刚体平面运动习题

刚体平面运动习题
刚体平面运动习题

第8章 刚体平面运动习题

1.是非题(对画√,错画×)

8-1.刚体平面运动为其上任意一点与某一固定平面的距离始终平行的运动。( ) 8-2.平面图形的运动可以看成是随着基点的平移和绕基点的转动的合成.( ) 8-3.平面图形上任意两点的速度在某固定轴上投影相等。( ) 8-4.平面图形随着基点平移的速度和加速度与基点的选择有关。( ) 8-5.平面图形绕基点转动的角速度和角加速度与基点的选择有关。( ) 8-6.速度瞬心点处的速度为零,加速度也为零。( ) 8-7.刚体的平移也是平面运动。( ) 2.填空题(把正确的答案写在横线上)

8-8.在平直轨道作纯滚动的圆轮,与地面接触点的速度为 。 8-9.平面图形上任意两点的速度在 上投影相等。

8-10.某瞬时刚体作平移,其角速度为 ;刚体上各点速度 ;各点加速度 。

3.简答题

8-11.确定图示平面运动物体的速度瞬心位置。

题8-11图

(a) (b)

(c)

8-12.若刚体作平面运动,下面平面图形上A 、B 的速度方向正确吗? 题8-12图

(a) (b) (c)

8-13.下面图形中O 1A 和AC 的速度分布对吗?

8-14.圆轮做曲线滚动,某瞬时轮心的速度o v 和加速度o a ,轮的半径为R ,则轮心的角

加速度等于多少?速度瞬心点处的加速度大小和方向如何确定?

题8-13图

B

8-15.用基点法求平面图形个点的加速度时,为什么没有科氏加速度? 4.计算题

8-16.椭圆规尺AB 由曲柄OC 带动,曲柄以匀角速度o ω绕O 轴转动,如图所示,若取C 为基点,OC=BC=AC=r ,试求椭圆规尺AB 的平面运动方程。

8-17.半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动,如图所示。曲柄以匀角加速度α绕O

轴转动,设初始时角速度0=ω、角加速度0=α、转角0=?,若选动齿轮的轮心C 点为基点,试求动齿轮的平面运动方程。

题8-16图

题8-17图

8-18.曲柄连杆机构,已知OA =40cm ,连杆AB =1m ,曲柄OA 绕O 轴以转速180=n r/min 匀速转动,如图所示。试求当曲柄OA 与水平线成o 45角时,连杆AB 的角速度和中点M 的速度大小。

8-19.已知曲柄OA =r ,杆BC=2r ,曲柄OA 以匀角速度4rad/s =ω顺时针转动,如图所示。试求在图示瞬时点B 的速度以及杆BC 的角速度。

题8-18图

题8-19图

B

8-20.如图所示筛料机,由曲柄OA 带动筛子BC 摆动。已知曲柄OA 以转速40=n r/min 匀速转动,OA =0.3m ,当筛子BC 运动到与点O 在同一水平线时,o BAO 90=∠,摆杆与水平线夹角为060时,试求在图示瞬时筛子BC 的速度。

8-21.如图所示四连杆机构,曲柄OA 以匀角速度绕O 轴转动,当曲柄OA 处于水平位

置时,曲柄O 1B 恰好在铅锤位置。设OA =O 1B=AB 2

1

=l ,试求和曲柄O 1B 的角速度。

题8-20图

A

题8-21图

A

1

8-22.如图所示平面机构,曲柄OA 以匀角速度o ω绕O 轴转动,并带动连杆AB 使圆轮在地面作纯滚动,圆轮的半径为R ,在图示瞬时曲柄OA 与连杆AB 垂直,曲柄OA 与水平线的夹角为060角,OA =r ,试求该瞬时圆轮的角速度。

8-23.如图所示的曲柄连杆机构中,连杆AB 的中点C 以铰链与杆CD 相连,而杆CD 又与杆DE 相连,杆DE 绕E 轴转动,已知曲柄OA 以角速度8rad/s =ω绕O 轴转动,OA =25cm ,DE =100cm ,当B 、E 两点在同一铅垂线上时,O 、A 、B 三点共线,且o CDE 90=∠,试求杆DE 的角速度。

题8-22图

题8-23图

8-24.如图所示的平面机构中,曲柄OA =r ,以匀角速度o ω绕O 轴转动,连杆CD =6r ,在图示瞬时与铅垂线成o α30=角,杆DE 、AB 处于水平位置,试求点D 的速度和连杆CD 的角速度。

8-25.如图所示的平面机构中,已知OA =BD=DE =0.1m ,310.EF =m ;曲柄OA 以角速度4rad/s =ω绕O 轴转动,在图示瞬时曲柄OA 与水平线OB 垂直,且B 、D 、F 在同一铅垂线上,又DE 垂直于EF 。试求杆EF 的角速度和点F 的速度。

题8-24图

题8-25图

A

8-26.如图所示的瓦特行星齿轮机构中,平衡杆O 1A 绕O 1轴转动,并借连杆AB 带动曲OB ;而曲柄OB 活动地装在O 轴上。在O 轴上装有齿轮Ⅰ,齿轮Ⅱ与连杆AB 固连于一体。已知33021.r r ==m ,O 1A=0.75m ,AB=1.5m ,平衡杆的角速度6rad/s =ω,试求当o 60=γ且o 90=β时,曲柄OB 和齿轮Ⅰ的角速度。

8-27.如图所示齿轮Ⅰ在齿轮Ⅱ内滚动,其半径分别为r 和R=2r 。曲柄1OO 绕O 轴以等角速度o ω转动,并带动行星齿轮Ⅰ。试求轮Ⅰ速度瞬心P 点的加速度。

题8-26图

I

题8-27图

8-28.半径为r 的圆柱体在半径为R 的圆弧内作无滑动的滚动,如图所示,圆柱中心C 的速度为c v ,切向加速度为τc a ,试求圆柱的最低点A 和最高点B 的加速度。 8-29.曲柄OA 以匀角速度2rad/s =ω绕O 轴转动,,并借连杆AB 驱动半径为r 的轮子在半径为R 的圆弧内作无滑动的滚动。设OA=AB=R=2r=1m ,试求图示瞬时轮子上的点B 、C 的速度和加速度。

题8-28图

题8-29图

8-30.如图所示的平面机构中,曲柄OA =r ,以匀角速度o ω绕O 轴转动,AB=6r ,r BC 33=,试求图示瞬时,滑块C 的速度和加速度。

8-31.如图所示曲柄OA =20cm 绕O 轴以匀角速度rad/s 01=ω转动,并借连杆AB 带动滑块B 沿铅直滑道运动,AB=100cm ,当曲柄OA 与连杆AB 相互垂直并与水平线的夹角分别为o α45=、o β45=时,试求此瞬时连杆AB 的角速度、角加速度以及滑块B 的加速度。

题8-30图

题8-30图

8-32.在曲柄齿轮椭圆规中,齿轮A 和曲柄O 1A 固结为一体,齿轮C 和齿轮A 半径均为

r 并互相啮合,如图所示。已知AB=21O O ,4021.B O A O ==m ,A O 1以匀角速度rad/s 20.ω=绕O 1轴转动。M 为轮C 上的点,CM =0.1m 。图示瞬时,CM 为铅直,试求此瞬时点M 的

速度和加速度。

8-33.圆轮在平直的轨道上作纯滚动,图示瞬时点O 在铰C 的正下方,连杆OA 在水平的导轨中运动,其速度为v =1.5m/s ,o 30=θ,并带动摇杆CD 绕点C 转动,轮的半径为R =100mm ,OC=200mm ,试求摇杆CD 的角速度。

题8-32图

题8-33图

8-34.如图所示,轮O 在水平面上滚动,而不滑动,轮心以匀速v o =0.2m/s 运动,轮缘上固连销钉B ,此销钉在摇杆O 1A 的槽内滑动,并带动摇杆绕O 1轴转动。已知轮的半径R =0.5m ,图示瞬时O 1A 是轮的切线,摇杆与水平线的夹角为060,试求此瞬时摇杆O 1A 角速度和角加速度。

8-35.平面机构的曲柄OA 长为2l ,以匀角速度o ω绕O 轴转动。图示瞬时AB=BO ,并且o OAD 90=∠,试求此瞬时套筒D 相对于杆BC 的速度和加速度。

题8-34图

题8-35图

8-36.如图所示曲柄导杆机构,曲柄OA=120mm ,OB =160mm ,图示瞬时o AOB 90=∠。曲柄以角速度rad/s 4=ω,角加速度2rad/s 2=α绕O 轴转动。试求此瞬时导杆AC 的角加速度以及导杆相对于套筒B 的加速度。

8-37.图示机构中,曲柄O 1A 以匀角速度ω绕O 1轴转动。已知O 1A=r ,图(a )、(b)、(c)中,l=4r ,图(d)中l=2r ,试求图示瞬时水平杆的速度和加速度。

ωα

C

题8-37图

(c)

(d)

(a) (b)

题8-36图

理论力学课后习题答案 第6章 刚体的平面运动分析

第6章 刚体的平面运动分析 6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0?= 0。试求动齿轮以圆心A 为基点的平面运动方程。 解:?cos )(r R x A += (1) ?sin )(r R y A += (2) α为常数,当t = 0时,0ω=0?= 0 2 2 1t α?= (3) 起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过 θ??+=A 因动齿轮纯滚,故有? ? =CP CP 0,即 θ?r R = ?θr R = , ??r r R A += (4) 将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为: ??? ? ?? ??? +=+=+=22 2212sin )(2cos )(t r r R t r R y t r R x A A A α?αα 6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。试以杆与铅垂线的夹角 表示杆的角速度。 解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。作速度v C 和v 0的垂线交于点P ,点P 即为杆 AB 的速度瞬心。则角速度杆AB 为 h v AC v AP v AB θθω2000cos cos === 6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。试问当拖车以速度v 前进时,轮A 与垫滚B 的角速度A ω与B ω有什么关系设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。 解:R v R v A A ==ω 习题6-1图 A B C v 0 h 习题6-2图 P AB v C A B C v o h 习题6-2解图 习题6-3解图 习题6-3图 v A = v v B = v

第六章刚体的基本运动习题解答

第六章刚体的基本运动习题解答 习题 6-1 杆O 1A 与O 2B 长度相等且相互平行,在其上铰接一三角形板ABC ,尺寸如图 6-16所示。图示瞬时,曲柄O 1A 的角速度为ω=5rad/s,角加速度为α=2rad/s2, 试求 三角板上点C 和点D 在该瞬时的速度和加速度。 图6-16 v C =v D =O 1A ω=0. 1?5=0. 5m/s a C =a D =O 1A ω τ τ n n 2 =0. 1?5=2. 5m/s 2 22 a C =a D =O 1A α=0. 1?2=0. 2m/s 6-2 如图6-17所示的曲柄滑杆机构中,滑杆BC 上有一圆弧形轨道,其半径R =100mm,圆心O 1在导杆BC 上。曲柄长OA =100mm,以等角速度ω=4rad/s绕O 轴转动。设t =0时,求导杆BC 的运动规律以及曲柄与水平线的夹角?=30?时,导杆BC 的速度和加速度。?=0, 图6-17 x O 1=2OA cos ?=2R cos ωt =2?0. 1?cos 4t =0. 2cos 4t m O 1=-0. 8sin 4t m/s ?=30?时 x O 1=-0. 4m / s x O 1=-3. 2cos 4t m/s2 O 1=-1. 63m /s 2 x x v =0. 4m /s a =1. 63m /s 2=2. 771m /s 2 6-3 一飞轮绕定轴转动,其角加速度为α=-b -c ω2, 式中b 、c 均是常数。设运 动开始时飞轮的角速度为ω0,问经过多长时间飞轮停止转动? α=-b -c ω

2 d ωb +c ω 2 =-d t ? d ωb +c ω 2 ω0 = ? t -d t arctan(1bc c b ω) |ω=-t arctan( c b ω0) 6-4 物体绕定轴转动的转动方程为?=4t -3t 3。试求物体内与转轴相距R =0.5m的一点,在t =0及t =1s时的速度和加速度度的大小,并问物体在什么时刻改变其转向。 2 =4-9t 2 ? =-18t ?=4t -3t ? t =0时 =4 ? =0 ? v =R ω=0. 5?4=2m/s

刚体力学 习题库

第四章 刚体力学 一、计算题 1.如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为 2 21MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下 落速度与时间的关系. 解:根据牛顿运动定律和转动定律列方程 对物体: mg -T =ma ① 2分 对滑轮: TR = J β ② 2分 运动学关系: a =R β ③ 1分 将①、②、③式联立得 a =mg / (m + 2 1M ) 1分 ∵ v 0=0, ∴ v =at =mgt / (m + 21M ) 2分 2.如图所示,转轮A 、B 可分别独立地绕光滑的固定轴O 转动,它们的质量分别为m A =10 kg 和m B =20 kg ,半径分别为r A 和r B .现用力f A 和f B 分别向下拉绕在轮上的细绳且使绳与轮之间无滑动.为使A 、B 轮边缘处的切向加速度相同,相应的拉力f A 、f B 之比应为多少?(其中A 、B 轮绕O 轴转动时的转动惯量分别为22 1A A A r m J = 和22 1B B B r m J = ) 解:根据转动定律 f A r A = J A βA ① 1分 其中2 21A A A r m J =,且 f B r B = J B βB ② 1分 其中22 1B B B r m J = .要使A 、B 轮边上的切向加速度相同,应有 a = r A βA = r B βB ③ 1分 由①、②式,有 B B B A A A B A B A B A B A r m r m r J r J f f ββ ββ== ④ 由③式有 βA / βB = r B / r A 将上式代入④式,得 f A / f B = m A / m B = 2 1 2分 3.一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图 所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示). 解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得: mg -T =ma ① 2 分 T r =J β ② 2分 由运动学关系有: a = r β ③ 2分 由①、②、③式解得: J =m ( g -a ) r 2 / a ④ m a f

(完整版)刚体的基本运动(可编辑修改word版)

第三章刚体力学 §3.1 刚体运动的分析§3.2 角速度矢量 §3.3 刚体运动微分方程§3.4 刚体平衡方程 §3.5 转动惯量§3.6 刚体的平动与定轴转动 §3.7 刚体的平面平行运动 §3.1 刚体运动的分析 一、描述刚体位置的独立变量 1.刚体是特殊质点组 dr ij=0,注意:它是一种理想模型,形变大小可忽略时可视为刚体。 2.描述刚体位置的独立变数 描述一个质点需(x,y,z), 对刚体是否用 3n 个变量?否,由于任意质点之间的距离不变, 如确定不在同一直线上的三点,即可确定刚体的位置,需 9 个变量,由于两点间的距离保持不变,所以共需 9-3=6 个变量即可。 刚体的任意运动=质心的平动+绕质心的转动,描述质心可用(x,y,z), 描述转轴可由α, β,γ。 二、刚体的运动分类 1.平动:刚体在运动过程中,刚体上任意直线始终平行. 任意一点均可代表刚体的运动,通常选质心为代表.需要三个独立变量,可以看成质点力学问题.(注意:平动未必是直线运动) 2.定轴转动: 刚体上有两点不动,刚体绕过这两点的直线转动,该直线为转轴. 需要一个独立变 量φ 3.平面平行运动: 刚体上各点均平行于某一固定平面运动。可以用平行于固定平面的截面代 表刚体。需要三个独立变量。 4.定点运动: 刚体中一点不动,刚体绕过固定点的瞬转转动。需三个独立的欧拉角。 5.一般运动: 平动+转动 §3.2 角速度矢量 定轴转动时角位移用有向线段表示,右手法确定其方向.有向线段不一定是矢量,必须满足平行四边形法则,对定点转动时,不能直接推广,因不存在固定轴. ω = lim ?n = d n 刚体在 dt 时间内转过的角位移为 d n ,则角速度定义为 角速度反映刚体转动的快慢。 ?t →0 ?t dt 线速度与角速度的关系:d r =d n ?r , ∴ v = d r dt =ω ?r

刚体的基本运动

第七章 刚体的基本运动 一、目的要求 1.明确刚体平行移动(平动)和刚体绕定轴转动的特征,能正确地判断作平动的刚体和定轴转动的刚体。 2.对刚体定轴转动时的转动方程、角速度和角加速度及它们之间的关系要清晰的理解,熟知匀速和匀变速转动的定义与公式。 3.能熟练地计算定轴转动刚体上任一点的速度和加速度。 4.掌握传动比的概念及其公式的应用。 5.对角速度矢、角加速度矢以及用矢积表示定轴转动刚体上任一点的速度和加速度有初步了解。 二、基本内容 刚体的平动;刚体绕定轴转动;转动刚体内各点的速度和加速度;轮系的转动比;以矢量表示角速度和角加速度,以矢积表示点的速度和加速度。 (1)基本概念 刚体平动与定轴转动的定义,刚体在作这两种运动时刚体上各点速度、加速度的分布规律。 (2)主要公式 平动刚体上,任意两点之间均有 B A v v =,B A a a = 定轴转动刚体上任一点的速度和加速度为 ωr v =,ατr a =,2ωr a n =,22n a a a +=τ,n a a tg τθ= 以矢积表示的刚体上一点的速度与加速度为 r v ?=ω v r a ?+?=ωα 三、重点和难点

1.重点 (1)刚体平动及其运动特征。 (2)刚体的定轴转动,转动方程,角速度与角加速度。 (3)转动刚体内各点的速度与加速度。 2.难点: 用矢积表示刚体上任一点的速度与加速度。 四、学习建议 (1)对刚体平动强调“三相同”。 (2)对刚体绕定轴转动的特征及其上点的速度,加速度分布规律要讲透,让学生熟练掌握已知刚体转动规律会求其上一点的运动规律,反之,已知转动刚体上一点的运动规律要会求其上各点的运动规律及整体的转动规律。 (3)对轮系传动比作一般介绍。 (4)对ω ,α 方向的确定要介绍练习,对速度和加速度用矢积表示只作一 般介绍以供推导公式用。

清华大学版理论力学课后习题集标准答案全集第6章刚体平面运动分析

6章 刚体的平面运动分析 6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0?= 0。试求动齿轮以圆心A 为基点的平面运动方程。 解:?cos )(r R x A += (1) ?sin )(r R y A += (2) α为常数,当t = 0时,0ω=0?= 0 22 1t α?= (3) 起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过 θ??+=A 因动齿轮纯滚,故有? ? =CP CP 0,即 θ?r R = ?θr R = , ??r r R A += (4) 将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为: ??? ? ?? ??? +=+=+=22 2212sin )(2cos )(t r r R t r R y t r R x A A A α?αα 6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。试以杆与铅垂线的夹角θ 表示杆的角速度。 解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬心。则角速度杆AB 为 h v AC v AP v AB θθω2 000cos cos === 6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。试问当拖车以速度v 前进时,轮A 与垫滚B 的角速度A ω与B ω有什么关系?设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。 解:R v R v A A == ω R v R v B B 22==ω B A ωω2= 6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。设杆BC 在水平位置时,滚子的角速度ω=12 rad/s ,θ=30?,?=60?,BC =270mm 。试求该瞬时杆BC 的角速度和点C 的速度。 习题6-1图 A B C v 0 h θ 习题6-2图 P ωAB v C A B C v o h θ 习题6-2解图 习题6-3解图 习题6-3图 v A = v v B = v ωA ωB

刚体运动习题

1、如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动,假定一滑轮质量为M ,半径为R ,滑轮轴光滑,试求该物体由静止开始下落的过程中,下落速度与时间的关系。 解:物体由静止开始下落,作匀变速直线运动 212mg T ma TR I MR a R βββ-=? ??==?? =?? 22m a g m M ?=+ 00v =, 22m v at gt m M ==+ 2、半径为R ,质量为M 的均匀圆盘能绕其水平轴转动,一细绳绕在圆盘的边缘,绳上挂质量为m 的重物,使圆盘得以转动。 (1)求圆盘的角加速度; (2)当物体从静止出发下降距离h 时,物体和圆盘的动能各为多少? 解:(1)212mg T ma TR I MR a R βββ-=? ??==?? =?? 22,2(2)m mg a g m M m M R β?==++ (2) 物体作匀变速直线运动,2 2v ah =,物体的动能: 2 211222k m E mv gh m M ==+ 根据机械能守恒,圆盘的动能:212k k mM E mgh E gh m M =-= + 3、一轻绳绕于半径r=的飞轮边缘,现以恒力F=98N 拉绳的一端,使飞轮由静止开始转动,已知飞轮的转动惯量20.5I Kg m =?,飞轮与轴承之间的摩擦不计。求: (1)飞轮的角加速度; (2)绳子下拉5m 时,飞轮的角速度和飞轮获得的动能? M m R

解:2980.2 (1),39.2/0.5 F R F R I rad s I ββ???== == 2 (2)9854901 22249044.27/0.5 k W F S J W E Iw W W rad s I =?=?==?=?=== 4、一轻绳跨过两个质量均为m ,半径均为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 和2m 的重物,如图所示。绳与滑轮间无相对滑动,滑轮轴光滑,两个定 滑轮的转动惯量均为22 1 mr ,将由两个定滑轮以及质量 为m 和2m 的重物组成的系统从静止释放,求两滑轮之间绳内的张力。 解: 122122221212 mg T ma T mg ma T r Tr mr Tr T r mr a r βββ? -=? ? -=? ?? -=??? -=? ? =?? 118T mg ?= 5、长为l ,质量为m 均质细棒,可绕固定轴O (棒的一个端点), 在竖直平面内无摩擦转动,如图所示。棒原静止在水平位置,将其释放后当转过θ角时,求棒的角加速度β、角速度ω。 解:力矩:cos 2 l M mg θ= 转动惯量:21 3 I ml =, 转动定理:3cos 2M g I l βθ= = 动能定理: 21sin 22 l I mg ωθ=,3sin g l ωθ= θ O

第八章刚体的平面运动习题解答资料

习 题 8-1 椭圆规尺AB 由曲柄OC 带动,曲柄以匀角速度O ω绕轴O 转动,初始时OC 水平,如图8-28所示。OC = BC = AC =r ,取C 为基点,试求椭圆规尺AB 的平面运动方程。 图8-28 t t r y t r x O O C O C ω?ωω===sin cos 8-2 半径为R 的圆柱缠以细绳,绳的B 端固定在天花板上,如图8-29所示。圆柱自静止下落,其轴心的速度为3/32gh v A =,其中g 为常量,h 为轴心A 至初始位置的距离。试求圆柱的平面运动方程。 图8-29 3/32gh v A = 3/22 gh v A = 3/g a A = 3/2gt x A = 0=A y )3/(2r gt A =? 8-3 杆AB 的A 端以等速v 沿水平面向右滑动,运动时杆恒与一半径为R 的固定半圆柱面相切,如图8-30所示。设杆与水平面间的夹角为θ,试以角θ表示杆的角速度。 图8-30 瞬心法 θ θθθ ωcos sin cot sin 2R v R v AI v A = = = 基点法 θsin v v CA = θθ θθωcos sin cot sin 2R v R v CA v CA = == 8-4 图8-31所示两平行齿条同向运动,速度分别为v 1和v 2,齿条之间夹一半径为r 的 齿轮,试求齿轮的角速度及其中心O 的速度。 图8-31 AB B A v v v += ωr v v 221+= r v v 22 1-= ω OB B O v v v += 2 2 12v v r v v O += +=ω 8-5 两直杆AC 、BC 铰接于点C ,杆长均为l ,其两端A 、B 分别沿两直线运动,如图8-32所示。当ADBC 成一平行四边形时,m/s 4.0m/s,2.0==B A v v ,试求此时点C 的速度。 图8-32

第4章点的运动和刚体基本运动习题解答080814

第四章 点的运动和刚体基本运动 本章要点 一、点的运动 1 点运动位置的确定的三种方法 ⅰ)矢量法:)(t r r =; ⅱ)直角坐标法:)(t x x =,)(t y y =,)(t z z =; ⅲ)弧坐标法(轨迹已知):)(t s s =. 2 点的速度与加速度的矢量表示 速度 t d d r v =, 加速度 22t d d t d d r v a == . 3 点的速度与加速度的直角坐标表示 速度在各坐标轴上的投影为 t x v d d = x , t y v d d =y , t z v d d =z . 速度的大小和方向余弦为 ? ? ? ??===++=v v v v v v v v v v z y x 2z 2y 2x ),cos(,),cos(,),cos(k v j v i v 加速度在各坐标轴上的投影为 222222d d d d d d d d d d d d dt z t v a ,t y t v a ,t x t v a z z y y x x ====== 加速度的大小和方向余弦分别为 ? ? ? ??===++=a a a a a a a a a a z y x 2z 2y 2x ),cos(,),cos(,),cos(k a j a i a 4 点的速度与加速度的弧坐标表示 点的速度 τv t d s d = , 切向加速度 ττa 22t d s d t d d ==v τ;

法向加速度 n a ρ v 2 n =, 其中τ为切线单位矢量,指向弧坐标增加的方向;n 表示主法线正向的单位矢量,指向曲率中心(即指向曲线凹的一方)。 全加速度为 n τa a a += 全加速度a 的大小和它与法线间夹角的正切分别为 2 n 2τa a a +=,()n τ tg a a = n a, 解题要领: 1 确定动点,根据题意是选择矢量法、直角坐标法还是弧坐标法,三种方法各有所长. 2 从点的运动方程出发求点的速度和加速度是对时间的求导运算;反之,也可以从加速度出发求速度和运动方程,或从速度出发求运动方程,这是积分运算,但结果都不唯一 ,积分常数需要用初始条件来确定。 3 从直角坐标形式的运动方程出发计算切向加速度、法向加速度、曲率半径、弧坐标的过程 点的速度:222z y x v v v v ++= , 点的加速度: 2 22z y x a a a a ++=, 切向加速度: t d d t v = a , 法向加速度:2 t 2n a a a -=, 曲率半径:n 2 a v =ρ, 弧坐标:?=t t v s 0d . 二、刚体的平移 刚体在运动过程中,其上任意一条直线始终平行于它的初始位置,刚体的这种运动称为平移。具有性质:刚体平移时,其上各点的轨迹形状相同,在同一瞬时,各点的速度和加速度也相同。刚体的平移问题可以归结为点的运动问题. 三、刚体的定轴转动 1 刚体定轴转动的整体描述 转动方程 )(t ??=, 角速度 t d d ?ω= , 角加速度 22t d d t d d ?ωα== . 匀速转动(ω为常量),则 t ω??+=0,

第二章 刚体的基本运动

第二章 刚体的基本运动 一、目的要求 1.明确刚体平行移动(平动)和刚体绕定轴转动的特征,能正确地判断作平动的刚体和定轴转动的刚体。 2.对刚体定轴转动时的转动方程、角速度和角加速度及它们之间的关系要清晰的理解,熟知匀速和匀变速转动的定义与公式。 3.能熟练地计算定轴转动刚体上任一点的速度和加速度。 4.掌握传动比的概念及其公式的应用。 5.对角速度矢、角加速度矢以及用矢积表示定轴转动刚体上任一点的速度和加速度有初步了解。 二、基本内容 刚体的平动;刚体绕定轴转动;转动刚体内各点的速度和加速度;轮系的转动比;以矢量表示角速度和角加速度,以矢积表示点的速度和加速度。 (1)基本概念 刚体平动与定轴转动的定义,刚体在作这两种运动时刚体上各点速度、加速度的分布规律。 (2)主要公式 平动刚体上,任意两点之间均有 B A v v =,B A a a = 定轴转动刚体上任一点的速度和加速度为 ωr v =,ατr a =,2ωr a n =,22n a a a +=τ,n a a tg τ θ= 以矢积表示的刚体上一点的速度与加速度为 r v ?=ω v r a ?+?=ωα

三、重点和难点 1.重点 (1)刚体平动及其运动特征。 (2)刚体的定轴转动,转动方程,角速度与角加速度。 (3)转动刚体内各点的速度与加速度。 2.难点: 用矢积表示刚体上任一点的速度与加速度。 四、学习建议 (1)对刚体平动强调“三相同”。 (2)对刚体绕定轴转动的特征及其上点的速度,加速度分布规律要讲透,让学生熟练掌握已知刚体转动规律会求其上一点的运动规律,反之,已知转动刚体上一点的运动规律要会求其上各点的运动规律及整体的转动规律。 (3)对轮系传动比作一般介绍。 (4)对ω ,α 方向的确定要介绍练习,对速度和加速度用矢积表示只作一 般介绍以供推导公式用。

理论力学---第4章点的运动和刚体基本运动习题解答

第四章 点的运动和刚体基本运动 习题解答 4-1 图示曲线规尺的杆长200==AB OA mm ,50====AE AC DE CD mm 。杆OA 绕O 轴转动的规律为t 5 π?= rad ,并且当运动开始时,角 0=?,求尺上D 点的运动方程和轨迹。 解: 已知t π?2.0=,故点D 的运动方程为 m m 2.0cos 200D t x π= m m 2.0sin 100D t y π= 消去时间t 得到点D 的轨迹方程为 11002002 222=+D D y x (椭圆) 4-2 图示AB 杆长l ,以t ω?=的规律绕B 点转动, ω为常量。而与杆连接的滑块B 以t b a s ωsin +=的规 律沿水平线作谐振动,a 、b 为常量。求A 点的轨迹。 解: 采用直角坐标法,取图示直角坐标系O xy , 则A 点位置坐标为?sin l s x += ,?cos l y -=,即 ()t l b a x ωsin ++= t l y ωcos -=. 消去时间t 得A 点轨迹方程为: 2 2 2 2()1()x a y b l l -+=+.(椭圆) 4-3 套筒A 由绕过定滑轮B 的绳索牵引而沿导轨上升,滑 轮中心到导轨的距离为l ,如图所示。设绳索以等速0v 拉下,忽略滑轮尺寸。求套筒A 的速度和加速度与距离x 的关系式。 解:设0=t 时,绳上C 点位于B 处,在瞬时t ,到达图示位置 则 =++= +t v l x BC AB 022常量,将上式求导,得到管套 A 的速度和加速度为 2 20d d l x x v t x v A +-==, 32 20d d x l v t v a A A -==, 负号表示A A a v ,的实际方向与x 轴相反。 4-4 如图所示,半径为R 的圆形凸轮可绕O 轴转动,带动顶杆BC 作铅垂直线运动。设凸轮圆心在A 点,偏心距e =OA ,t ω?=,其中ω为常量。试求顶杆上B 点的运动方程、速度和加速度。 解:以O 点为原点建立坐标系,由余弦定理可得 2222cos AB OA OB OA OB t ω=+-?? 其中OA=e ,AB=R ,设B y =OB 代入上式 题 4-1图 题4-2图 题4-3图

第8章 刚体的简单运动练习题

第七章刚体的简单运动练习题 一、判断题 1. 在刚体运动过程中,若其上有一条直线始终平行于它的初始位置,这种刚体的运动就是平动。() 2.定轴转动刚体上与转动轴平行的任一直线上的各点加速度的大小相等,而且方向也相同。 3.刚体作平动时,其上各点的轨迹可以是直线,可以是平面曲线,也可以是空间曲线。 4. 刚体作定轴转动时,垂直于转动轴的同一直线上的各点,不但速度的方向相同而且其加速度的方向也相同。 5. 两个作定轴转动的刚体,若其角加速度始终相等,则其转动方程相同。 6. 刚体平动时,若刚体上任一点的运动已知,则其它各点的运动随之确定。 7.定轴转动刚体上点的速度可以用矢积表示为v=ω×r,其中,ω是刚体的角速度矢量,r 是从定轴上任一点引出的矢径。() 二、选择题 1.圆轮绕固定轴O转动,某瞬时轮缘上一点的速度v和加速度a如图所示,试问那些情况是不可能的? A(a)(b)的运动是不可能的; B(a)(c)的运动是不可能的; C(b)(c)的运动是不可能的; D均不可能。 2. 在图示机构中,杆,杆, 且cm,cm, CM = MD = 30cm, 若杆以角速度 匀速转动,则D点的速度的大小为------cm/3,M点 的加速度的大小为------。 A.60 B.120 C.150. D.360

3. 圆盘作定轴转动,轮缘上一点M 的加速度a 分别有图示三种情况。则在该三种情况下,圆盘的角速度、角加速度 哪个等于零,哪个不 等于零? 图(a) ﹍﹍﹍,α﹍﹍﹍ 图(b) ﹍﹍﹍,α﹍﹍﹍ 图(c)﹍﹍﹍,α﹍﹍﹍ ① 等于零 ② 不等于零 4. 已知正方形板 ABCD 作定轴转动,转轴垂直于板面,A 点的速 度 ,加速度,方向如图。则正方形板转动的角速度的大小为---- ① ② ③ 无法确定 三、填空题 1.图中轮的角速度是 ,则轮的角速度=_________;转向为_________。 2. 已知直角T 字杆某瞬时以角速度ω、角加速 度α在图平面内绕O 转动,则C 点的速度为 ( );加速度为( )(方向均应在图 上表示)。 答案: 答案:一、1. ×2. √3. √4. √5. ×6. √ 二、1.B;2.B,D;3.a (1)(2),b (2)(2), c(2)(1) 4.(1) 三、1.1133R R ωω= 逆时针方向 2. ω22b a v +=()()4222ω++=a b a a ω22b a v +=()()4222ω++=a b a a

刚体平面运动习题

第8章 刚体平面运动习题 1.是非题(对画√,错画×) 8-1.刚体平面运动为其上任意一点与某一固定平面的距离始终平行的运动。( ) 8-2.平面图形的运动可以看成是随着基点的平移和绕基点的转动的合成.( ) 8-3.平面图形上任意两点的速度在某固定轴上投影相等。( ) 8-4.平面图形随着基点平移的速度和加速度与基点的选择有关。( ) 8-5.平面图形绕基点转动的角速度和角加速度与基点的选择有关。( ) 8-6.速度瞬心点处的速度为零,加速度也为零。( ) 8-7.刚体的平移也是平面运动。( ) 2.填空题(把正确的答案写在横线上) 8-8.在平直轨道作纯滚动的圆轮,与地面接触点的速度为 。 8-9.平面图形上任意两点的速度在 上投影相等。 8-10.某瞬时刚体作平移,其角速度为 ;刚体上各点速度 ;各点加速度 。 3.简答题 8-11.确定图示平面运动物体的速度瞬心位置。 题8-11图 (a) (b) (c) 8-12.若刚体作平面运动,下面平面图形上A 、B 的速度方向正确吗? 题8-12图 (a) (b) (c) 8-13.下面图形中O 1A 和AC 的速度分布对吗? 8-14.圆轮做曲线滚动,某瞬时轮心的速度o v 和加速度o a ,轮的半径为R ,则轮心的角

加速度等于多少?速度瞬心点处的加速度大小和方向如何确定? 题8-13图 B 8-15.用基点法求平面图形个点的加速度时,为什么没有科氏加速度? 4.计算题 8-16.椭圆规尺AB 由曲柄OC 带动,曲柄以匀角速度o ω绕O 轴转动,如图所示,若取C 为基点,OC=BC=AC=r ,试求椭圆规尺AB 的平面运动方程。 8-17.半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动,如图所示。曲柄以匀角加速度α绕O 轴转动,设初始时角速度0=ω、角加速度0=α、转角0=?,若选动齿轮的轮心C 点为基点,试求动齿轮的平面运动方程。 题8-16图 题8-17图 8-18.曲柄连杆机构,已知OA =40cm ,连杆AB =1m ,曲柄OA 绕O 轴以转速180=n r/min 匀速转动,如图所示。试求当曲柄OA 与水平线成o 45角时,连杆AB 的角速度和中点M 的速度大小。 8-19.已知曲柄OA =r ,杆BC=2r ,曲柄OA 以匀角速度4rad/s =ω顺时针转动,如图所示。试求在图示瞬时点B 的速度以及杆BC 的角速度。

刚体平面运动习题

刚体平面运动习题 第八章刚体平面运动的练习 1.真或假(勾选正确和交叉错误) 8-1。刚体的平面运动是一种运动,在这种运动中,刚体上的任何一点与固定平面之间的距离总是平行的。()8-2。平面图形的运动可以看作基点的平移和围绕基点的旋转的组合。()8-3。平面图形上任意两点的速度都相等地投影在一个固定的轴上。()()()8-6。瞬时速度中心的速度为零,加速度为零。()8-7。刚体的平移也是一种平面运动。()2。填空(在横线上写出正确答案) 8-8。在直线轨道上纯滚动时,圆轮与地面接触点的速度为。8-9。平面图上任意两点的速度在上投影中相等。 8-10。瞬时刚体平移时的角速度是:刚体上每个点的速度;每个点的加速度。 3.简短回答问题 8-11。确定图中所示平面运动物体的瞬时速度中心的位置。AbabaccωOboaωOdbω(b)Co(a)(c)图8-11 (d) 8-12。如果一个刚体在一个平面上运动,下面平面图中A和B的速度方向是正确的吗?问题8-12图(c) 8-13。下图中O1A和AC的速度分布是否正确? 8-14。当圆形车轮在曲线上滚动时,某一瞬时车轮中心的速度vo和加速度ao,而车轮的半径是R,即车轮中心的角度 加速度是多少?如何确定瞬时速度中心的加速度的大小和方向?

蟹爪兰O1VβA01ωO2P 8-13 图8-14 8-15。为什么用基点法计算平面图中单个点的加速度时没有科里奥利加速度?4.计算问题 8-16。椭圆规AB由曲柄OC驱动,曲柄OC以均匀的角速度ω O绕O轴旋转。如图所示,如果以C为基点,OC=BC=AC=r,试着找出椭圆规AB的平面运动方程。 8-17。半径为R的齿轮由曲柄OA驱动,沿半径为R的固定齿轮滚动,如图所示。曲柄以均匀的角加速度α绕O轴旋转,并设定初始角速度ω。角加速度α?0.角落??0.如果选择移动齿轮的中心C点作为基点,试着找出移动齿轮的平面运动方程。 yay rarαφBMMoxorBx 8-16图ωOO 图8-17 8-18。曲柄和连杆机构,称为OA = 40cm厘米,连杆AB = 1m米,曲柄OA绕O轴以N?180转/分钟均匀旋转,如图所示。当曲柄臂与水平线成45度角时,试着找出连杆臂的角速度和中点的速度。 8-19。众所周知,曲柄OA=r,连杆BC=2r,曲柄OA处于均匀角速度ω?4顺时针旋转/秒,如图所示。试着找出图中瞬时点B的速度和连杆BC的角速度。 AMnOBArOB302rCω问题8-18 图8-19 8-20。如图所示,筛选机通过曲柄OA驱动筛BC摆动。众所周知,

第八章 刚体的平面运动习题解

第八章 刚体的平面运动习题解 [习题8-1] 椭圆规尺AB由曲柄OC带动,曲柄以匀角速度ω0绕O轴匀速转动。如OC= BC=AC=r,并取C为基点,求椭圆规尺AB的平面运动方程。 解: 椭圆规尺AB的平面运动方程为: t r r x C 0cos cos ω?== t r r y C 0sin sin ω?== t 0ω?-=(顺时针转为负)。 [习题8-2] 半径为r的齿轮由曲柄OA带动,沿半径为R的固定齿轮滚动。如曲柄OA以匀加 速度α绕O轴转动,且当运动开始时,角速度ω0=0,转角φ=0,求动齿轮以中心A为基点的平面运动方程。 解: αω =dt d dt d αω= 1C t +=αω 100C +?=α 01=C t αω= t dt d αω? == tdt d α?= 222 1C t +=α? 2202 1 0C +?=α 02=C 22 1t α?=

2cos )(cos )(2 t r R r R x A α?+=+= 2 sin )(sin )(2 t r R r R y A α?+=+= A A r t r R OA v ωαω=?+=?=)( t r r R A αω?+= t r r R dt d A α??+= dt t r r R d A ??+= α? 32 2 C t r r R A +??+=α? 32020C r r R +??+= α 03=C 22t r r R A α??+= 故,动齿轮以中心A为基点的平面运动方程为: 2 cos )(2 t r R x A α+= 2 sin )(2 t r R y A α+= 22t r r R A α??+= [习题8-3] 试证明:作平面运动的平面图形内任意两点的连线中点的速度等于该两点速度的矢量和之一半。 已知:如图所示,CB AC =, →A v ,→ B v 求证:)(2 1→ →→ +=B A C v v v 证明:

理论力学 刚体平面运动部分参考答案

一、如图所示,OA 杆以匀角速度ω绕O 轴转动,圆轮可沿水平直线作纯滚动。已知圆轮半径为R ,且OA=R , AB=2R 。试求图示位置圆轮的角速度和圆心B 的加速度。 一、如图所示,OA 杆以匀角速度ω绕O 轴转动,圆轮可沿水平直线作纯滚动。已知圆轮半径为R ,且OA=R ,AB=2R 。试求图示位置圆轮的角速度和圆心B 的加速度。(18分) 解:(1)速度分析及计算:AB 杆和圆轮作平面运动,选A 为基点 BA A B v v v += OA 杆绕O 轴转动:ω?=R v A AB=2R ,圆轮半径为R ,所以杆AB 与水平面夹角为30° 速度平行四边行如图。由图中几何关系可得: 3/330tan ω?= =R v v A B C 为速度瞬心,此瞬时,圆轮可看成绕速度瞬心C 做定轴转动。 O 轴转动: 2ω?==R a a n A A 由速度平行四边行中几何关系可得: 3 / 230cos /ω?==R v v A BA 所以:22 2 3 2 2// ω?== = R R v AB v a BA BA n BA 选A 为基点,则B 点加速度: τ ++=BA n BA a a a a A B 将上式向x 轴投影得:n BA a a a n --= 30cos 30cos

二、平面连杆机构如图所示。已知:OA =10cm ,AB =BC =24cm 。在图示位置时,OA 的角速度ωOA =3rad/s ,角加 速度αOA =0,θ=60°。图示瞬时O 、A 、C 三点位于同一水平线上。试求该瞬时AB 杆的角速度和角加速度。 二、平面连杆机构如图所示。已知:OA =10cm ,AB =BC =24cm 。在图示位置时,OA 的角速度ωOA =3rad/s ,角加速度αOA =0,图示瞬时O 、A 、C 三点位于同一水平线上。试求该瞬时AB 杆的角速度和角加速度。 解:以A 为基点,根据速度合成定理BA A B v v v +=,对B 进行速度分析, 在速度平行四边形中得: cm /s 30310=?=?===OA v v v oA B A BA ω 选A n B A B A a a a a ++= τ A B 即:n B A B A B n B a a a a a ++=+ττA B 点作加速度矢量图如图。由题可知: 222cm /s 90310=?=?=ωOA a n A 222cm/s 5.3724 30===AB v a BA n BA 22 2cm/s 5.372430===BC v a B n B 将 B 点作加速度矢量式向y 轴投影得: τBA n BA n A n B a a a a +-=- 60cos 30sin 得 : 2cm /s 75.63 -=τBA a 因此得杆AB 的角加速度:

大学物理之刚体的基本运动

五、刚体的定轴转动 程英豪 5-1 刚体运动的基本概念 一、刚体模型 刚体:在外力的作用下,大小和形状都不变的物体。 (物体内任意两点的距离不变) 二、刚体的运动 平动:刚体运动时,其内部任何一条直线,在运动中方向始终不变(各点位移、速度、加速度均相同,可视为质点,刚体质心的 运动代表了刚体平动中每一质元的运动) 转动:刚体的各个质点都绕同一直线(转动轴)作圆周运动。 质心轴:通过质心的转动轴。 定轴转动:转轴固定不动的转动。 旋进(进动):转轴上一点静止,转轴方向变化。 平面平行运动:刚体内所有运动点都平行于某一平面(参考平面)。刚体的一般运动:可以视为平动以及转动的合成。 三、转动惯性的量度(转动惯量) 1、转动惯量 定义: ∑? = i i i z r m I2 ——对z轴的转动惯量 连续分布有: ?=dm r I z 2

刚体的转动动能: 2 21ωz k I E = 转动惯量的物理意义:Iz 表示刚体转动时惯性的大小。 转动惯量Iz 的大小决定于: 1)刚体的质量:同形状的刚体,ρ越大,Iz 就越大; (2)质量的分布:质量相同,dm 分布在 r 越大的地方,则Iz 越大; (3)刚体的转轴位置:同一刚体依不同的转轴而有不同的Iz 。 2、、平行轴定理 2 md J J C +=——平行轴定理 3、薄板的垂直轴定理 z 轴与x 轴、y 轴两两垂直。

4、常见刚体的转动惯量 5-2 刚体定轴转动的运动学规律1、角量与线量之间的关系 对刚体上的质元 Pi , 2、角速度矢量

5-3 刚体定轴转动的动力学规律 一、刚体定轴转动定律 dt d I M z z ω = (Mz :总外力矩,各外力对转轴对z 轴的力矩代数和) Mz=0 时,刚体将保持静止或匀速(匀角速度)转动。 二、刚体定轴转动的动量矩定理 守恒定律 1.刚体定轴转动的动量矩 刚体对定轴 z 的动量矩: 2.刚体定轴转动的动量矩定理

刚体的基本运动

第三章 刚体力学 §3.1 刚体运动的分析 §3.2 角速度矢量 §3.3 刚体运动微分方程 §3.4 刚体平衡方程 §3.5 转动惯量 §3.6 刚体的平动与定轴转动 §3.7刚体的平面平行运动 §3.1 刚体运动的分析 一、描述刚体位置的独立变量 1.刚体是特殊质点组dr ij =0,注意:它是一种理想模型,形变大小可忽略时可视为刚体。 2.描述刚体位置的独立变数 描述一个质点需(x,y,z), 对刚体是否用3n 个变量?否,由于任意质点之间的距离不变,如确定不在同一直线上的三点,即可确定刚体的位置,需9个变量,由于两点间的距离保持不变,所以共需9-3=6个变量即可。 刚体的任意运动=质心的平动+绕质心的转动,描述质心可用(x,y,z), 描述转轴可由α,β,γ。 二、刚体的运动分类 1.平动:刚体在运动过程中,刚体上任意直线始终平行. 任意一点均可代表刚体的运动,通常选质心为代表.需要三个独立变量,可以看成质点力学问题.(注意:平动未必是直线运动) 2.定轴转动: 刚体上有两点不动,刚体绕过这两点的直线转动,该直线为转轴. 需要一个独立变量φ 3.平面平行运动: 刚体上各点均平行于某一固定平面运动。可以用平行于固定平面的截面代表刚体。需要三个独立变量。 4.定点运动: 刚体中一点不动,刚体绕过固定点的瞬转转动。需三个独立的欧拉角。 5.一般运动: 平动+转动 §3.2 角速度矢量 定轴转动时角位移用有向线段表示,右手法确定其方向.有向线段不一定是矢量,必须满足平行四边形法则,对定点转动时,不能直接推广,因不存在固定轴. 刚体在dt 时间内转过的角位移为d n ,则角速度定义为 0lim t d t dt ?→?== ?n n ω 角速度反映刚体转动的快慢。 线速度与角速度的关系: ,t d d d d =??∴= =r v r n r ωr Q

第6章刚体的平面运动习题解答080814

第六章 刚体的平面运动 本章要点 一、刚体平面运动的描述 1 刚体的平面运动方程:)(t x x A A =,)(t y y A A =,)(t ??=. 2 平面图形的运动可以看成是刚体平移和转动的合成运动:刚体的平面运动(绝对运动)便可分解为随动坐标系(基点)的平移(牵连运动)和相对动坐标系(基点)的转动(相对运动)。其平移部分与基点的选取有关,而转动部分与基点的选取无关。因此,以后凡涉及到平面图形相对转动的角速度和角加速度时,不必指明基点,而只说是平面图形的角速度和角加速度即可。 二、平面运动刚体上点的速度 1 基点法:平面图形内任一点B 的速度,等于基点A 的速度与B 点绕基点转动速度的矢量和,即 BA A B v v v +=, 其中BA v 的大小为ωAB v BA =,方向垂直于AB ,指向与图形的转动方向相一致。 2投影法 速度投影定理:在任一瞬时,平面图形上任意两点的速度在这两点连线上的投影相等,即 AB A AB B v v ][][= 3瞬心法 任意瞬时平面运动图形上都存在速度为零的点,称为该平面图形的瞬时速度中心,简称瞬心。 平面图形上各点速度在某瞬时绕瞬心的分布与绕定轴转动时的分布相同,但有本质区别。绕定轴转动时,转动中心是一个固定不动的点,而速度瞬心的位置是随时间而变化的。 面图形内任意一点的速度,其大小等于该点到速度瞬心的距离乘以图形的角速度,即 ωCM v M =, 其方向与CM 相垂直并指向图形转动的一方。若在某瞬时,0=ω,则称此时刚体作瞬时平移,瞬时平移刚体的角加速度不为零。 解题要领: 1 建立平面运动刚体的运动方程时要注意选取合适的点为基点,以使问题简单,。 2 由于在基点建立的是平移坐标系,因此,相对基点的角速度就是相对惯性坐标系的角速度。 3 平面运动刚体上点的速度计算的3种方法各有所长:基点法包含刚体运动的速度信息,但过程繁杂;速度投影法能快捷地求出一点的速度,但失去角速度信息;瞬心法简单明了和直观是

相关文档
最新文档