【CN109930134A】一种引入掩膜板制备二氧化钛纳米棒阵列的方法【专利】

【CN109930134A】一种引入掩膜板制备二氧化钛纳米棒阵列的方法【专利】
【CN109930134A】一种引入掩膜板制备二氧化钛纳米棒阵列的方法【专利】

(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 (43)申请公布日 (21)申请号 201910319448.2

(22)申请日 2019.04.19

(71)申请人 中南大学

地址 410083 湖南省长沙市岳麓区麓山南

路932号

(72)发明人 姜超 余延涛 王春齐 黄小忠 

杜作娟 

(74)专利代理机构 长沙永星专利商标事务所

(普通合伙) 43001

代理人 何方

(51)Int.Cl.

C23C 18/06(2006.01)

C23C 18/12(2006.01)

C23C 28/00(2006.01)

B82Y 40/00(2011.01)

C23C 14/18(2006.01)C23C 14/24(2006.01)

(54)发明名称一种引入掩膜板制备二氧化钛纳米棒阵列的方法(57)摘要本发明公开了一种引入掩膜板制备二氧化钛纳米棒阵列的方法,包括以下步骤:(1)将掩模板固定于基底材料表面,四周密封;(2)在基底上形成诱导层,然后去除掩模板;(3)将带图案诱导层的基底放入水热反应釜中,在水热反应中诱导生长与基底图案一致的二氧化钛纳米棒阵列;(4)对二氧化钛纳米棒阵列间隙进行选择性填充,采用真空蒸镀工艺,对二氧化钛纳米棒阵列制作上电极,得到用于传感器、能源存储单元或者电子电路的器件。本发明通过引入掩模板,生长导电诱导层,从而控制二氧化钛纳米棒阵列的垂直生长,防止二氧化钛纳米棒发生倾斜和搭接,得到多种图案规则排布的阵列结构,满足能源存储器件,特殊传感器和电子电路器件对二氧

化钛结构的质量要求。权利要求书1页 说明书3页 附图1页CN 109930134 A 2019.06.25

C N 109930134

A

权 利 要 求 书1/1页CN 109930134 A

1.一种引入掩膜板制备二氧化钛纳米棒阵列的方法,其特征在于,包括以下步骤:

(1)将基底和掩模板清洗干净,将掩模板固定于基底材料表面,四周密封;

(2)通过沉积的方法将设计的包含微纳尺度的掩模板图案转移到基底上,以在基底上形成诱导层,然后去除掩模板,得到带图案诱导层的基底;

(3)将步骤(2)得到带图案诱导层的基底放入水热反应釜中,在水热反应中诱导生长与基底图案一致的二氧化钛纳米棒阵列;

(4)对二氧化钛纳米棒阵列间隙进行选择性填充,采用真空蒸镀工艺,在二氧化钛纳米棒阵列制作上电极,得到用于传感器、能源存储单元或者电子电路的器件。

2.根据权利要求1所述的引入掩膜板制备二氧化钛纳米棒阵列的方法,其特征在于,步骤(1)中,所述掩模板采用阳极氧化AAO模板、金属掩模板中的一种。

3.根据权利要求1所述的引入掩膜板制备二氧化钛纳米棒阵列的方法,其特征在于,步骤(1)中,所述基底采用玻璃、二氧化硅、蓝宝石、硅片和碳化硅中的一种。

4.根据权利要求1所述的引入掩膜板制备二氧化钛纳米棒阵列的方法,其特征在于,步骤(2)中,所述诱导层为导电材料,采用掺杂二氧化锡、氧化铟锡、石墨烯、二硫化钼中的一种或者多种。

5.根据权利要求4所述的引入掩膜板制备二氧化钛纳米棒阵列的方法,其特征在于,所述诱导层为掺氟二氧化锡、氧化铟锡,采用磁控溅射进行沉积;

所述诱导层为石墨烯、二硫化钼,采用旋涂工艺进行沉积;

所述诱导层为氧化铟锡、二硫化钼,采用物理气相沉积。

6.根据权利要求1所述的引入掩膜板制备二氧化钛纳米棒阵列的方法,其特征在于,步骤(3)中,水热反应中,控制钛酸四丁酯的浓度为0.03~0.08mol/L,盐酸溶液的浓度为4~8mol/L,保温温度为120~160℃,保温时间为60~360min。

7.根据权利要求1所述的引入掩膜板制备二氧化钛纳米棒阵列的方法,其特征在于,步骤(3)中,所述二氧化钛纳米棒的直径为10~200nm,高度为200~6000nm。

8.根据权利要求1所述的引入掩膜板制备二氧化钛纳米棒阵列的方法,其特征在于,步骤(4)中,对二氧化钛纳米棒阵列间隙进行选择性填充PMA或者PVDF。

9.根据权利要求8所述的引入掩膜板制备二氧化钛纳米棒阵列的方法,其特征在于,制作能源存储单元时,需要对二氧化钛纳米棒阵列间隙进行填充,以提高储能器件的介电常数;

制作气敏传感器时,不需对二氧化钛纳米棒阵列间隙进行填充,使得环境气氛和二氧化钛可以充分接触,以提高传感器的灵敏度;

制作电子电器器件时,如忆阻器存储单元或者仿神经计算单元,可以填充绝缘介质,也可以不填充,通过对器件整体封装来保护功能单元不受环境水/氧影响。

10.根据权利要求1所述的引入掩膜板制备二氧化钛纳米棒阵列的方法,其特征在于,步骤(5)中,所述真空蒸镀工艺参数为:蒸镀本底真空10-2~10-4Pa,电流8~15mA,时间3~6min。

2

纳米线制备

模板法: 按模板材料可分为碳纳米管模板法、多孔氧化铝模板法、聚合物膜模板法和生命分子模板法。其中聚合物模板法廉价易得。模板法的模板主要有两种:一种是径迹蚀刻聚合物膜,如聚碳酸脂膜,另一种是多孔阳极氧化铝膜,两者相比,氧化铝模板具有较好的化学稳定性、热稳定性和绝缘性,其余还有介孔沸石法、多孔玻璃、多孔Si 模板、MCM-41、金属、生物分子模板、碳纳米光模板等聚碳酸脂膜(聚合物)模板法:聚碳酸脂膜模板是所有聚合物膜模板中使用最广的一种,C.Schonenoberge等以不同规格不同厂家的聚碳酸酯过滤膜为模板,用电化学沉积的方法成功涤制备出了不同直径的Ni、Co、Cu和Au纳米线。 多孔氧化铝模板:采用该方法时,多孔氧化铝模板只是作为模具使用,纳米材料仍需要常规的化学反应来制备,如电化学沉积、化学镀、溶胶-凝胶沉积、化学 气相沉积等方法。多孔阳极氧化铝模板(AAO: porous anodic aluminum oxide)是典型的自组织生长的纳米结构的多孔材料,微孔直径大约在10~500nm之间, 密度为二丄1「「个/諾之间,阳极氧化法制备的有序多孔氧化铝模板的孔径大小一致,排列有序,呈均匀分布的六方密排柱状。通常孔径在20?250nm范围内,孔间距在5?500nm范围内。目前大部分究主要局限在以草酸为电解液的中孔径模板的制备和研究中。这是由于在草酸电解液中制得的模板较厚、孔径均一、大 小适中。膜厚可达100卩m以上。 当然模板法中这些只是作为模具使用,具体的纳米材料仍需要一些其它的方法来得到,常用的有电化学沉积、化学气相沉积法(CVD)化学聚合、溶胶-凝胶沉积等电化学沉积:电沉积方法主要分为三步,1、阳极氧化铝模板的制备及孔径的调节; 2、对氧化铝模板及阻挡层的径蚀,释放出有序的纳米线阵列,再经后续处理得到所需的纳米材料,开发出各种纳米器件。电沉积法只能制备导电材料纳米线,如金属、合金、半导体、导电高分子等。 按照电源不同分为直流沉积、交流沉积、循环伏安法沉积、脉冲电沉积。Al 在阳极氧化的过程中,表面生成由致密阻挡层和多孔外层组成的氧化铝膜,极薄的阻挡层具有半导体的特性,在沉积之前要先从铝基底上将多孔薄膜剥离,通孔,通过离子喷射或热蒸发等在模板表面涂上一层金属薄膜作为电镀阴极。该方法比 较复杂,也有研究者试图不将薄膜从铝基底上剥离,采用磷酸腐蚀致密层薄膜,但是该方法同时使多孔膜变薄,不易控制,也影响了纳米线的纵横比。 交流电沉积方法工艺简单可行,且不需要将模板和铝基底分离,通过控制电流、电压、频率、时间等参数,可合成各种纳米线有序阵列,其缺点是只能在孔中组装单一的金属或合金,当前对于交流沉积时,电流是如何通过阻挡层还没有定论。交流电沉积过程中的阳极电压作用至关重要! 循环伏安法、脉冲电流法:Sun等采用该法,制备了长径比达500的Ag纳米线阵列,Kim采用脉冲电化学沉积法首次利用Ti涂层解决了AAO膜的阻挡层去除问题,并得到了Si基底上的Pd纳米线阵列。 交流电沉积没有滞留点沉积得到的排列有序且易堆叠,。AAO模板与循环伏安法相结合,被证实是一种制备形状与尺寸可控的有序金属或半导体自支持纳米线阵列结构的有效方法。与直流电沉积相比,脉冲电沉积具有高度可靠性,可补偿纳米孔区域内离子扩散输运动力的不足。 国内学者近几年来在这方面做的工作也较多,于冬亮等人分别在AAO 模板中采

纳米二氧化钛的制备.docx

纳米二氧化钛的制备及其光催化活性的评价 实验报告 班级: 组别:指导老师: 小组成员:

实验目的: 1. 培养小组自主设计及完成实验的能力和合作能力。 2. 了解纳米二氧化钛的粒性和物性。 3. 掌握溶胶-凝胶法合成TiO2 的方法。 4. 研究二氧化钛光催化降解甲基橙和亚甲基蓝水溶液的过程和性质。 5. 通过实验,进一步加深对基础理论的理解和掌握,做到有目的合成,提高实验思维 与实验技能。 一、溶胶凝胶法制备二氧化钛 1 实验原理:纳米粉体是指颗粒粒径介于1?100 nm之间的粒子。由于颗粒尺寸的微 细化,使得纳米粉体在保持原物质化学性质的同时,与块状材料相比,在磁性、 光吸收、热阻、化学活性、催化和熔点等方面表现出奇异的性能。 纳米Tiθ2具有许多独特的性质。比表面积大,表面张力大,熔点低,磁性强,光吸收性能好,特别是吸收紫外线的能力强,表面活性大,热导性能好,分 散性好等。基于上述特点,纳米Tiθ2具有广阔的应用前景。利用纳米Tiθ2作光 催化剂,可处理有机废水,其活性比普通Tiθ2(约10 μm)高得多;利用其透明性 和散射紫外线的能力,可作食品包装材料、木器保护漆、人造纤维添加剂、化妆 品防晒霜等;利用其光电导性和光敏性,可开发一种Tiθ2感光材料。如何开 发、应用纳米Tiθ2,已成为各国材料学领域的重要研究课题。目前合成纳米二氧 化钛粉体的方法主要有液相法和气相法。由于传统的方法不能或难以制备纳米级 二氧化钛,而溶胶-凝胶法则可以在低温下制备高纯度、粒径分布均匀、化学活 性大的单组分或多组分分子级纳米催化剂[1 ?3],因此,本实验采用溶胶-凝 胶法来制备纳米二氧化钛光催化剂。 制备溶胶所用的原料为钛酸四丁脂(Ti(O-C4H9)4)、水、无水乙醇 (C2H5θH)以及冰醋酸。反应物为Ti(O-C4H9)4和水,分相介质为C2H5OH,冰 醋酸可调节体系的酸度防止钛离子水解过速。使Ti(O-C4H9)4 在C2H5OH中水解生成Ti(OH)4,脱水后即可获得TiO2。在后续的热处理过程中, 只要控制适当的温度条件和反应时间,就可以获得金红石型和锐 钛型二氧化钛。 钛酸四丁脂在酸性条件下,在乙醇介质中水解反应是分步进行的,总水解

纳米二氧化钛的制备方法及形貌特征

纳米二氧化钛的制备方法及形貌特征 盛丽雯重庆交通大学应用化学08300221 摘要:纳米二氧化钛以其优异的性能成为半导体光催化剂的杰出代表,探寻优良的二氧化钛制备工艺有着重要的现实意义。本文主要介绍了近年来国内外纳米二氧化钛制备工艺的研究状况,根据反应体系的物理形态将制备工艺分成气相、液相、固相三大类进行阐述,在此基础上分析比较了不同制备工艺的优缺点,最后展望了今后的发展方向。 关键词:纳米二氧化钛、制备方法、形貌特征。 1 纳米二氧化钛的制备方法 1.1 气相法 气相水解法利用氮气、氧气或空气作载气,把TiC1 或钛醇盐蒸气和水蒸气分别导人反应器,进行瞬间混合快速水解反应。通过改变各种气体的停留时间、浓度、流速以及反应温度等来调节纳米TiO的晶型和粒径。该方法制得的产品纯度高、分散性好、表面活性大,操作温度较低,能耗小,且对材质纯度要求不是很高,可实现连续生产;但控制过程复杂,并且直接影响着产品的晶型和粒径。气相氧化法是以TiC1 为原料,氧气为氧源,氮气作为载气的氧化反应,反应经气、固分离后制得纳米TiO:。该法制得的产品纯度高、分散性好;但设备结构复杂,材料要求耐高温、耐腐蚀,自动化程度高,研究开发难度大。气相氢氧火焰法以TiC1 ,H2,O:为原料,将TiC1 气体在氢氧焰中(700~1 000℃)高温水解制得纳米TiO。产品一般是锐钛型和金红石型的混晶型,产品纯度高、粒径小、表面活性大、分散性好、团聚程度较小,自动化程度高;但所需温度高,对设备材质要求较高,对工艺参数控制要求精确。气相热解法以TiC1 为原料,在真空或原料惰性气氛下加热至所需温度后,导入反应气体,使之发生热分解反应,最后在反应区沉积出纳米TiO。产品化学活性高、分散性好,可以通过控制反应气体的浓度和炉温来控制纳米TiO的粒径分布;但投资大、成本高。 1.2 液相法 溶胶一凝胶法以钛醇盐Ti(OR) 为原料,经水解与缩聚过程而逐渐凝胶化,再经低温干燥、烧结处理即可得到纳米TiO粒子。该法制得的产品纯度高、粒径小、尺寸均匀、干燥后颗粒自身的烧结温度低;但原料价格昂贵、生产成本高,凝胶颗粒之间烧结性差,产物干燥时收缩大。化学沉淀法将沉淀剂加入TiOSO,H TiO,或TiC1 溶液中,沉淀后进行热处理。该法工艺过程简单,易工业化,但易引入杂质,粒度不易控制,产物损失多。水解法以四氯化钛或钛醇盐为原料,经水解、中和、洗涤、烘干和焙烧制得纳米TiO。该法制得的产品纯度高、粒径均匀;但水解速度快、反应难控制、成本大、能耗高、难以工业化生产。水热法以TiOSO,TiC14或Ti(OR)4为原料,高温高压下在水溶液中合成纳米TiO。该法制得的产品纯度高、粒径分布窄、晶型好;但对设备要求高、能耗较大、操作复杂、成本偏高。在综合对比研究了纳米二氧化钛的各种制备方法后,提出了利用偏钛酸原料廉价易得的特点,简化工艺过程,采用化学沉淀法来制备纳米TiO的工艺方案,并进行了长时间的中试,现就该工艺的特点及中试过程中所遇到的问题进行阐述。 1 气相法制备二氧化钛 气相法一般是通过一些特定的手段先将反应前体气化,使其在气相条件下发生物理或化学变化,然后在冷却过程中成核、生长,最后形成纳米TiO2颗粒。 1.1 化学气相沉积法

纳米膜的制备方法

纳米薄膜材料的制备 金属0802 3080702039 陈岑 一、纳米膜 纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于:气体催化(如汽车尾气处理)材料;过滤器材料;高密度磁记录材料;光敏材料;平面显示器材料;超导材料等。 纳米膜分离技术是近年来发展起来的膜分离技术,是指膜的纳米级分离过程。其通过截留相对分子量为300~100000(被分离物料粒径相当于0.3~100纳米)的膜进行分离、纯化,包括了纳滤和部分超滤技术所能分离的量程范围,也是一种以压力为驱动的膜分离过程。由于纳米膜分离技术的截断物质相对分子量范围比反渗透大,而比部分超滤小,因此,纳米膜分离技术可以截留能通过超滤膜的部分溶质,而让不能通过反渗透膜的物质通过,从而有助于降低目的截留溶质的损失。这种技术具有操作方便、处理效率高、无污染、安全和节能等诸多优点。 二、纳米膜的制备方法 1.模板法 2.分子束外延法 3.真空蒸发法 4.化学气相沉积法 5.其他方法 1.模板法合成纳米薄膜: 纳米颗粒的形成一般可分为两个阶段: 第一是晶核的生成。 第二是晶核的长大 要制备粒径均匀,结构相同的纳米颗粒,相当于让烧杯中天文数字的原子同时形成大小一样的晶核,并且同时长大到相同的尺寸。因此为了得到尺寸可控,无团聚的纳米颗粒,必须找到有效的“窍门”,来干预化学反应的过程。 2.分子束外延法 分子束外延(MBE)技术主要是一种可以在原子尺度上精确控制外延厚度、掺杂和界面平整度的超薄层薄膜制备技术。 所谓“外延”就是在一定的单晶体材料衬底上,沿着衬底的某个指数晶面向外延伸生长一层单晶薄膜。 所谓“外延”就是在一定的单晶体材料衬底上,沿着衬底的某个指数晶面向外延伸生长一层单晶薄膜。

纳米二氧化钛的制备

纳米二氧化钛的制备及其光催化活性评价 实 验 报 告 组别:第七组 组员:曲红玲高晗 班级:应121-2 指导老师:翁永根老师

纳米二氧化钛的制备及其光催化活性评价 一、实验目的 1、掌握利用简单的原料制备纳米材料的基本方法和原理。 2、了解二氧化钛的应用和多种制备方法的优缺点。 3、了解纳米半导体材料的性质。 4、了解纳米半导体光催化的原理。 5、掌握光催化材料活性的评价方法。 二、实验原理 二氧化钛,化学式为2TiO ,俗称钛白粉。多用于光触媒、化妆品,能靠紫外线消毒及杀菌。以纳米级2TiO 为代表的具有光催化功能的光半导体材料,因其颗粒细小、比表面积大而具有常规材料所不具备的优点,以及较高的光催化活性、高效的光点转化性能等,在抗菌除雾、空气净化、废水处理、化学合成及燃料敏化太阳能电池等方面显出广阔的应用前景。 1、纳米二氧化钛的制备 纳米二氧化钛的制备方法有很多。主要分为两类:一类是液相法合成,包括液相沉淀法、液相凝胶法、醇盐水解法、微乳液法及水热法;另一类是气相法合成,包括四氯化钛氢氧焰水解法、四氯化钛气相氧化法、钛醇盐气相氧化法、钛醇盐气相水解法、钛醇盐气相热解法。其中,溶胶凝胶法是近年来制备二氧化钛广泛使用的方法。本试验采用溶胶凝胶法制备二氧化钛。 溶胶凝胶法中,反应物为水、钛酸四丁酯,分相介质为乙醇,冰醋酸可调节体系的酸度防止钛离子水解过度,使钛酸四丁酯在无水乙醇中水解生成()4OH Ti ,脱水后即可得到2TiO 。在后续的热处理过程中,只要控制适当的温度条件和反应时间,就可以得到二氧化钛。 在以乙醇为溶剂,钛酸四丁酯和水发生不同程度的水解反应,钛酸四丁酯在酸性条件下,在乙醇介质中水解反应是分步进行的。 一般认为,在含钛离子溶液中钛离子通常与其它离子相互作用形成复杂的网状基团。上述溶胶体系静置一段时间后,由于发生胶凝作用,最后形成稳定的凝胶。此过程中涉及的反应为: ()()OH H C OH Ti O H H OC Ti 944249444+=+ ()()OH H C TiO H OC Ti OH Ti 942494442+=+ ()O H TiO OH Ti 2242+? 2、光催化活性评价 光触媒在光照条件下(可以是不同波长的光照)所起到的催化作用的化学反应,通称为光反应。光催化一般是多种相态之间的催化反应。 本次试验是进行紫外光催化活性评价,分别通过测量在亚甲基蓝和甲基橙中,反应前

用模板法制备取向Si纳米线阵列

!蔓…~…一~一——!!堕墨塑j!!盟!L兰量皇Ⅻ”*m4q…‘cⅫM1IK…‘*£“#*m^ nm目Ⅲ^“女女ⅢfIq¨“*n日^%"m^ “*Ⅲ∞*f}m№*Ⅱ{EAmH№镕№cl|i…* ¨m{镕№n№M*{¨∞m∞*‰^Ⅲ““UH }∞HmHPm#目自*¥*∞№1EI々““n tE^t^&¥#“4“*.{;∞m%m#目M¨∞ &’£A"^h|j#¥“a5JeE…nmmⅡtl*% “2∞Ⅻ”lq“镕☆Ⅲm*%&jL”“*H“ ∞l,r*’£K##&’¨n0*R#^2《m镕¥ d*HB^《w自∞fj%&i{,:*m#n№K I"w(vu“#☆m‘lIK*÷p**q"fU…《 “mn∞nM¨&彳L%m№自ⅢⅢHHtⅫg¨^¨ №%¥&*∞’}*%“R"n’_『”#B∞m∞Ⅻ R目~”Bn*¥mm“}tn目f■J"i(vnbn n#n罔]Ⅲ《ft%mK{^^n《*)“4mHj‰n¨M *^mm“J£nm』LH¥n一4n∞¥∞m∞* ^*q"I” I蛮验过雕 ;n目%”KKE“*1£t…Ⅲ9ji2{”R j、ⅢL&^j_上"t#¥&1。a‘lI**#“≈ jn"%女mm《Ⅸ“*““rI,№“《∞m%mM mU&K¨mm彳Lm”f∞”n0#自mmcvD?ILm ?Ij:‘jH#P,I^0∞自#Hr“n《“m¥n十《“ Ⅺ∞mm{m∞*%mⅧ"j¨心1№Ⅻ*m&№mH q^1Kj二“自Fm^【m一*Km4№cm∞o!¨_uln. ∞Ⅲ7;jn‘I镕*十&№:ominmfr{rn镕*m KE#¨HmUm-“nⅢ一☆m≯pa*r*Ⅲ ll【14%mⅡw-_『m镕∞口nⅨ《∞、U№目《^t*Ⅻ ^¨∞m#m—fmⅫ十¨彳L*∞m№m《^0n" ‘rj、l#?1^lm*mi土Wn0‘UⅡ“Ⅲ&m#№“* “¨*Ⅲ∞KmmHfmmf№El2㈣,1忆Ⅺ&,一 i”’Inm#Ⅶ“*∞“%*mm』^~411一I2【】v m^《Ⅲ∞~……删dm”15.=№*Ⅲ4,0~Ⅻ“m彳Ln自Ⅻ一aⅢnn'^hⅢI’4mir¨ ¨“rAP4T"MMI)Im十~Hm№0々Ⅻ*M№ RF日Ⅻ自0Fnn&《∞^m#*目n¨'n’ol/I ”q№#一Ⅲ-”mⅧA自1mRmⅡm‘bⅢ☆40v f“《~…'rM*∞^『n№《&Ⅲ∞^FMⅧ £…fttL月n【qlt(Ⅵ)琳trl_m“¨“】}m nnM☆h*日。A≈w^&#№“n^“*Iqm m¨{t*自’*j℃“*Mmf目#H¨自l,“}Ⅲl∞ “*目-},Il"l#Ⅲn¨tL“r=q㈣IFnt‘^^ H+L{%_堑-?q…qc*)#“☆’t*目*l十^ⅢⅡ^4㈣1‘/mjnmⅡn々4n{sllI.MⅢu0一J9…m{、ln。’mln^Ⅲ∞…*Ⅻ㈣州1.“I?『L目jiW-I∞"~,’_{㈣hm*’口fM目I—Jh-H口tm^一J孙0iK#,Ⅻt1,ⅫH、#%IIt+c’^m?L*},d*r#m4∞_l-tms“l’L*drL0|l*Ⅲmm≈№’LⅡfjLm**LⅢ∞rl*fr≈m∞々m№j蕊叠i

【CN109930134A】一种引入掩膜板制备二氧化钛纳米棒阵列的方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910319448.2 (22)申请日 2019.04.19 (71)申请人 中南大学 地址 410083 湖南省长沙市岳麓区麓山南 路932号 (72)发明人 姜超 余延涛 王春齐 黄小忠  杜作娟  (74)专利代理机构 长沙永星专利商标事务所 (普通合伙) 43001 代理人 何方 (51)Int.Cl. C23C 18/06(2006.01) C23C 18/12(2006.01) C23C 28/00(2006.01) B82Y 40/00(2011.01) C23C 14/18(2006.01)C23C 14/24(2006.01) (54)发明名称一种引入掩膜板制备二氧化钛纳米棒阵列的方法(57)摘要本发明公开了一种引入掩膜板制备二氧化钛纳米棒阵列的方法,包括以下步骤:(1)将掩模板固定于基底材料表面,四周密封;(2)在基底上形成诱导层,然后去除掩模板;(3)将带图案诱导层的基底放入水热反应釜中,在水热反应中诱导生长与基底图案一致的二氧化钛纳米棒阵列;(4)对二氧化钛纳米棒阵列间隙进行选择性填充,采用真空蒸镀工艺,对二氧化钛纳米棒阵列制作上电极,得到用于传感器、能源存储单元或者电子电路的器件。本发明通过引入掩模板,生长导电诱导层,从而控制二氧化钛纳米棒阵列的垂直生长,防止二氧化钛纳米棒发生倾斜和搭接,得到多种图案规则排布的阵列结构,满足能源存储器件,特殊传感器和电子电路器件对二氧 化钛结构的质量要求。权利要求书1页 说明书3页 附图1页CN 109930134 A 2019.06.25 C N 109930134 A

纳米薄膜材料的制备方法

纳米薄膜材料的制备方法 摘要纳米薄膜材料是一种新型材料,由于其特殊的结构特点,使其作为功能材料和结构材料都具有良好的发展前景。本文综述了近几年来国内外对纳米薄膜材料研究的最新进展,包括对该类材料的制备方法、微结构、电、磁、光特性以及力学性能的最新研究成果。关键词纳米薄膜;薄膜制备; 微结构;性能 21 世纪,由于信息、生物技术、能源、环境、国防 等工业的快速发展, 对材料性能提出更新更高的要求,元器件的小型化、智能化、高集成、高密度存储和超快传输等要求材料的尺寸越来越小,航空航天、新型军事装备及先进制造技术使材料的性能趋于极端化。因此, 新材料的研究和创新必然是未来的科学研究的重要课题和发展基础,其中由于纳米材料的特殊的物理和化学性能, 以及 由此产生的特殊的应用价值, 必将使其成为科学研究的热点[1]。 事实上, 纳米材料并非新奇之物, 早在1000 多年以前, 我国古代利用蜡烛燃烧的烟雾制成碳黑作为墨的原料, 可能就是最早的纳 米颗粒材料;我国古代铜镜表面的防锈层, 经验证为一层纳米氧化锡颗粒构成的薄膜,这大概是最早的纳米薄膜材料。人类有意识的开展纳米材料的研究开始于大约50 年代,西德的Kanzig 观察到了BaTiO3 中的极性微区,尺寸在10~ 100纳米之间。苏联的G. A. Smolensky假设复合钙钛矿铁电体中的介电弥散是由于存Kanzig微区导致成分布不均匀引起的。60 年代日本的Ryogo Kubo在金属超微粒子理论中发现由于金属粒子的电子能级不连续,在低温下, 即当费米

能级附近的平均能级间隔> kT 时, 金属粒子显示出与块状物质不同的热性质[ 4]。西德的H. Gleiter 对纳米固体的制备、结构和性能进行了细致地研究[ 5]。随着技术水平的不断提高和分析测试技术手段的不断进步, 人类逐渐研制出了纳米碳管, 纳米颗粒,纳米晶体, 纳米薄膜等新材料, 这些纳米材料有一般的晶体和非晶体材料不具备的优良特性, 它的出现使凝聚态物理理论面临新的挑战。80 年代末有人利用粒度为1~ 15nm 的超微颗粒制造了纳米级固体材料。纳米材料由于其体积和单位质量的表面积与固体材料的差别,达到一定的极限, 使颗粒呈现出特殊的表面效应和体积效应,这些因素都决定着颗粒的最终的物理化学性能,如随着比表面积的显著增大,会使纳米粒子的表面极其活泼,呈现出不稳定状态,当其暴露于空气中时,瞬间就被氧化。此外, 纳米粒子还会出现特殊的电、光、磁学性能和超常的力学性能。 纳米薄膜的分类 纳米薄膜具有纳米结构的特殊性质, 目前可以分为两类: ( 1)含有纳米颗粒与原子团簇基质薄膜; ( 2) 纳米尺寸厚度的薄膜, 其厚度接近电子自由程和Denye 长度, 可以利用其显著的量子特性和统计特性组装成新型功能器件。例如, 镶嵌有原子团的功能薄膜会在基质中呈现出调制掺杂效应, 该结构相当于大原子超原子膜材料具有三维特征; 纳米厚度的信息存贮薄膜具有超高密度功能, 这类集成器件具有惊人的信息处理能力; 纳米磁性多层膜具有典型的周期性调制结构, 导致磁性材料的饱和磁化强度的减小或增强。对这

纳米线的制备方法

纳米线的制备方法 与零维量子点相比,纳米线具有阵列结构因此有更大的表面或体积比,尤其是他们所具有的直线电子传输特性,十分有利于光能的吸收和光生载流子的快速转移,由此使得这类准一维纳米结构更适宜制作高效率太阳电池(Si纳米线太阳电池)。《TiO2纳米线和ZnO纳米线则主要用于染料敏化太阳电池的光阳极制作》。 Si纳米线的生长方法: 迄今为止,已采用各种方法制备了具有不同直径、长度和形状的高质量的Si纳米线,利用各种表征技术对其结构特征进行了检测分析,就制备方法而言,目前主要有热化学气相沉积、低压化学气相沉积、等离子体化学气相沉积、激光烧浊沉积、热蒸发、电子束蒸发(EBE)、溶液法和水热法等;就生长机制而言,则主要有气—液—固(VLS)法、气—固(VS)法、气—固—固(VSS)法、固—液—固(SLS)法等,就纳米线类型而言,又有本证Si纳米线和掺杂Si 纳米线之分。研究指出,Si纳米线的生长于Si纳米晶粒和量子点的形成不同,后者只需衬底表面具有合适密度与尺寸的成核位置,而前者除了具备上述条件外,还需要同时满足线状结构的生长规律与特点,因此工艺技术要求更加严格。研究者从实验中发现,如果能够利用某一催化剂进行诱导,使纳米点或团簇在催化剂的方向趋使作用下按一定去向生长,预计可以形成纳米线及其阵列结构。大量的研究报道指出,以不同的金属作为Si纳米线合成的催化剂,利用VLS机制

可以实现在Si晶体表面上Si纳米线的成功生长。 目前,作为制备Si纳米线的主流工艺应首推采用金属催化的VLS 生长技术,这种方法的主要工艺步骤是:首先在Si衬底表面上利用溅射或蒸发等工艺沉积一薄层具有催化作用的金属(Au、Fe、Ni、Ga、Al),然后进行升温加热,利用金属与Si衬底的共晶作用形成合金液滴,该液滴的直径和分布于金属的自身性质、衬底温度和金属层厚度直接相关。此后,通过含Si的源气体(SiH4、Si2H6、SiCl4)的气相输运或固体靶的热蒸发,使参与Si纳米线生长的原子在液滴处凝聚成核,当这些原子数量超过液相中的平衡浓度以后,结晶便会在合金液滴的下部分析出并最终生长成纳米线,而合金则留在其顶部,也就是说,须状的结晶是从衬底表面延伸,按一定的方向形成具有一定形状、直径和长度Si纳米线的。 除了VLS机制外,SLS机制也可以用于Si纳米线的可控生长,在这种情况下,预先在Si衬底表面沉积一层约厚10nm的金属薄膜(Au、Ni、Fe),然后再N2保护下进行热处理,随着温度的升高,金属催化粒子开始向Si衬底中扩散在界面形成Au-Si合金,当温度达到二者的共熔点时,合金开始融化并形成合金液滴,此时将有更多的Si原子扩散到这些合金液滴中去,当氮气通入反应室中时,液滴便面温度会迅速降低,这将导致Si原子从合金的表面分离和析出,其后,在退火温度为1000°C和氮气流量为1.5L/min的条件下,便可以实现可控Si纳米线的生长。在这,SLS与VLS生长机制的主要不同是:前者是以Si晶片衬底作为参与Si纳米线生长的Si原子的原

二氧化钛的各种制备方法

取200mL浓度为1mol/L的TiOSO 4 溶液装入容量为500mL的烧杯中,将烧杯放入高 压蒸气釜内,用温度为125℃的蒸气加热2 h后取出,TiOSO 4 水热解生成的白色偏钛酸,过滤后,用蒸馏水洗涤数次,得含固量为%的偏钛酸备用。取200mL浓度为 1mol/L的TiOSO 4 溶液,在搅拌条件下,用2 mol/L氢氧化钠溶液中和,直至溶液的pH=5,溶液中生成胶状二氧化钛前驱体正钛酸,过滤后,用蒸馏水洗涤数次,得含固量为%的正钛酸备用。 1.载银二氧化钛的制备方法: 分别在46gH 2TiO 3 和195gH4TiO4中加入50mL浓度为L的AgNO3溶液,磁力搅拌并加热 直至大部分水挥发,置于80℃的干燥箱中烘干,取出碾磨得未煅烧的载银粉体;在偏钛酸和正钛酸上进行载银的样品分别记为AT1和AT2。分别将AT1和AT2放入马弗炉中,在空气环境下分别以2℃/min速度从室温加热至700℃或900℃煅烧并保温2 h,取出自然冷却后,放入研磨机内研磨4h得含银%的载银二氧化钛粉体。700℃和900℃煅烧后AT1和AT2载银粉 2.溶胶凝胶法制备纯TiO2 薄膜 以钛酸丁酯为前驱体,按n[Ti( OC 4H 9 ) 4 ]∶n[C 2 H 5 OH]∶n[NH( CH 2 CH 2 OH) 2 ]∶ n[H 2 O]=1∶23∶2.5∶10摩尔配比,先将2 /3 无水乙醇、钛酸四丁酯和二乙 醇胺混合,搅拌2 h。再将余下1 /3 无水乙醇和去离子水的混合溶液逐滴加入上述溶液中,继续搅拌 h,得到稳定澄清的溶胶溶液,静置48h。采用自制的拉膜机,以石英玻璃为薄膜载体(实验前依次经过丙酮、水、乙醇超声清洗10 min),每浸渍提拉一层膜在100℃下干燥10 min,涂膜四层后,将样品置于马弗炉中以 约2℃·min-1升温到600℃保温2 h 后,随炉温冷却,制得纯TiO 2 薄膜。 3.在空心微球表面定向生长TiO2纳米棒 配制1mol/L的钛酸四丁酯甲苯溶液, 将空心微球在其中浸没10min, 然后抽滤,用甲苯、去离子水洗涤. 如此循环10次, 使空心微球表面包覆一层TiO2 薄膜.将如此处理过的空心微球放入马弗炉中, 在550℃下煅烧2h,自然冷却后取出.在60mL盐酸(37%)/水(1∶1, 体积比)溶液中, 加入2g钛酸四丁酯, 搅拌至透明. 加入上述煅烧过的空心微球, 搅拌10 min后转入水热反应釜中, 密封并在150℃下水热反应4 h.自然冷却后, 经过离心分离、乙醇洗涤、干燥, 得到表面定向生长有二氧化钛纳米棒的空心微球. 4.硬脂酸凝胶法合成纳米TiO2 将硬脂酸放入三口瓶中,70℃下使硬脂酸熔融形成透明的溶液,机械搅拌下将一定量的钛酸四丁酯加入到已熔融的硬脂酸中,硬脂酸:钛酸四丁酯=1:2(摩尔比),75℃下磁力搅拌3 h,形成半透明的棕红色溶胶,自然冷却形成凝胶后,置于马弗炉中450℃煅烧2 h,研磨后得到纳米T iO2粉体。

题名 “一维纳米结构和纳米线有序阵列”

题名“一维纳米结构和纳米线有序阵列” 作者张立德;孟国文;李广海;叶长辉;李勇; 中文关键词 单位 中文摘要<正>随着纳米材料研究的不断深入,对性能的研究愈来愈迫切。但研究无序随机排列的纳米材料性能却非常困难,既便能获得一些结果,却由于试样之间的不统一与不均匀,使不同研究者获得的同类实验结果没有对比性。为此,我们发展了基于有序多孔氧化铝模板的纳米线有序阵列制备技术,实现了纳米线直径可控、密度可调。为纳米材料性能的研究提供了保障,为纳米材料的应用奠定了基础。 基金 刊名中国科技奖励 年2007 期03 第一责任人张立德; 2 题名纳米线阵列及纳米图形制备技术的研究进展 作者雷淑华;林健;黄文旵;卞亓; 中文关键词纳米线阵列;;纳米图形;;信息技术 单位同济大学材料科学与工程学院,同济大学材料科学与工程学院,同济大学材料科学与工程学院,同济大学材料科学与工程学院上海200092,上海200092,上海200092,上海200092 中文摘要当今纳米技术研究的前沿和热点之一是将纳米线按一定方式排列与组装构成纳米线阵列及纳米图形,它们是下一代纳米结构器件设计的材料基础,在激光技术、信息存储及计算技术、生物技术等各领域均有广阔的应用前景。介绍了在纳米线阵列材料制备以及纳米图形制作方面的技术研究进展,详述了模板法、自组装法以及纳米刻蚀法等技术的发展。 基金国家自然科学基金资助项目(50572069) 刊名材料导报 年2007 期01 第一责任人雷淑华; 3 题名硅纳米线阵列的制备及其光伏应用 作者吴茵;胡崛隽;许颖;彭奎庆;朱静; 中文关键词硅纳米线阵列;;减反射;;太阳电池 单位清华大学材料科学与工程系,清华大学材料科学与工程系,北京市太阳能研究所,清华大学材料科学与工程系,清华大学材料科学与工程系北京100084,北京100084,北京100083,北京100084,北京100084 中文摘要采用金属催化化学腐蚀方法在单晶硅片表面可以制备出大面积排列整齐、与原始硅片取向一致的硅纳米线阵列,得到的硅纳米线单晶性好、轴向可控且掺杂浓度不受掺杂类型和晶向的影响。基于此,我们成功制备了大面积硅纳米线p-n结二极管阵列。此外,硅纳米线阵列结构具有优异的减反射性能,探索了其在太阳电池中的应用。目前初步研制出了基于硅纳米线阵列的新型太阳电池,获得了最高为9.23%电池效率。同时也研究了限制硅纳米线阵列太阳电池转换效率的主要因素,为以后的应用做了前期的探索工作。 基金 刊名太阳能学报

二氧化钛的各种制备方法2

1.硫酸氧钛溶液热水解和中和水解法制备偏钛酸和正钛酸 取200mL浓度为1mol/L的TiOSO4溶液装入容量为500mL的烧杯中,将烧杯放入高压蒸气釜内,用温度为125℃的蒸气加热2 h后取出,TiOSO4水热解生成的白色偏钛酸,过滤后,用蒸馏水洗涤数次,得含固量为21.6%的偏钛酸备用。取200mL 浓度为1mol/L的TiOSO4溶液,在搅拌条件下,用2 mol/L氢氧化钠溶液中和,直至溶液的pH=5,溶液中生成胶状二氧化钛前驱体正钛酸,过滤后,用蒸馏水洗涤数次,得含固量为5.1%的正钛酸备用。 2.载银二氧化钛的制备方法: 分别在46gH2TiO3和195gH4TiO4中加入50mL浓度为9.3mmol/L的AgNO3溶液,磁力搅拌并加热直至大部分水挥发,置于80℃的干燥箱中烘干,取出碾磨得未煅烧的载银粉体;在偏钛酸和正钛酸上进行载银的样品分别记为AT1和AT2。分别将AT1和A T2放入马弗炉中,在空气环境下分别以2℃/min速度从室温加热至700℃或900℃煅烧并保温2 h,取出自然冷却后,放入研磨机内研磨4h得含银0.5%的载银二氧化钛粉体。700℃和900℃煅烧后AT1和AT2载银粉 3.溶胶凝胶法制备纯TiO2 薄膜 以钛酸丁酯为前驱体,按n[Ti( OC4H9 ) 4]∶n[C2H5OH]∶n[NH( CH2CH2OH)2]∶n[H2O]=1∶23∶2.5∶10摩尔配比,先将2 /3 无水乙醇、钛酸四丁酯和二乙醇胺混合,搅拌2 h。再将余下1 /3 无水乙醇和去离子水的混合溶液逐滴加入上述溶液中,继续搅拌0.5 h,得到稳定澄清的溶胶溶液,静置48h。采用自制的拉膜机,以石英玻璃为薄膜载体(实验前依次经过丙酮、水、乙醇超声清洗10 min),每浸渍提拉一层膜在100℃下干燥10 min,涂膜四层后,将样品置于马弗炉中以约2℃·min-1升温到600℃保温2 h 后,随炉温冷却,制得纯TiO2薄膜。 4.在空心微球表面定向生长TiO2纳米棒 配制1mol/L的钛酸四丁酯甲苯溶液, 将空心微球在其中浸没10min, 然后抽滤,用甲苯、去离子水洗涤. 如此循环10次, 使空心微球表面包覆一层TiO2 薄膜.将如此处理过的空心微球放入马弗炉中, 在550℃下煅烧2h,自然冷却后取出.在60mL 盐酸(37%)/水(1∶1, 体积比)溶液中, 加入2g钛酸四丁酯, 搅拌至透明. 加入上述煅烧过的空心微球, 搅拌10 min后转入水热反应釜中, 密封并在150℃下水热反应4 h.自然冷却后, 经过离心分离、乙醇洗涤、干燥, 得到表面定向生长有二氧化钛纳米棒的空心微球. 5.硬脂酸凝胶法合成纳米TiO2 将硬脂酸放入三口瓶中,70℃下使硬脂酸熔融形成透明的溶液,机械搅拌下将一定量的钛酸四丁酯加入到已熔融的硬脂酸中,硬脂酸:钛酸四丁酯=1:2(摩尔比),75℃下磁力搅拌3 h,形成半透明的棕红色溶胶,自然冷却形成凝胶后,置于马弗炉中450℃煅烧2 h,研磨后得到纳米T iO2粉体。

水热法制备纳米线阵列

水热法制备锥状ZnO纳米线阵列及其光电性研究水热法制备锥状ZnO纳米线阵列及其光电性研究 摘要 ZnO是一种在光电领域中具有重要地位的半导体材料。采用聚乙二醇(PEG(2000))辅助的水热合成法制备出了粒径较为均匀的锥状氧化锌纳团线阵列, 并用SEM、XRD对其进行了表征。实验结果表明,表面活性剂(PEG22000)和氨水的加入量对ZnO纳米线阵列的形貌有直接的影响;分析出了不同体系中的化学反应过程及生长行为,研究了衬底状态、生长溶液浓度、生长时间、pH值等工艺参数对薄膜生长的影响,并对薄膜柱晶等特殊形貌晶体的生长机理进行了探讨。研究表明:薄膜的晶粒成核方式主要为异质成核,柱晶的生长方式为层-层生长。生长的ZnO柱晶的尺寸和尺寸分布与晶种层ZnO晶粒有着相同的变化趋势。随着生长液浓度的增加,ZnO棒晶的平均直径明显增大。生长体系长时间放置,会导致二次生长,形成板状晶粒。NH3·H2O生长系统,可以调节pH值来控制薄膜的生长。对于碱性溶液体系,ZnO合适的生长温度为70~90℃,通过调节温度,可以改变纳米棒的生长速率。 关键词:ZnO薄膜,低温,水热法,薄膜生长

HYDROTHERMAL SYNTHESIS OF ZnO NANOWIRE ARRAYSCONE AND OPTOELECTRONIC RESEARCH ABSTRACT ZnO is an important area in the status of photovoltaic semiconductor material.Polyethylene glycol (PEG (2000)) assisted hydrothermal synthesis were prepared by a more uniform particle size of zinc oxide nano cone line array group and use SEM, XRD characterization was carried out. The results show that surfactant (PEG22000) and ammonia addition on the morphology of ZnO nanowire arrays have a direct impact; analyze the different systems of chemical reactions and growth behavior of the state of the substrate, growth concentration, growth time, pH, and other process parameters on film growth, and morphology of thin film transistors and other special column crystal growth mechanism was discussed. The results show that: the film grain nucleation is mainly heterogeneous nucleation, crystal growth patterns column for the layer - layer growth. The growth of ZnO crystal size and column size distribution of ZnO grain and seed layer have the same trend. With the increase in the growth of concentration, ZnO rods significantly increased the average diameter of crystal.Growth system extended period of time will lead to secondary growth, the formation of tabular grains. NH3 ? H2O growth system, you can adjust the pH value to control the film growth. The alkaline solution system, ZnO is a suitable growth temperature 70 ~ 90 ℃, by adjusting the temperature, can change the growth rate of nanorods. Key words:ZnO films, low temperature, hydrothermal method, thin film growth

二氧化钛纳米阵列的制备及其气敏性能研究

Chinese Science Bulletin ? 2008 SCIENCE IN CHINA PRESS Springer https://www.360docs.net/doc/4213564289.html, | https://www.360docs.net/doc/4213564289.html, | https://www.360docs.net/doc/4213564289.html, Chinese Science Bulletin | May 2008 | vol. 53 | no. 9 | 1352-1357 Preparation and hydrogen gas sensitive characteristics of highly ordered titania nanotube arrays JI HuiMing ?, LU HuiXiang, MA DongFang, YU JianJun & MA ShiCai Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials of Tianjin University, Tianjin 300072, China In this paper, we report the growth and characteristics of titania nanotube arrays prepared by anodic oxidation and then annealed in an oxygen atmosphere at 500℃. The titania nanotube arrays presented high sensitivity to hydrogen gas. The crystalline phase of the samples was checked by X-ray diffraction (XRD). The differences in the nanotubes morphology attributed to the etched samples due to anodiza-tion potential, reaction time and the electrolyte concentration were analyzed by scanning electron mi-croscopy (SEM). The gas sensitive parameters of the samples were obtained from resistance, the re-sponse time and the recovery time at different temperatures. titanium dioxide, ordered nanotube arrays, preparation, hydrogen gas sensor Titanium dioxide is a versatile material for different ap-plications. It is used as heterogeneous catalyst, photo-catalyst in solar cells, gas sensors and white pigments (in paints, cosmetics, etc.). Also it has electronic and electrical applications in MOSFET (as a gate insulator) and varistors [1]. Titanium dioxide is also a fascinating material from a surface science point of view. Properly made titania surfaces are very useful for different electronic applica-tions especially as gas sensors and solar cells [2]. The prime requirement for these important applications is high active surface area. Making nanosized material is a efficacious technique to increase the active surface area. The simplest approach to fabricate titania nanotubes is electrochemical anodic oxidation. Gong et al.[3] devel-oped uniformly oriented porous titania nanostructures by anodic oxidation of high purity titanium in hydrofluoric acid medium under potentiostatic bias. Titania has attracted much attention for its oxygen sensing capability [4― 6]. Furthermore, with proper ma- nipulation of the microstructure, crystalline phase and/or addition of proper impurities or surface functionalization titania can also be used as a reducing gas sensor [7,8]. Hydrogen has numerous applications in industry, such as petroleum distillation, chemical production, cryogenic cooling, semiconductor manufacturing proc-esses, fuel cell technology, and rocket engines [9]. Its wide range of applications motivates our work on the development of highly sensitive, specific, robust, and affordable hydrogen sensors, enabling its safe and accu-rate use. 1 Experimental 1.1 Fabrication of the highly ordered titania nano-tube arrays Industrial pure titanium foil was degreased by sonicating in acetone, ethanol and DI water, and dried in a nitrogen stream. The equipments of the electrochemical anodiza-tion are shown in Figure 1. Anodization experiments are commonly conducted with magnetic agitation of the electrolyte which reduces the thickness of the double layer at the metal/electrolyte interface, and ensures uni-form local current density and temperature over the Ti Received August 23, 2007; accepted December 18, 2007 doi: 10.1007/s11434-008-0120-0 ? Corresponding author (email: jihuiming@https://www.360docs.net/doc/4213564289.html, )

相关文档
最新文档