了伯努利方程。 1755年欧拉在名著《流体运动的一般原理》中提出理想流体概念,并建立了理想流体基本方程和连续方程,从而提出了流体运动的解析方法,同时提出了速度势的概念。 1781年拉格朗日首先引进了流函数的概念。 1826年法国工程师纳维,1845年英国数学家、物理学家斯托克思提出了著名的N-S方程。 1876年雷诺发现了流体流动的两种流态:层流和紊流。 1858年亥姆霍兹指出了理想流体中旋涡的许多基本性质及旋涡运动理论,并于1887年提出了脱体绕流理论。 19世纪末,相似理论提出,实验和理论分析相结合。 1904年普朗特提出了边界层理论。 20世纪60年代以后,计算流体力学得到了迅速的发展。流体力学内涵不断地得到了充实与提高。 理想势流伯努利方程 (3-14) 或(3-15) 物理意义:在同一恒定不可压缩流体重力势流中,理想流体各点的总比能相等即在整个势流场中,伯努利常数C 均相等。 (应用条件:“”所示) 符号说明 二、沿流线的积分

1.只有重力作用的不可压缩恒定流,有 2.恒定流中流线与迹线重合: 沿流线(或元流)的能量方程: (3-16) 注意:积分常数C,在非粘性、不可压缩恒定流流动中,沿同一流线保持不变。一般不同流线各不相同(有旋流)。 (应用条件:“”所示,可以是有旋流) 流速势函数(势函数)观看录像>> ?存在条件:不可压缩无旋流,即或 必要条件存在全微分d 直角坐标 (3-19) 式中:——无旋运动的流速势函数,简称势函数。 ?势函数的拉普拉斯方程形式 对于不可压缩的平面流体流动中,将(3-19)式代入连续性微分方程(3-18),有: 或(3-20) 适用条件:不可压缩流体的有势流动。 点击这里练习一下 极坐标 (3-21) 流函数

相关文档
最新文档