发电机定子烧坏

发电机定子烧坏
发电机定子烧坏

碰到铝壳 定子线圈有一根

铜线碰到铁芯

定子外一组烧毁严重

圈外第一圈表面漆严重烧掉烧的黑黑的,表面认为定子线圈外第一圈铝壳碰到电流到流冲击高温所烧毁定子线圈其实那只是第两次触碰到隔绝缘铝壳,看看上面定子线圈有一个根铜线碰到铁芯到铁芯绝缘体的存在也没烧过痕迹旁边明显烧的糊糊可以

想象当时这里温度有多

高呀隔离绝缘纸烧糊

未隔离好,定子线圈眼看似乎碰到铁芯

绝缘纸未贴合好 根据上面前提资

料明确下 排查定子

线圈和铁芯触碰故障根据查看出乎意

料绝缘体未把定子线

圈隔离定子线圈有一

根明显和铁芯只差那

么一点就触碰 绝缘

体本身要把定子线圈

和铁芯隔离 两个家

伙是水火不容碰到一

起可想而知后果严重

性 比如碰在一起第

一时间烧毁线圈 整

个发电机冒烟拖累皮

带 皮带断裂 发电机

严重烧毁

汽车用发电机的工作原理简述

汽车用发电机的工作原理简述 1、转子 转子的功用是发作磁常转子由爪极、励磁绕组、滑环、转子轴等组成 转子轴上压装着两块爪极,爪极被加工成鸟嘴形状,爪极空腔内装有励磁绕组和磁轭。滑环由两 个相互绝缘的铜环组成,压装在转子轴上并与轴绝缘,两个滑环分别与励磁绕组的两端相连。当给两滑环通入直流电时,励磁绕组中就有电流通过,并发作轴向磁通,使爪极一块被磁化为N极,另一块被磁化为S极,然后构成六对相互交错的磁极。当转子转变时,就构成了旋转的磁常如下图所示: 2、定子 定子又称为电枢。定子的功用是发作交流电。当激磁电流作用于转子绕组,转子轴在发起机正时齿轮的股动下转变,在定子绕组中发作感应电动势。 定子铁心由内圈带槽的硅钢片叠成,定子绕组的导线就嵌放在铁心的槽中。定子绕组有三相,三相绕组选用星形接法或三角形接法,都能发作三相交流电。三相绕组的有必要按一定需要绕制,才干使之获得频率相同、幅值相等、相位互差120°的三相电动势。 每个线圈的两个有用边之间的间隔应和一个磁极占有的空间间隔相等。 每相绕组相邻线圈始边之间的间隔应和一对磁极占有的间隔相等或成倍数。 三相绕组的始边应相互间隔2π+120o电角度 定子三相绕组的接法有两种 星形接法的特点是线电流等于相电流,且三相 的一端联接在一起。中性点电压的瞬时值是一个 三次谐波电压,中性点电压的平均值为发电机输出 电压的一半,带有中性点接线柱的发电 机可用中性点电压来控制各种用途的继电器。 三角形接法的特点是线电流等于相电流,且三相联接成一个闭环,无中性点。如图所示: 定子安装在转子的外面,和发电机的前后端盖固定在一起,当转子在其内部

转变时,致使定子绕组中磁通的改动,定子绕组中就发作交变的感应电动势。定子由定子铁心和定子绕组组成。定子铁心由内圈带槽、相互绝缘的硅钢片叠成。定子绕组有三组线圈,3相绕组相相互隔120度对称的嵌放在定子铁心的槽中。三相绕组的联接有星形接法和三角形接法两种,都能发作三相交流电。 3、整流桥 整流桥的功用是将定子绕组的三相交流电变为直流电输出。整流器由整流板、整流二极管和激磁二极管组成。二极管只允许电流单向通过,所以将其接入交流电路时它能使电路中的电流只按单向活动,即所谓“整流”。整流二极管一种具有单向导电性的半导体器件,能将交流电能转变为直流电能。将交流电源整流成为直流电流的二极管叫作整流二极管,整流二极管分为正极管和负极管两种,分别压装在相互绝缘的两块板上组成的。正二极管的中心引线为二极管正极,外壳为负极。正二极管的外壳压装或焊装在元件板上,一起组成发电机的正极,由一个与后端盖绝缘的元件板固定螺栓通至机壳外,成为发电机的B+输出钉。 4、端盖及电刷组件 端盖一般分两部分,起支撑转子、定子、整流器和电刷组件的作用。端盖一般用铝合金铸造,一是可有用的防止漏磁,二是铝合金散热功用好。电刷端盖上装有电刷组件。不带调节器的电刷组件由电刷、电刷架和电刷弹簧组成,带调节器的电刷组件由电刷、电刷架、电刷弹簧及调节器组成。电刷的作用是将电源通过滑环引入励磁绕组。两个电刷分别装在电刷架的孔内,凭仗弹簧压力与滑环坚持接触。电刷和滑环的接触应出色,不然会因为磁场电流过小,致使发电机发电缺少。 电压调节器是把发电机输出电压控制在规矩范围内的设备,其功用是在发电机转速改动时,主动控制发电机电压坚持安稳,使其不因发电机转速高时电压过高烧坏用电器和致使蓄电池过充电;也不会因发电机转速低而电压缺少致使用电器作业反常。 皮带轮及电扇 交流发电机的前端装有皮带轮和电扇,由发起机通过传动带驱动发电机的转子轴和电扇一起旋转。发电机作业时,定子绕组和励磁绕组中都会有热量发作,温度过高会烧坏导线的绝缘致使发电机不能正常作业,所以为发电机散热是有必

发电机定子铁芯损耗试验方案

发电机定子铁芯损耗试验 施工方案 批准: 初审: 编制: 设备管理部 2015年01月14日

发电机定子铁芯损耗 试验方案 一、施工项目简介 我厂发电机为哈尔滨电机厂生产的QFSN-600-2YHG型汽轮发电机,发电机采用内部氢气循环,定子绕组水内冷,定子铁芯及端部结构件氢气表面冷却,转子绕组氢气内冷的冷却方式。 为了防止运行中因片间短路引起局部过热,甚至威胁到机组的安全运行,必须进行铁芯损耗试验。 二、施工方案 1、施工准备 1.1物资准备 1.2人员准备 哈尔滨电机厂现场服务人员负责密封垫更换工作,设备管理部电气专业人员配合。 1.3机械设备准备 根据现场实际情况,准备扳手、螺丝刀、热成像仪等。 2、施工方案 2.1试验原理 在发电机定子铁芯上缠绕励磁绕组,绕组中通入一定的工频电流,使之在铁芯内部产生接近饱和状态的交变磁通,通常取励磁磁感应强度为1~1.4 T,铁芯在交变磁通中产生涡流和磁滞损耗,铁芯发热,温度很快升高。同时,使铁芯中片间绝缘受损或劣化部分产生较大的局部涡流,温度急剧上升,从而找出过热点。试验中用红外线测温仪测出定子铁芯、上下齿压板及定子机座的温度,计算出温升和温差;用红外线热成像仪扫描查找定子铁芯局部过热点及辅助测温;在铁芯上缠绕测量绕组,测出铁芯中不同时刻的磁感应强度,并根据测得的励磁电流、电压计算出铁芯的有功损耗。把测量、计算结

果与设计要求相比较,来判断定子铁芯的制造、安装整体质量。 2.2试验接线图 W1:励磁绕组 W2:测量绕组 A:测量绕组电流表 W:测量绕组功率表 V2:测量绕组电压表 2.3试验标准 2.3.1《电力设备预防性试验规程》(DL/T 596-1996),励磁磁通密度为1.4T(特斯拉)下持续时间为45min,齿的最高温升不得超过25℃,齿的最大温差不大于15℃,单位铁损不得超过该型号硅钢片的允许值(一般在1T时为2.5W/kg). 2.3.2《电力设备交接和预防性试验规程》(大唐集团公司Q/CDT 107 001-2005),磁密在1T下齿的最高温升不大于25℃,齿的最大温差不大于15℃,单位损耗不大于1.3倍参考值。在磁密为1T下的持续试验时间为90min,在磁密为1.4T下的持续时间为

利用三次谐波电压构成的100%发电机定子接地保护

利用三次谐波电压构成的100%发电机定子接地保护的工作原理? 由于发电机气隙磁通密度的非正旋分布和铁芯饱和的影响,其定子中的感应电动势除基波外,还含有三、五、七次等高次谐波。因为三次谐波具有零序分量的性质,在线电动势中它们虽然不存在,但在相电动势中亦然存在,设以E3表示之。 为便于分析,假定: (1)把发电机每相绕组对地电容CG分成相等的两部分,每部CG/2分等效地分别集中在发电机的中性点N和机端S。 (2)将发电机端部引出线、升压变压器、厂用变压器以及电压互感器等设备的每相对地电容CS 也等效的集中放在机端。 根据理论分析,在上述加设条件下,可得出下列结论: (1)当发电机中性点绝缘时,发电机在正常运行情况下,机端S和中性点N处三次谐波电压之比为 US3/UN3=CG/(CG+2CS)<1 (2)当发电机中性点经消弧线圈接地时,若基波电容电流被完全补偿,发电机在正常运行情况下,机端S和中性点N处三次谐波电压之比为 US3/UN3=(7CG-2CS)/9(CG+2CS)<1 (3)不论发电机中性点是否接有消弧线圈,当在距发电机中性点α(中性点到故障点的匝数占每相分支总匝数的百分比)处发生定子绕组金属性单相接地时,中性点N和机端S处的三次处的三次谐波电压恒为 UN3=αE3 US3=(1-α)E3 如图所示: 从上图中可以看出,UN3=f(α)、US3=f(α)皆为线性关系,它们相交于α=0.5处;当发电机中性点接地时,α=0,UN3=0,US3=E3; 当机端接地时,α=1,UN3=E3,US3=0; 当α<O.5时,恒有US3>UN3; 当α>O.5时,恒有 UN3>US3。 综上所述,用US3作为动作量,UN3作为制动量构成发电机定子绕组单相接地保护,且当US3>

发电机保护现象、处理

发电机保护1对于发电机可能发生的故障和不正常工作状态,应根据发电机的容量有选择地装设以下保护。 (1)纵联差动保护:为定子绕组及其引出线的相间短路保护。 (2)横联差动保护:为定子绕组一相匝间短路保护。只有当一相定子绕组有两个及以上并联分支而构成两个或三个中性点引出端时,才装设该种保护。 (3)单相接地保护:为发电机定子绕组的单相接地保护。 (4)励磁回路接地保护:为励磁回路的接地故障保护。 (5)低励、失磁保护:为防止大型发电机低励(励磁电流低于静稳极限所对应的励磁电流)或失去励磁(励磁电流为零)后,从系统中吸收大量无功功率而对系统产生不利影响,100MW及以上容量的发电机都装设这种保护。 (6)过负荷保护:发电机长时间超过额定负荷运行时作用于信号的保护。中小型发电机只装设定子过负荷保护;大型发电机应分别装设定子过负荷和励磁绕组过负荷保护。 (7)定子绕组过电流保护:当发电机纵差保护范围外发生短路,而短路元件的保护或断路器拒绝动作,这种保护作为外部短路的后备,也兼作纵差保护的后备保护。 (8)定子绕组过电压保护:用于防止突然甩去全部负荷后引起定子绕组过电压,水轮发电机和大型汽轮发电机都装设过电压保护,中小型汽轮发电机通常不装设过电压保护。 (9)负序电流保护:电力系统发生不对称短路或者三相负荷不对称(如电气机车、电弧炉等单相负荷的比重太大)时,会使转子端部、护环内表面等电流密度很大的部位过热,造成转子的局部灼伤,因此应装设负序电流保护。 (10)失步保护:反应大型发电机与系统振荡过程的失步保护。 (11)逆功率保护:当汽轮机主汽门误关闭,或机炉保护动作关闭主汽门而发电机出口断路器未跳闸时,从电力系统吸收有功功率而造成汽轮机事故,故大型机组要装设用逆功率继电器构成的逆功率保护,用于保护汽轮机。 发电机保护简介 1、发电机失磁保护失磁保护作为发电机励磁电流异常下降或完全消失的失磁故障保护。由整定值自动随有功功率变化的励磁低电压Ufd(P)、系统低电压、静稳阻抗、TV断线等判据构成,分别动作于发信号和解列灭磁。励磁低电压Ufd(P)判据和静稳阻抗判据均与静稳边界有关,可检测发电机是否因失磁而失去静态稳定。静稳阻抗判据在失磁后静稳边界时动作。

汽车8管发电机工作原理1

详细解析汽车发电机工作原理 (四)端盖 端盖一般分两部分(前端盖和后端盖),起固定转子、定子、整流器和电刷组件的作用。端盖一般用铝合金铸造,一是可有效的防止漏磁,二是铝合金散热性能好。 后端盖上装有电刷组件,有电刷、电刷架和电刷弹簧组成。电刷的作用是将电源通过集电环引入磁场绕组。见图2-12

磁场绕组(两只电刷)和发电机的联接不同,使发电机分为内搭铁型和外搭铁型两种1.内搭铁型发电机:磁场绕组负电刷直接搭铁的发电机(和壳体直接相连)。见图2-13a 2.外搭铁型发电机:磁场绕组的两只电刷都和壳体绝缘的发电机。见图2-13b

外搭铁型发电机的磁场绕组负极(负电刷)接调节器,通过后再搭铁。 二、8管交流发电机 8管交流发电机(如夏利车用)和6管交流发电机的基本机构是相同的,所不同的是整流器有8只硅整流二极管,其中6只组成三相全波桥式整流电路,还有2只是中性点二极管,1只正极管接在中性点和正极之间,1只负极管接在中性点和负极之间。对中性点电压进行全波整流。(见图2-14) 试验表明:加装中性点二极管的交流发电机在结构不变的情况下可以提高发电机的功率10%~15%。 中性点二极管提高发电机功率的原理: 交流发电机中性点电压为三次谐波,随着发电机转速的提高,中性点三次谐波电压也升高。见图2-15

当中性点电压瞬时值高于三相绕组的最高值时,中性点正极管导通对外输出电流;电流回路为:中性点→中性点正极管→负载→某一负极管→定子绕组→中性点。见动画2。 当中性点电压瞬时值低于三相绕组的最低值时,中性点负极管导通对外输出电流;电流回路:中性点→定子绕组→某一正极管→负载→中性点负极管→中性点。由于中性点参与了对外输出,所以能提高输出功率。 三、9管交流发电机(日车应用较多) 9管交流发电机的基本结构和6管交流发电机相同,所不同的是整流器。9管交流发电机的整流器是由6只大功率整流二极管和3只小功率励磁二极管组成的交流发电机。 其中6只大功率整流二极管组成三相全波桥式整流电路,对外负载供电,3只小功率管二极管与三只大功率负极管也组成三相全波桥式整流电路专门为发电机磁场供电。所以称3只小功率管为励磁二极管。9管交流发电机电路见图2-16 充电指示灯的作用在下一节有专门介绍

大型发电机结构说 图解

一、发电机概述 发电机是将其他形式的能源转换成电能的机械设备,它由水轮机、汽轮机、柴油机或其他动力机械驱动,将水流,气流,燃料燃烧或原子核裂变产生的能量转化为机械能传给发电机,再由发电机转换为电能。发电机在工农业生产,国防,科技及日常生活中有广泛的用途。 发电机的形式很多,但其工作原理都基于电磁感应定律和电磁力定律。因此,其构造的一般原则是:用适当的导磁和导电材料构成互相进行电磁感应的磁路和电路,以产生电磁功率,达到能量转换的目的。 发电机可分为直流发电机和交流发电机,交流发电机又可分为同步发电机和异步发电机(很少采用) ,还可分为单相发电机与三相发电机。 发电机通常由定子、转子、端盖及轴承等部件构成。定子由定子铁芯、线包绕组、机座以及固定这些部分的其他结构件组成。转子由转子铁芯(或磁极、磁扼)绕组、护环、中心环、滑环、风扇及转轴等部件组成。 二、发电机的工作原理 按照电磁感应定律,导线切割磁力线感应出电动势,这是发电机的基本工作原理。图1为同步发电机的工作原理图。发电机转子与汽轮机转子为同轴连接,当蒸汽推动汽轮机高速旋转时,发电机转子随着转动。发电机转子绕组内通入直流电源后,便建立了一个磁场,这个磁场有一对主磁极,它随着汽轮机发电机转子旋转。磁通自转子的一个极(N级)出来,经过空气隙、定子铁芯、空气隙,进入转子另一个极(S极)构成回路。 图1 同步发电机工作原理图2 发电机出线的接线发电机转子具有一对磁极,转子旋转一周,定子绕组中感应电动势正好交变一次(假如发电机转子为P对磁极是,转子旋转一周,定子绕组中感应电动势交变P次)。当汽轮机以每分钟3000转旋转时,发电机转子每秒钟要旋转50周,磁极也要变化50次,那么在发电机定子绕组内感应电动势也变化50次。这样,发电机转子以每秒50周的恒速旋转,在定子三相绕组内感应出相位不同的三相交变电动势,即频率为50Hz的三相交变电动势。这时若

关于发电机定子绕组绝缘电阻测量及最低允许值的分析

冯复生 华北电力科学研究院,北京100045 1 引言 发电机定子绕组绝缘电阻测量是最常用的诊断方法之一。由于其方法简单、方便,通常作为判断发电机定子绕组绝缘受潮、表面脏污程度以及判断绝缘裂痕等缺陷的有效手段之一,尤其采用三相绝缘电阻以及和以往绝缘电阻值相比较的方式,可以判断绝缘是否受潮,此外还可做为定子绕组耐压试验或投运的重要判据。 但由于影响绝缘电阻测量值的因素较多,有的标准中对于其最低允许值并没有作出明确规定,同时绝缘电阻值与定子绕组绝缘强度间也不存在明确的关系,无法直接由绝缘电阻值判断定子绕组的电气强度或由所测值的大小确定发生电气故障的可能。 目前国内外资料中表明绝缘电阻值与温度关系的表达式也极不统一,使所测值有时无法和以往测量值进行比较,因而不能了解到定子绕组绝缘的真实状态。 本文对目前国内外采用的绝缘电阻与温度的关系,以及制造部门、运行部门推荐的绝缘电阻最低允许值作了系统比较,推荐了合理的最低允许值,同时对试验要求以及大型发电机定子绕组绝缘电阻测量方法、要领做了具体介绍。 2 不同温度下定子绕组绝缘电阻换算公式 2.1 定子绕组绝缘电阻与温度关系的表达式文献[1]所推荐公式为 ·B级热固性绝缘 R1=R2×1.6(t2-t1)/10(1) 式中 R1为测量温度为t1时的绕组绝缘电阻值,MΩ;R2为换算至温度t2时的绕组绝缘电阻值,MΩ;t1为测量时的温度,℃;t2为要换算的温度,℃。 ·热塑性绝缘 R1=R2×2(t2-t1)/10(2) 文献[2]所推荐公式为 ·B级绝缘 R c=K t×R t(3) 式中 R c为换算至40℃时的绕组绝缘电阻值,MΩ;R t为测量温

汽车发电机的修理方法

汽车发电机的修理方法 打开点火开关,用一铁制工具触碰发电机皮带轮,有电磁吸引力,说明调节器总发电机的磁场组是无故障的,如无电磁吸引力,说明 调节器或磁场绕组以及碳架接线有故障,关掉点火开关,将发电机“F”接线柱上任意拆下一根导线,将其悬空,然后打开点火开关, 用拆下来的导线碰到刚拆线的那个接线柱,如有噗噗的声响和兰色 的火花,说明激磁电路完好。将发电机“F”接线柱上的导线拆下一 根串联一只电流表(量程在10A以上),用测量激磁电流随发动机转 速变化关系判断。 ①启动发动机,如电流表指示为零即为控制磁场电流的大功率三极管断路。 ②若电流表在发动机低转速运转时有较稳定的指示,当转速超过800-1000r/min时,电流表的指示值随转速升高而增大,则为大功 率三极管短路或稳压管和小功率三极管断路。只有在转速升高的情 况下,电流表的读数逐渐减小才是良好的。 1、发电机过热 (1)发电机没有按规定的技术条件运行,如定子电压过高,铁损 增大;负荷电流过大,定子绕组铜损增大;频率过低,使冷却风扇转 速变慢,影响发电机散热;功率因数太低,使转子励磁电流增大,造 成转子发热。应检查监视仪表的指示是否正常。如不正常,要进行 必要的调节和处理,使发电机按照规定的技术条件运行。 (2)发电机的三相负荷电流不平衡,过载的一相绕组会过热;若三相电流之差超过额定电流的10%,即属于严重蛄相电流不平衡,三 相电流不平衡会产生负序磁场,从而增加损耗,引起磁极绕组及套 箍等部件发热。应调整三相负荷,使各相电流尽量保持平衡。

(3)风道被积尘堵塞,通风不良,造成发电机散热困难。应清除 风道积尘、油垢、使风道畅通无阻。 (4)进风温度过高或进水温度过高,冷却器有堵塞现象。应降低 进风或进水温度清除冷却器内的堵塞物。在故障未排除前,应限制 发电机负荷,以降低发电机温度。 (5)轴承加润滑脂过多或过少,应按规定加润滑脂,通常为轴承 室的1/2~1/3(转速低的取上限,转速高的取下限),并以不超过轴 承室的70%为宜。 (6)轴承磨损。若磨损不严重,使轴承局部过热;若磨损严重,有可能使定子和转子摩擦,造成定子和转子避部过热。应检查轴承有 无噪音,若发现定子和转子摩擦,应立即停机进行检修或更换轴承。 (7)定子铁芯绝缘损坏,引起片间短路,造成铁芯局部的涡流损 失增加而发热,严重时会使定子绕组损坏。应立即停机进行检修。 (8)定子绕组的并联导线断裂,使其他导线的电流增大而发热。 应立即停机进行检修。 2、发电机中性线对地有异常电压 (1)正常情况下,由于高次谐波影响或制造工艺等原因造成各磁 极下的气隙不均、磁势不等而出现的很低电压,若电压在一至数伏,不会有危险,不必处理。 (2)发电机绕组有短路或对地绝缘不良,导致电设备及发电机性 能变坏,容易发热,应及时检修,以免事故扩大。 (3)空载时中性线对地无电压,而有负荷时出现电压,是由于三 相不平衡引起的,应调整三相负荷使其基本平衡。 3、发电机电流过大 (1)负荷过大,应减轻负荷。 (2)输电线路发生相间短路或接地故障,应对线路进行检修,故 障排除后即可恢复正常。

发电机常见故障及解决方案汇总

双馈发电机简介及常见故障 一:双馈电机简介及工作原理 (1)简介: 双馈异步风力发电机(DFIG,Double-Fed Induction Generator)是一种绕线式感应发电机,是变速恒频风力发电机组的核心部件,也是风力发电机组国产化的关键部件之一。该发电机主要由电机本体和冷却系统两大部分组成。电机本体由定子、转子和轴承系统组成,冷却系统分为水冷、空空冷和空水冷三种结构. 双馈异步发电机的定子绕组直接与电网相连,转子绕组通过变流器与电网连接,转子绕组电源的频率、电压、幅值和相位按运行要求由变频器自动调节,机组可以在不同的转速下实现恒频发电,满足用电负载和并网的要求。由于采用了交流励磁,发电机和电力系统构成了"柔性连接",即可以根据电网电压、电流和发电机的转速来调节励磁电流,精确的调节发电机输出电压,使其能满足要求。 (2)工作原理: 双馈感应发电机由定子绕组直连定频三相电网的绕线型感应发 电机和安装在转子绕组上的双向背靠背IGBT电压源变流器组成。“双馈”的含义是定子电压由电网提供,转子电压由变流器提供。该系统允许在限定的大范围内变速运行。通过注入变流器的转子电流,变流器对机械频率和电频率之差进行补偿。在正常运行和故障期间,发电机的运转状态由变流器及其控制器管理。

变流器由两部分组成:转子侧变流器和电网侧变流器,它们是彼此独立控制的。电力电子变流器的主要原理是转子侧变流器通过控制转子电流分量控制有功功率和无功功率,而电网侧变流器控制直流母线电压并确保变流器运行在统一功率因数(即零无功功率)。 功率是馈入转子还是从转子提取取决于传动链的运行条件:在超同步状态,功率从转子通过变流器馈入电网;而在欠同步状态,功率反方向传送。在两种情况(超同步和欠同步)下,定子都向电网馈电。(3)优点: 首先,它能控制无功功率,并通过独立控制转子励磁电流解耦有功功率和无功功率控制。其次,双馈感应发电机无需从电网励磁,而从转子电路中励磁。最后,它还能产生无功功率,并可以通过电网侧变流器传送给定子。但是,电网侧变流器正常工作在单位功率因数,并不包含风力机与电网的无功功率交换。 二:电机常见故障及解决办法 1:电机轴电流电流? 电机的轴--轴承座--底座回路中的电流称为轴电流 轴电流产生的原因: (1)磁场不对称; (2)供电电流中有谐波; (3)制造、安装不好,由于转子偏心造成气隙不匀; (4)可拆式定子铁心两个半圆间有缝隙; (5)有扇形叠成的定子铁心的拼片数目选择不合适。

发电机定子接地故障排查

龙源期刊网 https://www.360docs.net/doc/4214382964.html, 发电机定子接地故障排查 作者:贾鹏 来源:《科技与创新》2015年第09期 摘要:阐述了发电机出口离相式封闭母线受潮,使得发电机组定子接地跳闸的情况,并 分析了具体的处理过程和防范措施。 关键词:定子接地故障;绝缘子;封闭母线;驱潮工作 中图分类号:TM31 文献标识码:A DOI:10.15913/https://www.360docs.net/doc/4214382964.html,ki.kjycx.2015.09.144 1 事故概述 某电厂2×300 MW发电机组采用哈尔滨电机厂生产制造的QFSN-300-2型水氢氢发电机,机端额定电压为20 kV,中性点经消弧线圈接地。发电机保护采用的是南京国电南自凌伊电力自动化有限公司生产的DGT-801A保护装置,定子接地保护采用的是基于稳态基波零序电压和三次谐波原理构成的100%保护。 该厂#1机组在负荷为226 MW的情况下运行时,发电机突然跳闸解列,汽机跳闸,锅炉 灭火,监控画面首出“发电机保护动作”,就地检查保护屏,发出了“发电机定子3U0定子接地”报警,而双套保护均动作,发出信号为发电机“定子接地”保护动作。下面,结合此次发电机定子接地故障的实际情况,简单分析了大型发电机定子接地故障的排查。 2 事故处理过程 2.1 二次系统检查 跳机后,应先全面检查保护装置,2套发电机保护装置A柜、B柜的“定子接地”保护均动作,基波3UO发跳闸信号,3次谐波3 W发报警信号,查看保护定值零序电压为8 V,延时4 s动作。查看故障录波图,发电机机端电流A,B,C三相峰值分别为3.28 A、3.30 A、3.26 A,发电机机端电压A,B,C三相峰值分别为86.979 V、80.182 V和74.518 V,C相电压下降得较快。发电机“定子接地”保护动作时,发电机机端零序电压2套保护动作值分别为8.643 9 V、8.647 4 V和8.668 8 V、8.665 2 V,零序电压达到8.6 V保护动作。对发电机出口PT一次侧做加压试验,保护屏电压显示正确,PT二次回路绝缘测试合格,基本排除了保护误动的可能。但是,这些故障数据并不能确定是发电机内部故障还是外部故障。 2.2 一次系统检查 初步检查发电机非电气系统,未发现发电机有积水、漏氢、漏油等情况,且系统工作正常。定子冷却水电导率化验合格,在发电机本体、励磁变、出线离相封母、出口PT、中性点

发电机定子单相接地处理(仅给借鉴)

发电机定子绕组单相接地,是发电机最常见的一种电气故障。非故障相对地电压上升为线电压,可能导致绝缘薄弱处发生接地形成两点接地短路,扩大事故。定子绕组单相接地的危害性主要是流过故障点的电容电流产生电弧可能烧坏定子铁心,进一步造成匝间短路或相间短路(铁心灼伤后造成磁场分布不均,定子绕组局部温度高,后果必然是相间短路损坏发电机。),使发电机遭受更为严重的破坏。 6kV发电机为中性点不接地系统,当发生定子绕组单相接地时,故障点将出现零序电压。下面以A相定子绕组任一点发生金属性接地故障为例进行分析。如图1所示,假设A相在距中性点a处(a表示由中性点到故障点的匝数占该相总匝数的百分数)的d点发生接地故障。 则零序电压为(推导过程略):Ud0=-aEA 上式表明,故障点的零序电压与a成正比, 即接地点离中性点越远,零序电压越高。这样,可以利用接于机端的电压互感器开口三角形侧取得零序电压,构成单相接地保护,如图2所示。 零序电压型单相接地保护,是从机端电压互感器开口三角形侧取得零序电压,接入保护用的过电压继电器。理想情况下,发电机正常运行时,TV开口三角形侧无零序电压,继电器不动作。但实际上,发电机在正常运行情况下,其相电压中存在三次谐波电压;另外,在变压器高压侧发生接地短路时,由于变压器高低压绕组之间有电容存在,发电机机端也会产生零序电压。为了保证保护动作的选择性,保护的整定值应躲开上述三次谐波电压与零序电压。根据运行经验,电压值一般整定为15~20V之间。按此值整定后,由于靠近中性点附近发生接地故障时,零序电压低,保护可能不会起动,故此种保护的保护范围约为由机端到中性点绕组的85%左右,保护存在死区。 规程规定,对于出口电压为6 3kV的发电机,当接地电流等于或大于5A时,单相接地保护作用跳闸;小于5A时,一般只发信号不跳闸,这是基于保护发电机定子绕组而作出的规定。 保护动作时间国家有关规程对发电机定子绕组单相接地保护的动作时间未作明确规定,各电厂应根据本厂机组的实际运行情况给出延时时间。根据运行经验,延时时间应躲过变压器高压侧后备保护的动作时间,一般为3~5s为宜,否则容易误动。 发电机定子绕组单相接地保护,对于中小型发电机,可采用零序电压型保护,实际运行中,应根据系统接线与运行方式,决定保护接线、定值整定、跳闸方式等,以利于发电机定子单相接地保护准确而可靠地动作。 如果查明接地点在发电机内部(在窥视孔能见到放电火花或电弧),应立即减负荷停机,并向上级调度汇报。如果现场检查不能发现明显故障,但“定子接地”报警又不消失,应视为发电机内部接地,30min内必须停机检查处理。 一、零序电压式定子接地保护的整定计算 1、零序动作电压 零序电压式定子接地保护的动作电压,应按躲过发电机正常工况下及恶劣条件下发电机系统

发电机定子铁芯槽楔检查修理技术规范(参考Word)

#3发电机定子铁芯槽楔检查修理技术规范 一、#3发电机型号:QFSN-330-2,额定功率330MW,冷却方式:水氢氢,定子铁芯:内径1250mm、外径2540mm、长度5200mm、槽数54、槽宽32.5mm、槽深163.3mm。 二、检修技术方案及要求: 1、定子槽楔检查及维修步骤如下: 1.1槽楔表面应清洁,无油垢、灰尘等脏物,无过热变色、龟裂、黄粉等现象。 1.2检查槽楔应紧固。首先硬度仪检查槽楔的紧量,标准按照哈电机厂标准进行检查。对发电机定子铁芯紧度进行检查。 1.2.1检查波纹板的平直度(槽楔的松紧度),把硬度测量仪分别放在槽楔1/3等分处测量其硬度,仪表显示低于660Leeb的,必须撤掉垫条及波纹板重新打紧。 1.2.2显示值在660-700Leeb的,一个槽内允许有两段而且不能连续。 1.2.3显示值在700Leeb及以上的,即为合格。 1.3检查关门槽楔正齿档应紧,阶梯档不考核,但要扎牢于端部线棒上,不得松动外移、凸起等,绑扎无破损。 1.4拆除不合格部分的槽楔,及楔下垫条,后进行清洗,清洗液为S 爱斯50。挑出受损槽楔、垫条进行更换。 1.5槽楔重新安装,并按照哈电机厂标准进行检验。 1.6检查铁芯应无锈斑、油垢,对锈斑可使用金属刷子将其刷掉,用压缩空气吹净。

铁芯无碰伤擦毛(毛边毛刺,凹凸点)及短路过热现象。 1.7槽楔安装完后进行定子铁损试验。若铁芯有发热点做上标记。 1.8处理铁芯发热点并且铁损试验检验合格。 2、本项目执行的主要技术标准如下,但不限于此:

(注:文件素材和资料部分来自网络,供参考。请预览后才下载,期待你的好评与关注。)

发电机保护现象、处理

发电机保护1 对于发电机可能发生的故障和不正常工作状态,应根据发电机的容量有选择地装设以下保护。 (1)纵联差动保护:为定子绕组及其引出线的相间短路保护。 (2)横联差动保护:为定子绕组一相匝间短路保护。只有当一相定子绕组有两个及以上并联分支而构成两个或三个中性点引出端时,才装设该种保护。 (3)单相接地保护:为发电机定子绕组的单相接地保护。 (4)励磁回路接地保护:为励磁回路的接地故障保护。 (5)低励、失磁保护:为防止大型发电机低励(励磁电流低于静稳极限所对应的励磁电流)或失去励磁(励磁电流为零)后,从系统中吸收大量无功功率而对系统产生不利影响,100MW及以上容量的发电机都装设这种保护。 (6)过负荷保护:发电机长时间超过额定负荷运行时作用于信号的保护。中小型发电机只装设定子过负荷保护;大型发电机应分别装设定子过负荷和励磁绕组过负荷保护。 (7)定子绕组过电流保护:当发电机纵差保护范围外发生短路,而短路元件的保护或断路器拒绝动作,这种保护作为外部短路的后备,也兼作纵差保护的后备保护。 (8)定子绕组过电压保护:用于防止突然甩去全部负荷后引起定子绕组过电压,水轮发电机和大型汽轮发电机都装设过电压保护,中小型汽轮发电机通常不装设过电压保护。 (9)负序电流保护:电力系统发生不对称短路或者三相负荷不对称(如电气机车、电弧炉等单相负荷的比重太大)时,会使转子端部、护环内表面等电流密度很大的部位过热,造成转子的局部灼伤,因此应装设负序电流保护。 (10)失步保护:反应大型发电机与系统振荡过程的失步保护。 (11)逆功率保护:当汽轮机主汽门误关闭,或机炉保护动作关闭主汽门而发电机出口断路器未跳闸时,从电力系统吸收有功功率而造成汽轮机事故,故大型机组要装设用逆功率继电器构成的逆功率保护,用于保护汽轮机。 发电机保护简介 1、发电机失磁保护 失磁保护作为发电机励磁电流异常下降或完全消失的失磁故障保护。由整定值自动随有功功率变化的励磁低电压Ufd(P)、系统低电压、静稳阻抗、TV断线等判据构成,分别动作于发信号和解列灭磁。励磁低电压Ufd(P)判据和静稳阻抗判据均与静稳边界有关,可检测发电机是否因失磁而失去静态稳定。静稳阻抗判据在失磁后静稳边界时动作。TV断线判据在满足以下两个条件中任一条件:│Ua+Ub+Uc-3U0│≥Uset(电压门坎)或三相电压均低于8V,且0.1A

发电机定子接地处理及原因分析(完稿)

中国华能集团公司 2017年技师考评申报材料 (论文) 申报单位:华能九台电厂 姓名:赵丽丽 工种:电气试验工 专业:电气检修

发电机定子接地处理及原因分析 华能吉林发电有限公司九台电厂赵丽丽 摘要:发电机是电力之源,作为火力发电厂主要设备,发电机的定子和转子绕组绝缘和接头由于电、热和机械振动影响会逐渐老化和接触不良,运行中易产生事故。发电机在日常生产中起着至关重要的作用,它的健康运行与否直接关系到发电厂能否经济运行,当发电机发生接地故障时,对事故发生原因进行分析和判断,并根据现场保护动作及设备情况及时分析原因,准确判断出是一次设备还是二次设备造成,并快速消除设备隐患,保证机组安全稳定运行。本文介绍了我厂发电机定子接地故障的查找过程、处理经过、原因分析及防范措施等。 关键词:发电机绝缘定子接地直流耐压故障分析 1、机组概述 我电厂2号发电机组为670MW超临界燃煤发电机组,汽轮发电机(QFSN-670—2型)由哈尔滨电机厂有限责任公司制造。机组型式为水-氢-氢冷670MW发电机组。本型发电机为三相交流隐极式同步发电机。发电机采用整体全密封、内部氢气循环、定子绕组水内冷、定子铁芯及端部结构件氢气表面冷却、转子绕组气隙取氢气内冷的冷却方式。定子电压20KV,定子电流21.49KA。该机组于2009年12月6日投运至今,曾发生过励侧主引线并联环上下接头处漏氢已处理好,本次故障发生前机组运行稳定,已持续运行一年多。 2、机组运行方式及动作情况 故障前,我厂1号、2号机组正常双机运行,1号发电机有功功率540MW,2号发电机有功功率465MW,频率50Hz。,2号发电机组于2014年08月22日19时06分跳闸,发变组保护正确动作,厂用电切换正确。主机联跳2号炉机组打闸停机,500KV开关场内5021、5022断路器跳闸,检查发变组保护动作报告为:2014-08-22 19:06:22:111,01000ms,定子零序电压,01005ms,定子零序电压高段。查看发变组保护起动后1至2个周波内发电机机端电压UA1=16.67V,UB1=82.24V,UC1=89.28V,发电机机端零序电压值72.18V,发电机中性点零序电压值40.12V。(详见附图1)

发电机定子绕组冒烟事故的分析及改进

安全管理编号:LX-FS-A22141 发电机定子绕组冒烟事故的分析及 改进 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

发电机定子绕组冒烟事故的分析及 改进 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1 事故现象 20xx年4月,我厂将三级电站2号发电机组的励磁系统由原来的旋转式励磁机励磁更新为可控硅静止式励磁。该励磁装置于2000-09-20机组运行过程中,出现直流系统接地。在查找接地时,当瞬切操作母线总把手时接地信号仍然存在,立即切回后,发现励磁调节器由主通道自动转换为备用通道运行,人工手动将其切回主通道,但装置又自动转换至备用通道,同时机组出现如下症状: (1)转子过电压保护指示灯亮;

水电厂机组发电机转子绝缘故障分析及处理对策

水电厂机组发电机转子绝缘故障分析及处理对策 发表时间:2019-04-11T16:38:06.530Z 来源:《电力设备》2018年第30期作者:张忠 [导读] 摘要:在水电厂机组运行中,发电机是重要的机组设备,而发电机转子绝缘故障则是比较常见的故障类型,本文主要就针对某水电厂机组发电机转子绝缘故障进行分析,了解其故障产生的原因,并提出相应的故障处理对策,来提高机组运行性能。 (松花江水力发电有限公司吉林市丰满发电厂发电部 132108) 摘要:在水电厂机组运行中,发电机是重要的机组设备,而发电机转子绝缘故障则是比较常见的故障类型,本文主要就针对某水电厂机组发电机转子绝缘故障进行分析,了解其故障产生的原因,并提出相应的故障处理对策,来提高机组运行性能。 关键词:水电厂机组;发电机;转子绝缘故障;处理对策 发电机是水电厂机组运行的动力设施,是水轮机实现水能转化为机械能的重要设备,但在发电机运行中还存在一定的转子绝缘故障,其对发电机组的安全稳定运行产生了很大的影响,甚至还会导致发电机组强制停运。为了实现水电厂机组发电机具有良好的性能,就需要对其转子绝缘故障进行有效的分析,并积极采取有效的处理对策对故障进行解决,这也是水电厂机组管维中需要一直重视的内容。 1.实例概述 1.1机组情况 在某水电站中,有4台机组,其中11号与12号机组是装机容量140MW的大机组,大机组的额定转速是107.1 r/min,而厂用4和厂用5号机组是装机容量4500KW的小机组,小机组的额定转速是600r/min,其机组的转速是比较快的,也造成机组碳粉磨损严重。 1.2异常现象 在机组的发电机运行中,发现1号机组发电机转子的绝缘状况并不是很好,转子发生多次接地的故障,由于接地故障的出现,转子绝缘值会出现直线的下降,其绝缘的强度也不能满足机组正常的运行。在机组停机后,相关人员发现刷架和引出线存在一定绝缘降低,同时在发电机的上架盖板与滑环支臂位置处发现堆满碳粉与油污混合的颗粒,通过对其集电环室的设备实施清理和擦拭,其转子的绝缘投运条件得到了有效的改善。另外1号机组正常停机中,发现发电机的保护装置中存在“失磁-时限保护”发生动作,通过对机组的励磁系统进行检查,发现转子绝缘的对地阻值是0 MΩ,在发电机中碳刷拉杆的绝缘子与滑环支臂位置处也堆满了碳粉与油雾混合的颗粒[1]。 2.转子绝缘故障分析 经过对发电机转子进行检查和分析,导致其出现上述现象的主要原因有: 1)通过对1号机组的发电机进行检查,其下集电环的表面出现比较严重的划痕,且表面十分粗糙,且光洁度不足并存在灼伤的痕迹,这主要是由于集电环的表面粗糙增加碳刷的磨损,导致碳粉的增多。在滑环室内碳刷也和滑环存在一定的接触,因为碳刷的研磨太快,很容易就会产生碳粉,经过长期的堆积就形成了大量碳粉,并粘附于发电机绝缘的部分,导致绝缘故障的发生。在发电机组的滑环室内,并没有设置碳粉的吸收装置,因此碳刷所产生的碳粉不能有效的得到吸收和排除,使其绝缘降低。 2)在下集电环与刷握位置处,其碳粉的堆积是比较严重的,并且碳粉和油雾已经混合,有着很强的吸附性。在机组旋转和摩擦中产生碳粉,由于滑环旋转产生的风力将其吹到碳刷支架和各部位置,且混合热油雾而导致转子的绝缘性降低。同时由于滑环室中上导油槽的通气窗管是比延长段要短的,则热油雾不能被有效的挡在油槽内,使大量的油雾穿过通气窗到滑环室和碳粉发生混合。 3)在1号机组的发电机中的导油槽发生过甩油的现象,主要是发电机的转子与定子位置处有大量的油迹,漏油主要是自发电机的转子位置推力头的内侧和油盆对接位置出现外溢,对上导油盆中推力头的上部位置通气孔以及接合轴瓦位置通油孔进行检查,发现其并没有出现堵塞,且上导油盆的通气窗也没有堵塞。导致甩油现象的出现,主要是因为机组在运行中,转子和油盆的对接空间形成了负压,使上导油盆吸气,来实现油盆内的气压平衡,而油盆的通气窗不能满足吸气的要求时,其油盆内汽轮机油会吸出,导致1号机组出现甩油的事故。在防止甩油事故的发生时,取出了上导的油盆盖和转子的接缝位置密封毛毡,从而来增加油盆的通气量,对其负压真空进行破坏,但因为此做法增加通气量的同时,也对上导的油盆密封进行破坏,则油盆内的热油雾就会从此缝隙内挥发至滑环室内,使碳粉于碳刷的支架位置处发生堆积[2]。 4)在发电机的上导油槽中,热油会随着转子轴的旋转而发生翻腾,导致油雾的产生。油雾会自通气窗管中绕行挡油板冷却的阻挡到滑环室中,和碳粉进行混合后具有很强的吸附力。这种混合物还有着导电性,如果其黏附于刷架拉杆的绝缘子以及集电环的支撑绝缘位置处,就会导致带电部分和大地出现间接的电气连通,使其绝缘出现下降。由于刷架和滑环支臂以及支撑的绝缘子位置处有着严重的积污,就造成发电机的转子对地出现绝缘阻值的下降。在2台小机组的滑环室内,由于碳粉没有和油雾出现混合,其碳粉就随着滑环的高速旋转而被气流带走,在碳刷架位置处堆积的碳粉是很少的,则其转子绝缘性比较好。 5)在设备运行中,因为推力的轴承室并不是严密密封的,在高速运转的过程中就会发生润滑油溢出,如果长时间高速的运转,势必会导致滑环室的温度发生显著的上升,从而造成润滑油出现物理反应而出现油雾,而油雾和碳粉就会产生油泥,其具有一定的导电性,会使机组的绝缘性降低,且机组发电机内部空间是有限的,进行清理也是比较困难的,从而影响发电机的转子绝缘性,甚至还会影响转子运转的状况,使其出现一定轻微接地。 3.转子绝缘故障处理对策 根据1号机组发电机的转子实际情况分析,不对转子的滑环表面实施抛光性处理,考虑于原来上导油槽的通气窗内进行通气管路的延长,可以通过直径70 mm弯接头的钢管,和延伸钢管进行焊接后再和通气管进行焊接,且于通气窗内进行若干半圆挡油板的焊接,其挡油板于通气窗内采取上下错开的对称方式进行焊接,在焊接结束后要对焊渣清理干净。然后在延伸的钢管端部位置进行十字对称抓手的焊接,和同期窗罩进行挂接,新做通气窗口要和滑环室的窗口正对,则发电机运行所产生油雾就会借助通气窗的冷却作用而凝结为油珠,其油珠再向油槽内流会,避免了油雾和碳粉发生混合。同时通气窗的窗口延长要和滑环室的网格窗口正对,防止没有得到冷却的油雾通过滑环的旋转带动其到滑环室而飞出,而碳刷摩擦出现的碳粉被滑环的高速旋转风力所吹散,两者就不能够附于碳刷拉杆的绝缘子以及集电环绝缘子的表面,对碳粉与油雾的混合物实现控制。另外,还要对机组滑环室碳刷进行换用,要求其具有质量高和耐磨性好,则碳粉的出现就会有效得到降低,对滑环室还要进行及时的清扫,缩短其清扫的周期,避免碳粉和油泥的长期堆积[3]。 结语:综上所述,通过对实例水电厂机组的发电机转子绝缘故障分析,发现其转子绝缘性故障发生存在诸多方面的影响,想要实现发电机组安全稳定的运行,就需要对其故障问题进行全面的分析,并积极采取有效的措施进行故障处理和性能防护,这对其发电机组长期稳

发电机100%定子接地保护的实现

发电机100%定子接地保护的实现 发电机能实现100%定子接地保护,采用了基波零序电压式定子接地保护和三次谐波电压构成的定子接地保护。,前者可反应发电机的机端向机内不少于85%定子绕组单相接地故障(85%~95%),后者反应发电机中性点向机端20%左右定子绕组单相接地故障(0~50%)。通过这两种保护的相互配合,达到了大容量机组100%定子接地保护的要求。 发电机定子单相接地后,接地电流经故障点、三相对地电容、三相定子绕组 而构成通路。当接地电流较大能在故障点引起电弧时,将使定子绕组的绝缘和定 子铁芯烧坏,也容易发展成危害更大的定了绕组相间或匝间短路。 第一部分是基波零序电压式定子接地保护: 保护接人的3Uo电压,取自发电机机端电压互感器开口三角绕组两端和发电机中性点电压互感器的二次侧。零序电压式定子接地保护的交流输入回路如图1所示。

第二部分是利用发电机三次谐波电动势构成的定子接地保护 由于发电机气隙磁通密度的非正旋分布和受铁芯饱和的影响,其定子中的感应电动势除基波外,还含有三、五、七次等高次谐波。因为三次谐波具有零序分量的性质,在线电动势中它们虽然不存在,但在相电动势中亦然存在。 正常运行时,发电机中性点的三次谐波电压总是大于发电机机端的三次谐波电压。而当发电机靠中性点侧0~50%范围内有接地故障时,发电机机端的三次谐波电压大于发电机中性点的三次谐波电压。 根据发电机定子绕组中性点附近接地故障的三次谐波分布特性,保护装置取发电机中性点及机端三次谐波电压,并对其进行大小和相位的矢量比较。三次谐波定子接地保护交流接入回路如图6所示。

该保护的动作逻辑图如图7所示。

相关文档
最新文档