朊病毒的结构与性质

朊病毒的结构与性质
朊病毒的结构与性质

的中枢神经系统。病理研究表明,随着阮病毒的侵入、复制,在神经元树突和细胞本身,尤其是小脑星状细胞和树枝状细胞内发生进行性空泡化,星状细胞胶质增生,灰质中出现海绵状病变。朊病毒病属慢病毒性感染,皆以潜伏期长,病程缓慢,进行性脑功能紊乱,无缓解康复,终至死亡为特征。

朊病毒对于人类而言,朊病毒病的传染有两种方式。其一为遗传性的,即家族性朊病毒传染;其二为医源性的,如角膜移植、脑电图电极的植入、不慎使用污染的外科器械以及注射取自人垂体的生长激素等。至于人和动物是否有传染,目前尚无定论。但有消息说,英国已有两位拥有“疯牛病”牛的农场主死于克—雅氏综合症,预示着人和动物间有相互传染的可能性,这有待于科学家的进一步研究证实。由于朊病毒病目前尚无有效的治疗方法,因此只能积极预防。其方法主要有:

①消灭已知的感染牲口,对病人进行适当的隔离

②禁止食用污染的食物,对神经外科的操作及器械进行消毒要严格规范化,对角膜及硬脑膜的移植要排除供者患病的可能

③对有家庭性疾病的家属更应注意防止其接触该病。

最引起当今科学家兴趣和关注的是朊病毒的复制机理。由于朊病毒是一种只含有蛋白质而不含核酸的分子生物并且只能在寄生宿主细胞内生存。因此,合成朊病毒所需的信息,有可能是存在于寄主细胞之中的,而朊病毒的作用,仅在于激活在寄主细胞中为朊病毒的编码的基因,使得朊病毒得以复制繁殖。

几年前,疯牛病肆虐欧陆,朊病毒成为肆虐的元凶,一时为大家所关注,但朊病毒到底是什么?到底它的出现是否对遗传学上的“中心法则”构成了挑战呢?

我们先从1982年普鲁宰纳提出的朊病毒致病的“蛋白质构象致病假说”说起,以后魏斯曼等人对其逐步完善。其要点如下:①朊病毒蛋白有两种构象:细胞型(正常型PrPc)和搔痒型(致病型PrPsc)。两者的主要区别在于其空间构象上的差异。PrPc仅存在α螺旋,而PrPsc有多个β折叠存在,后者溶解度低,且抗蛋白酶解;②Prpsc可胁迫PrPc转化为Prpsc,实现自我复制,并产生病理效应;③基因突变可导致细胞型PrPc中的α螺旋结构不稳定,至一定量时产生自发性转化,β片层增加,最终变为Prpsc型,并通过多米诺效应倍增致病。

从这一假说我们可以知道:1、朊病毒是蛋白质,没有通常我们认为是遗传物质的DNA、RNA等成分;2、与朊病毒相对应的是具有正常功能的蛋白质,即朊病毒是正常功能的蛋白质空间结构变异所形成。

由于朊病毒并没有属于自己的遗传信息,那么它遗传信息的必然来源于他的“宿主”的细胞核。因此,朊病毒其实是“宿主”自身的遗传信息编码所形成的。编码朊病毒的遗传信息,至少在细胞核的染色体基因中是相同的,只是在多肽链形成后,还要经过一系列的修饰过程,一种可能是这些修饰过程中的一些过程出现错误,导致正常的蛋白质空间结构变异为异常的结构。第二种可能是这一修饰过程也没有出现错误,而是在正常的蛋白质形成后,由于外界因素导致了正常蛋白质的变异,使之成为所谓的“朊病毒”。

另一种学说认为朊病毒的蛋白质能为自己编码遗传信息。这种假说与传统的分子生物学中的“中心法则”是相违背的,因为朊病毒没有核酸。于是人们假设朊病毒的复制可能的方法,一认为是通过逆转译过程产生为朊病毒编码的

DNA或RNA(如后者情况还需要逆转录)必须存在逆转译酶,甚至还要有逆转录酶。二为蛋白质指导下的蛋白质合成,即蛋白质本身可作为遗传信息。

1982年普鲁宰纳提出了朊病毒致病的“蛋白质构象致病假说”,以后魏斯曼等人对其逐步完善。其要点如下:①朊病毒蛋白有两种构象:细胞型(正常型PrPc)和瘙痒型(致病型PrPsc)。两者的主要区别在于其空间构象上的差异。PrPc仅存在a螺旋,而PrPsc有多个β折叠存在,后者溶解度低,且抗蛋白酶解;②Prpsc可胁迫PrPc转化为Prpsc,实现自我复制,并产生病理效应;

③基因突变可导致细胞型PrPc中的α螺旋结构不稳定,至一定量时产生自发性转化,β片层增加,最终变为Prpsc型,并通过多米诺效应倍增致病。

所以我们可以把“朊病毒”定义为动物(包括人类)细胞在正常的蛋白质的生成过程中,或正常的蛋白质生成后,由于某一异常因素,而导致了蛋白质空间结构变异所形成的!

由以上定义,我们继续讨论朊病毒的传染性。据05年《细胞》杂志所刊登的美国科学家的结论,利用少量的“朊病毒”分子,可以将大量的正常的蛋白质变为“朊病毒”,即少量变异的蛋白质分子可以将正常构型的蛋白质变为变异的分子。这以结果解释了为什么少量“朊病毒”能够导致机体的功能丧失。“朊病毒”在一动物个体内可以导致疾病的发作,但是在个体之间,它还能传播么?在动物和人之间它能突破种间限制么?

从“朊病毒”的本质来看,即它是空间构型改变的正常蛋白质,是正常蛋白质变性所致;我们就能知道,除非用人工注射等方法,朊病毒不可能在个体间传播,也不可能在人与动物间传播。如果从食用角度来看,由朊病毒致死的动物的肉制品含有朊病毒,在这些变性蛋白质进入人体后,它要完好的穿越消化系统

各种蛋白质分解酶的作用,然后进入血液系统,进入同样含有它的正常构型的蛋白质的组织内,才能形成“朊病毒”的传播,导致疾病的爆发。可以看出,这一传播途径非常的艰难,很难形成大量的传播和爆发。

从疯牛病爆发的一些案例来看,每一次的爆发都仅有少数几头病牛,并没有大规模的在某一地区爆发。这可以支持以上的结论。

我们再从另一方面来讨论“朊病毒”的成因,把它定义为变性的蛋白质后,我们就开始考虑是什么导致了这一蛋白质的变性?导致蛋白质的变性的因素有:化学方法:强酸、强碱、重金属盐、尿素、乙醇、丙酮等;物理方法有加热、紫外线照射、剧烈振荡等。

在动物细胞体内,细胞的内环境和胞内环境环境的改变都可能导致朊病毒的形成,我们可以考虑的因素主要是一些化学因素:内环境和细胞液pH质的变化,某些有机化合物的形成如丙酮等,重金属离子的存在,以及一些多肽链修饰过程中的变化等。可以说能够导致蛋白质在活体细胞内变性的因素很多,可能是某一因素起作用,也可能是诸多因素共同的作用结果。

动物体内的蛋白质种类非常的多,功能也有很大的差别,每一种蛋白质的变性都会导致其原有功能的丧失或减弱。目前发现的由朊病毒导致的疾病并不多,如:人类中的库鲁病(Ku-rmm)、克——雅氏综合症(CJD)、格斯特曼综合症(GSS)及致死性家庭性失眠症(FFI),动物中的水貂脑软化病,羊搔症,马鹿和鹿的慢性消瘦病(萎缩病),猫的海绵状脑病。我们可以发现这些疾病大部分都是神经系统和肌肉组织的损坏造成的。因此,我们可以推测,正是由于神经系统的脆弱性,其某一蛋白质组织的变性就可以造成整个系统很大的损坏,从而导致疾病的发生。

朊病毒作为一种变性的蛋白质,不仅仅是以上导致疾病的几种,应当还会有大量的变性蛋白质存在与动物体内的不同组织内,只不过是由于这些组织的受损不会导致大的机体功能损坏,或由于机体的修复功能能够对付这些变性蛋白质,从而使得他们没有表现出疾病症状,难以被发现。

细菌基因组的结构和功能

细菌和病毒一样同属原核生物,因而细菌基因组的结构特点在许多方面与病毒的基因组特点相似,而在另一些方面又有其独特的结构和功能。本节首先介绍细菌染色体基因组的一般结构特点,然后再具体介绍大肠杆菌染色体基因组的结构和功能。 ?细菌染色体基因组结构的一般特点 ?大肠杆菌染色体基因组的结构和功能 细菌染色体基因组结构的一般特点 (1)细菌的染色体基因组通常仅由一条环状双链DNA分子组成细菌的染 色体相对聚集在一起,形成一个较为致密的区域,称为类核(nucleoid)。 类核无核膜与胞浆分开,类核的中央部分由RNA和支架蛋白组成,外围是双 链闭环的DNA超螺旋。染色体DNA通常与细胞膜相连,连接点的数量随细菌生长状况和不同的生活周期而异。 在DNA链上与DNA复制、转录有关的信号区域与细胞膜优先结合,如大肠杆菌染色体DNA的复制起点(OriC)、复制终点(TerC)等。细胞膜在这里的作用可能是对染色体起固定作用,另外,在细胞分裂时将复制后的染色体均匀地分配到两个子代细菌中去。有关类核结构的详细情况目前尚不清楚。 (2)具有操纵子结构(有关操纵子结构详见基因表达的调控一章)其中的结构基因为多顺反子,即数个功能相关的结构基因串联在一起,受同一个调节区的调节。数个操纵子还可以由一个共同的调节基因 (regulatorygene)即调节子(regulon)所调控。 (3)在大多数情况下,结构基因在细菌染色体基因组中都是单拷贝但是编码rRNA的基因rrn往往是多拷贝的,这样可能有利于核糖体的快速组装,便于在急需蛋白质合成时细胞可以在短时间内有大量核糖体生成。 (4)和病毒的基因组相似,不编码的DNA部份所占比例比真核细胞基因组少得多。 (5)具有编码同工酶的同基因(isogene)例如,在大肠杆菌基因组中有两个编码分支酸(chorismicacid)变位酶的基因,两个编码乙酰乳酸(acetolactate)合成酶的基因。 (6)和病毒基因组不同的是,在细菌基因组中编码顺序一般不会重叠,即不会 出现基因重叠现象。 (7)在DNA分子中具有各种功能的识别区域如复制起始区OriC,复制终止区 TerC,转录启动区和终止区等。这些区域往往具有特殊的顺序,并且含有反向重复顺 序。 (8)在基因或操纵子的终末往往具有特殊的终止顺序,它可使转录终止和RNA 聚合酶从DNA链上脱落。例如大肠杆菌色氨酸操纵子后尾含有40bp的GC丰富区,其后紧跟AT丰富区,这就是转录终止子的结构。终止子有强、弱之分,强终止子含有反向重复顺序,可形成茎环结构,其后面为polyT 结构,这样的终止子无需终止蛋白参与即可以使转录终止。而弱终止子尽管也有反向重复序列,但无polyT 结构,需要有终止蛋白参与才能使转录终止。 大肠杆菌染色体基因组的结构和功能 大肠杆菌染色体基因组是研究最清楚的基因组。估计大肠杆菌基因组含有3500个基因,已被定位的有900个左右。在这900个基因中,有260个基因已查明具有操纵子结构,定位于75个操纵子中。在已知的基因中

病毒、真核和原核生物的基因组结构特点

病毒、真核和原核生物的基因组结构特点 病毒基因组结构特点: 1.病毒基因组所含核酸类型不同 2.不同病毒基因组大小相差较大 3.病毒基因组可以是连续的也可以是不连续的 4.病毒基因组的编码序列大 5.基因可以是连续的也可以是间断的 6.病毒基因组都是单倍体和单拷贝 7.基因重叠 8.病毒基因组功能单位或转录单位 9.病毒基因组含有不规则结构基因 (1)几个结构基因的编码区无间隔 (2)结构基因本身没有翻译起始序列 (3) mRNA没有 5’端的帽结构 原核生物基因组结构特点: 1.细菌等原核生物的基因组是一条双链闭环的DNA分子 2.具有操纵子结构 3.原核基因组中只有1个复制起点 4.结构基因无重叠现象 5.基因序列是连续的,无内含子,因此转录后不需要剪切 6.编码区在基因组中所占的比例远远大于真核基因组,但又远远小于病毒基 因组。非编码区主要是一些调控序列

7.基因组中重复序列很少 8.具有编码同工酶的基因 9.细菌基因组中存在着可移动的DNA序列,包括插入序列和转座子 10.在DNA分子中具有多种功能的识别区域,如复制起始区、复制终止区、转 录启动区和终止区等。这些区域往往具有特殊的序列,并且含有反向重复序列 真核生物基因组结构特点: 1)真核基因组远远大于原核生物的基因组。 2)真核基因具有许多复制起点,每个复制子大小不一。每一种真核生物都有一定的染色体数目,除了配子为单倍体外,体细胞一般为双倍体, 即含两份同源的基因组。 3)真核基因都出一个结构基因与相关的调控区组成,转录产物的单顺反子,即一分子mRNA只能翻译成一种蛋白质。 4)真核生物基因组中含有大量重复顺序。 5)真核生物基因组内非编码的顺序(NCS)占90%以上。编码序列占5%。 6)真核基因产断列基因,即编码序列被非编码序列分隔开来,基因与基因内非编码序列为间隔DNA,基因内非编码序列为内含子,被内含子隔 开的编码序列则为外显子。 7)真核生物基因组功能相关的基因构成各种基因家族,它们可串联在一起,亦可相距很远,但即使串联在一起成族的基因也是分别转录的。 8)真核生物基因组中也存在一些可移动的遗传因素,这些DNA顺序并无明显生物学功能,似科为自己的目的而级织,故有自私DNA之称,其移 动多被RNA介导,也有被DNA介导的。

习题-第四章病毒基因组

第四章病毒基因组 一、A型题: 1. 只含小分子量RNA而不含蛋白质的病毒称() A. 类病毒(Viroids) B. 卫星(Satellites) C. 类病毒(viroid) D. 朊病毒(Prions) E. 拟病毒(virusoid) 2. 只含蛋白质而不含核酸的的病毒称() A. 类病毒(Viroids) B. 卫星(Satellites) C. 类病毒(viroid) D. 朊病毒(Prions) E. 拟病毒(virusoid) 3. RNA病毒基因组的帽子结构与第二个核苷酸相连的化学键() A. 5',5'-三磷酸二酯键 B. 3',3'-三磷酸二酯键 C. 5',5'-磷酸二酯键 D. 3',5'-磷酸二酯键 E. 以上都不是 4. HBV基因组是() A. 完全双链DNA分子 B. 不完全双链DNA分子 C. 完全双链RNA分子 D. 不完全双链RNA分子 E. 单链DNA分子 5. 具mRNA模板活性的病毒基因组是() A. 正链DNA病毒 B. 负链DNA病毒 C. 负链RNA病毒 D. 逆转录科的正链RNA病毒 E. 正链RNA病毒(逆转录科的正链RNA 病毒除外) 6. 关于逆转录病毒叙述不正确的是() A. 迄今发现的RNA肿瘤病毒均属RNA逆转录病毒 B. 嗜肝DNA病毒科属DNA逆转录病毒。 C. 逆转录病毒RNA为正链 D. 病毒颗粒均携带逆转录酶 E. 前病毒DNA可以整合到宿主细胞染色体DNA中 7. 逆转录病毒基因组的结构特点不包括() A. 5'端帽子结构 B. 3'端poly(A)尾 C. 两端各有一个长末端重复序列(LTR) D. 编码逆转录酶 E. 神经酰胺酶 8. 分段基因组(segmented genome)是指病毒基因组() A. 由数条不同的核酸分子组成 B. 由数条相同的核酸分子组成 C. 由数条互补的核酸分子组成 D. 由可分成不同功能区段的一个核酸 分子组成 E. 以上都不对 9. HBV基因组序列的利用率(编码基因效率)达() A. 90%~100% B. 100%~150% C. 150%~200%

病毒、细菌基因组结构与功能

泛基因阶段 孟德尔的遗传因子阶段 摩尔根的基因阶段 顺反子阶段 操纵子阶段 现代基因阶段 DNA分子中含有特定遗传信息的核苷酸序列,是遗传物质的最小功能单位。合成有功能的蛋白质多肽链或RNA所必需的全部核酸序列(通常是DNA序列)。 一个基因应包含不仅是编码蛋白质肽链或RNA的核酸序列,还包括为保证转录所必需的调控序列、5′非翻译序列、内含子以及3′非翻译序列等所有的核酸序列(蛋白质基因和RNA基因)。 根据其是否具有转录和翻译功能可以把基因分为三类 第一类是编码蛋白质的基因,它具有转录和翻译功能,包括编码酶和结构蛋白的结构基因以及编码阻遏蛋白的调节基因 第二类是只有转录功能而没有翻译功能的基因,包括tRNA基因和rRNA基因第三类是不转录的基因,它对基因表达起调节控制作用,包括启动基因和操纵基因 是指生物体全套遗传信息,包括所有基因和基因间的区域。原核生物基因组:染色体基因组(chromosomal genome)染色体外基因组(extrachromosomal genome ) 真核生物基因组:染色体基因组(chromosomal genome)染色体外基因组

(extrachromosomal genome ) 生物体的进化程度与基因组大小之间不完全成比例的现象称为 C value paradox,又称C值悖论) 病毒基因组很小,且大小相差较大 病毒基因组可以由DNA组成,或由RNA组成 多数RNA病毒的基因组是由连续的RNA链组成 基因重叠 基因组的大部分可编码蛋白质,只有非常小的一部份不编码蛋白质 形成多顺反子结构 病毒基因组都是单倍体(逆转录病毒除外) 噬菌体(细菌病毒)的基因是连续的,而真核细胞病毒的基因是不连续的 1981年,美国首先发现获得性免疫缺陷征(acquired immunodeficiency syndrome,AIDS),其病原体是一种能破坏人免疫系统的逆转录病毒1986年,命名为:人类免疫缺陷病毒(human immunodeficiency virus,HIV) HIV特异性地侵犯并损耗T细胞而造成机体免疫缺陷 HIV如何感染免疫细胞并复制 捆绑――当HIV病毒的gp120蛋白捆绑到T-helper细胞的CD4蛋白时,HIV 病毒附着到机体的免疫细胞上。滤过性病毒核进入到T-helper细胞内 部,并且病毒体的隔膜融合进细胞壁; 逆转录――滤过性病毒酶,即逆转录酶,将病毒的RNA转化为DNA; 集成――新产生的DNA被病毒整合酶运送到细胞核中,并嵌入到细胞的DNA。HIV病毒被称之为前病毒;

基因组的特点

基因组的特点 真核生物基因组的特点: 1.基因组较大。真核生物的基因组由多条线形的染色体构成,每条染色体有一个线形的DNA分子,每个DNA分子有多个复制起点; 2.不存在操纵子结构。真核生物的同一个基因簇的基因,不会像原核生物的操纵子结构那样,转录到同一个mRNA上; 3.存在大量的重复序列。真核生物的基因组里存在大量重复序列,通过其重复程度可将其分成高度重复序列、中度重复序列、低度重复序列和单一序列; 4.有断裂基因。大多数真核生物为蛋白质编码的基因都含有“居间序列”,即不为多肽编码,其转录产物在mRNA前体的加工过程中被切除的成分; 5.真核生物基因转录产物为单顺反子; 6.功能相关基因构成各种基因家族。 原核生物基因组的特点: 1.基因组较小,通常只有一个环形或线形的DNA分子; 2.通常只有一个DNA复制起点; 3.非编码区主要是调控序列; 4.存在可移动的DNA序列; 5.基因密度非常高,基因组中编码区大于非编码区; 6.结构基因没有内含子,多为单拷贝,结构基因无重叠现象; 7.重复序列很少,重复片段为转座子; 8.有编码同工酶的等基因; 9.基因组的大部分序列是用来编码蛋白质的,基因之间的间隔序列很短;

10.功能相关的序列常串连在一起,由共同的调控元件调控,并转录成同一mRNA分子,可指导多种蛋白质的合成,这种结构称操纵子。 病毒基因组的特点: 1.不同病毒基因组大小相差较大; 2.不同病毒基因组可以是不同结构的核酸; 3.除逆转录病毒外,通常为单倍体基因组; 4.有的病毒基因组是连续的,有的病毒基因组分节段; 5.有的基因有内含子; 6.病毒基因组大部分为编码序列; 7.基因重叠,即同一段DNA片段能够编码两种或两种以上的蛋白质分子,这种现象在其他生物细胞中仅见于线粒体和质粒DNA。

乙肝病毒和原核生物的基因组结构特点-郑州肝病医院

乙肝病毒和原核生物的基因组结构特点 1.病毒基因组所含核酸类型不同 2.不同病毒基因组大小相差较大 3.病毒基因组可以是连续的也可以是不连续的 4.病毒基因组的编码序列大 5.基因可以是连续的也可以是间断的 6.病毒基因组都是单倍体和单拷贝 7.基因重叠 8.病毒基因组功能单位或转录单位 9.病毒基因组含有不规则结构基因 (1)几个结构基因的编码区无间隔 (2)结构基因本身没有翻译起始序列 (3) mRNA没有5’端的帽结构 原核生物基因组结构特点: 1.细菌等原核生物的基因组是一条双链闭环的DNA分子 2.具有操纵子结构 3.原核基因组中只有1个复制起点 4.结构基因无重叠现象 5.基因序列是连续的,无内含子,因此转录后不需要剪切 6.编码区在基因组中所占的比例远远大于真核基因组,但又远远小于病毒基因 组。非编码区主要是一些调控序列 7.基因组中重复序列很少 8.具有编码同工酶的基因 9.细菌基因组中存在着可移动的DNA序列,包括插入序列和转座子 10.在DNA分子中具有多种功能的识别区域,如复制起始区、复制终止区、转录 启动区和终止区等。这些区域往往具有特殊的序列,并且含有反向重复序列 真核生物基因组结构特点: 1)真核基因组远远大于原核生物的基因组。 2)真核基因具有许多复制起点,每个复制子大小不一。每一种真核生物都有一定的染色体数目,除了配子为单倍体外,体细胞一般为双倍体,即含两份同源的基因组。 3)真核基因都出一个结构基因与相关的调控区组成,转录产物的单顺反子,即一分子mRNA只能翻译成一种蛋白质。 4)真核生物基因组中含有大量重复顺序。 5)真核生物基因组内非编码的顺序(NCS)占90%以上。编码序列占5%。6)真核基因产断列基因,即编码序列被非编码序列分隔开来,基因与基因内非编码序列为间隔DNA,基因内非编码序列为内含子,被内含子隔开的编码序列则为外显子。 7)真核生物基因组功能相关的基因构成各种基因家族,它们可串联在一起,亦可相距很远,但即使串联在一起成族的基因也是分别转录的。 8)真核生物基因组中也存在一些可移动的遗传因素,这些DNA顺序并无明显

相关文档
最新文档