高光谱遥感简介

高光谱图像分类

《机器学习》课程项目报告 高光谱图像分类 ——基于CNN和ELM 学院信息工程学院 专业电子与通信工程 学号 35 学生姓名曹发贤 同组学生陈惠明、陈涛 硕士导师杨志景 2016 年 11 月

一、项目意义与价值 高光谱遥感技术起源于 20 世纪 80年代初,是在多光谱遥感技术基础之上发展起来的[1]。高光谱遥感能够通过成像光谱仪在可见光、近红外、短波红外、中红外等电磁波谱范围获取近似连续的光谱曲线,将表征地物几何位置关系的空间信息与表征地物属性特征的光谱信息有机地融合在了一起,使得提取地物的细节信息成为可能。随着新型成像光谱仪的光谱分辨率的提高,人们对相关地物的光谱属性特征的了解也不断深入,许多隐藏在狭窄光谱范围内的地物特性逐渐被人们所发现,这些因素大大加速了遥感技术的发展,使高光谱遥感成为 21 世纪遥感技术领域重要的研究方向之一。 在将高光谱数据应用于各领域之前,必须进行必要的数据处理。常用的数据处理技术方法包括:数据降维、目标检测、变化检测等。其中,分类是遥感数据处理中比较重要的环节,分类结果不但直接提取了影像数据有效信息,可以直接运用于实际需求中,同时也是实现各种应用的前提,为后续应用提供有用的数据信息和技术支持,如为目标检测提供先验信息、为解混合提供端元信息等。 相对于多光谱遥感而言,由于高光谱遥感的波谱覆盖范围较宽,因此我们可以根据需要选择特定的波段来突显地物特征,从而能够精确地处理地物的光谱信[2]。目前,许多国家开展大量的科研项目对高光谱遥感进行研究,研制出许多不同类型的成像光谱仪。高光谱遥感正逐步从地面遥感发展到航空遥感和航天遥感,并在地图绘制、资源勘探、农作物监测、精细农业、海洋环境监测等领域发挥重要的作用。

高光谱遥感期末考复习材料

1、地面光谱测量的作用: ①地面光谱辐射计在成像光谱仪过顶时,常用于地面野外或实验室同步观测,获取下 行太阳辐射,以用于遥感器定标。 ②在一些反射率转换模型中,需要引入地面光谱辐射计测取得地面点光谱来完成 DN 值图像到反射率图像的转换。 ③地面光谱辐射计可以为图像识别获取目标光谱和建立特征项。但是,这时地面光谱 测量要在空间尺度上与图像像元尺度相对应,且要具有代表性;另外,地面光谱测 量要与高光谱图像获取条件相一致。 ④通过地面光谱辐射计测量数据和地面模拟,可以帮助人们了解某一地物被高光谱遥 感探测的可能性,理解其辐射特性,确定需要采用的探测波长、光谱分辨率、探测 空间分辨率、信噪比、最佳遥感探测时间等重要参数。 ⑤地面光谱辐射计还可以勇于地面地质填图。它可以用于矿物的光谱吸收特征,识别 地面矿物或矿物的集合,从而直接完成野外矿物填图。 ⑥可以用来建立地物的表面方向性光谱反射特性。 ⑦建立目标地面光谱数据与目标特性间的定量关系。 2、高光谱成像特点: ①高光谱分辨率。高光谱成像光谱仪能获得整个可见光、近红外、短波红外、热红外 波段的多而窄的连续光谱,波段多至几十甚至数百个,其分辨率可以达到纳米级, 由于分辨率高,数十、数百个光谱图像可以获得影像中每个像元的精细光谱。 ②图谱合一。高光谱遥感获取的地表图像包含了地物丰富的空间、辐射和光谱三重信 息,这些信息表现了地物空间分布的影像特征,同时也可能以其中某一像元或像元 组为目标获得他们的辐射强度以及光谱特征。 ③光谱波段多,在某一光谱段范围内连续成像。成像光谱仪连续测量相邻地物的光谱 信号,可以转化城光谱反射曲线,真实地记录了入射光被物体所反射回来的能量百 分比随波长的变化规律。不同物质间这种千差万别的光谱特征和形态也正是利用高 光谱遥感技术实现地物精细探测的应用基础。 3、高光谱遥感图像数据表达: ①图像立方体——成像光谱信息集。 ②二维光谱信息表达——光谱曲线。 ③三维光谱信息表达——光谱曲线图。(书本44页) 4、成像光谱仪的空间成像方式: (1)摆扫型成像光谱仪。摆扫型成像光谱仪由光机左右摆扫和飞行平台向前运动完成二维空间成像,其线列探测器完成每个瞬时视场像元的光谱维获取。扫描镜对地左右平行扫描成像,即扫描的运动方向与遥感平台运动方向垂直。其优点:可以得到很大的总视场,像元配准好,不同波段任何时候都凝视同一像元;在每个光谱波段只有一个探测元件需要定标,增强了数据的稳定性;由于是进入物镜后再分光,一台仪器的光谱波段范围可以做的很宽,比如可见光一直到热红外波段。其不足之处是:由于采用光机扫描,每个像元的凝视时间相对就很短,要进一步提高光谱和空间分辨率以及信噪比比较困难。 (2)推扫型成像光谱仪。是采用一个垂直于运动方向的面阵探测器,在飞行平台向前运动中完成二维空间扫描,它的空间扫描方向是遥感平台运动方向。其优点是:像元的凝视

高光谱遥感

高光谱遥感

? ? ? ?
高光谱遥感的基本概念 高光谱遥感器及平台简介 高光谱遥感技术 高光谱应用概况

高光谱遥感的基本概念
? 高光谱分辨率(简称为高光谱)遥感或成像光 谱遥感技术的发展是过去二十年中人类在对地 观测方面所取得的重大技术突破之一,是当前 遥感的前沿技术。它是指利用很多很窄的电磁 波波段获取许多非常窄且光谱连续的图像数据 的技术,融合了成像技术和光谱技术,准实时 地获取研究对象的影像和每个像元的光谱分布。

国际遥感界认为光谱分辨率在10-1λ数量级范围内的为多 光谱(Multispectral),这样的遥感器在可见光和近红外光谱区 只有几个波段,如美陆地卫星TM和法国SPOT卫星等; 光谱分 辨率在10-2λ的遥感信息称之为高光谱(Hyperspectral)遥感。由 于其光谱分辨率高达纳米(nm)数量级,往往具有波段多的特 点,即在可见到近红外光谱区其光谱通道多达数十甚至超过 100以上。随着遥感光谱分辨率的进一步提高,在达到10-3λ 时,遥感即进入了超高光谱(Ultraspectral)阶段 、
光谱区域(nm) : 400 700 1100 2500 5500 14000
VIS VNIR
PIR
MIR
Sunlight 光谱分辨率 波段数 多光谱 高光谱 5-10 100-200 Δλ/λ 0.1 0.01 VNIR 50-100 5-20
IRT
MIR 100-200 10-50
IRT 1000-2000 100-500

高光谱遥感技术及发展

遥感技术与系统概论 结课作业 高光谱遥感技术及发展

高光谱遥感技术及发展 摘要:经过几十年的发展,无论在遥感平台、遥感传感器、还是遥感信息处理、遥感应用等方面,都获得了飞速的 发展,目前遥感正进入一个以高光谱遥感技术、微波遥感技 术为主的时代。本文系统地阐述了高光谱遥感技术在分析技 术及应用方面的发展概况,并简要介绍了高光谱遥感技术主 要航空/卫星数据的参数及特点。 关键词:高光谱,遥感,现状,进展,应用 一、高光谱遥感的概念及特点 遥感是20 世纪60 年代发展起来的对地观测综合性技术,是指应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术[1]。所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常<10nm)从感兴趣的物体获取有关数据;与之相对的则是传统的宽光谱遥感,通 常>100nm,且波段并不连续。高光谱图像是由成像光谱仪获取的,成像光谱仪为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。它使本来在宽波段遥感中不可

探测的物质,在高光谱中能被探测。 同其它传统遥感相比,高光谱遥感具有以下特点: ⑴波段多。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。 ⑵光谱分辨率高。成像谱仪采样的间隔小,一般为10nm 左右。精细的光谱分辨率反映了地物光谱的细微特征。 ⑶数据量大。随着波段数的增加,数据量呈指数增加[2]。 ⑷信息冗余增加。由于相邻波段的相关性高,信息冗余度增加。 ⑸可提供空间域信息和光谱域信息,即“图谱合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。近二十年来,高光谱遥感技术迅速发展,它集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体,已成为当前遥感领域的前沿技术。 二、发展过程 自80 年代以来,美国已经研制了三代高光谱成像光谱仪。1983 年,第一幅由航空成像光谱仪

高光谱图像分类讲解学习

高光谱图像分类

《机器学习》课程项目报告 高光谱图像分类 ——基于CNN和ELM 学院信息工程学院 专业电子与通信工程 学号 2111603035 学生姓名曹发贤 同组学生陈惠明、陈涛 硕士导师杨志景 2016 年 11 月

一、项目意义与价值 高光谱遥感技术起源于 20 世纪 80年代初,是在多光谱遥感技术基础之上发展起来的[1]。高光谱遥感能够通过成像光谱仪在可见光、近红外、短波红外、中红外等电磁波谱范围获取近似连续的光谱曲线,将表征地物几何位置关系的空间信息与表征地物属性特征的光谱信息有机地融合在了一起,使得提取地物的细节信息成为可能。随着新型成像光谱仪的光谱分辨率的提高,人们对相关地物的光谱属性特征的了解也不断深入,许多隐藏在狭窄光谱范围内的地物特性逐渐被人们所发现,这些因素大大加速了遥感技术的发展,使高光谱遥感成为21 世纪遥感技术领域重要的研究方向之一。 在将高光谱数据应用于各领域之前,必须进行必要的数据处理。常用的数据处理技术方法包括:数据降维、目标检测、变化检测等。其中,分类是遥感数据处理中比较重要的环节,分类结果不但直接提取了影像数据有效信息,可以直接运用于实际需求中,同时也是实现各种应用的前提,为后续应用提供有用的数据信息和技术支持,如为目标检测提供先验信息、为解混合提供端元信息等。 相对于多光谱遥感而言,由于高光谱遥感的波谱覆盖范围较宽,因此我们可以根据需要选择特定的波段来突显地物特征,从而能够精确地处理地物的光谱信[2]。目前,许多国家开展大量的科研项目对高光谱遥感进行研究,研制出许多不同类型的成像光谱仪。高光谱遥感正逐步从地面遥感发展到航空遥感和航天遥感,并在地图绘制、资源勘探、农作物监测、精细农业、海洋环境监测等领域发挥重要的作用。高光谱遥感技术虽然是遥感领域的新技术,但是高光谱图像的分类一直制约着高光谱遥感的应用[3,4],因此对其进行研究显得尤为重要。 高光谱遥感图像较高的光谱分辨率给传统的图像分类识别算法提出严峻的挑战。波段维数的增加不仅加重了数据的存储与传输的负担,同时也加剧了数据处理过程的复杂性,并且由于波段与波段间存在着大量的冗余信息,从而使得传统图像分类算法并不适用于高光谱遥感图像的分类。传统

高光谱遥感的发展与应用_张达

第11卷 第3期2 013年6月光学与光电技术 OPTICS &OPTOELECTRONIC  TECHNOLOGYVol.11,No.3  June,2013收稿日期 2012-09-29; 收到修改稿日期 2012-12- 13作者简介 张达(1981-) ,男,博士,副研究员,硕士生导师,主要从事空间光学遥感仪器的研制、空间光学成像,以及光谱探测技术方面的研究。E-mail:zhangda@ciomp .ac.cn基金项目 国防预研基金(SA050),国家863高技术研究发展计划(2010AA1221091001) ,吉林省科技发展计划(201101079 )资助项目文章编号:1672-3392(2013)03-0067- 07高光谱遥感的发展与应用 张 达 郑玉权 (中国科学院长春光学精密机械与物理研究所,吉林长春130033) 摘要 阐述了高光谱遥感的特点、优势,以及在航空及航天领域的发展情况,列举了几种典型高光谱成像仪的光学系统原理和主要技术指标。在此基础上, 概述了高光谱遥感在植被生态、大气环境、地质矿产、海洋、军事等领域的应用情况。最后对高光谱遥感发展趋势提出了几点建议,包括低反射率目标遥感、高信噪比、高空间分辨率及宽覆盖范围等方面。关键词 高光谱遥感;发展;应用;成像光谱仪中图分类号 TP70 文献标识码 A 1 引 言 遥感技术是20世纪60年代发展起来的对地 观测综合性技术[1] ,随着20世纪80年代成像光谱 技术的出现, 光学遥感进入了高光谱遥感阶段。从20世纪90年代开始, 高光谱遥感已成为国际遥感技术研究的热门课题和光电遥感的最主要手段。 高光谱遥感技术作为对地观测技术的重大突破[ 2] ,其发展潜力巨大。 高光谱遥感实现了遥感数据图像维与光谱维信息的有机融合,在光谱分辨率上有巨大优势,是遥感发展的里程碑。随着高光谱遥感技术的日趋成熟,其应用领域也日益广泛,已渗透到国民经济的各个领域,如环境监测、资源调查、工程建设等,对于推动经济建设、社会进步、环境的改善和国防建设起到了重大的作用。本文主要阐述高光谱遥感的特点、优势以及在航空及航天领域的发展情况,概括了高光谱遥感在植被生态、大气环境、地质矿产, 海洋军事等领域的应用情况。2 高光谱遥感特点与优势 高光谱遥感是高光谱分辨率遥感(Hypersp ec-tral Remote Sensing) 的简称[3] ,它是在电磁波谱的紫外、可见光、近红外、中红外和热红外波段范围 内,获取许多非常窄且光谱连续的影像数据的技 术,是在传统的二维遥感的基础上增加了光谱维,形成的一种独特的三维遥感。对大量的地球表面物质的光谱测量表明, 不同的物体会表现出不同的光谱反射和辐射特征,这种特征引起吸收峰和反射峰的波长宽度在5~50nm左右,其物理内涵是不同的分子、 原子和离子的晶格振动,引起不同波长的光谱发射和吸收,从而产生了不同的光谱特征。运用具有高光谱分辨率的仪器,通过获取图像上任何一个像元或像元组合所反映的地球表面物质的光谱特性, 经过后续数据处理,就能达到快速区分和识别地球表面物质的目的[ 4] 。高光谱遥感的成像光谱仪具有光谱分辨率高(5~10nm),光谱范围宽(0.4μm~2.5μm) 的显著特点,可以分离成几十甚至数百个很窄的波段来接收信息, 所有波段排列在一起能形成一条连续的完整的光谱曲线,光谱的覆盖范围从可见光、近红外到短波红外的全部电磁辐射波谱范围。高光谱数据是一个光谱图像的立方体,其空间图像维描述地表二维空间特征,其光谱维揭示图像每一像元的光谱曲线特征,由此实现了遥感数据图像维与光谱 维信息的有机融合[ 5] 。高光谱遥感在光谱分辨率方面的巨大优势,使得空间对地观测时可获取众多连续波段的地物光谱图像, 从而达到直接识别地球表面物质的目的。地物光谱维信息量的增加为遥感对地观测、地物识别及地理环境变化监测提供了

高光谱遥感影像分类算法 - SVM

高光谱遥感影像分类算法——SVM 1高光谱遥感简介 20 世纪 80 年代以来,遥感技术的最大成就之一就是高光谱遥感技术的兴起[1]。高光谱遥感技术又称成像光谱遥感技术,始于成像光谱仪的研究[2]。所谓高光谱遥感(Hyperspectral Remote Sensing)通俗地说就是指利用很多很窄的电磁波波段从感兴趣的物体中获取有关数据的方法。高光谱遥感的最大特点是,在获得目标地物二维空间影像信息的同时,还可以获得高分辨率的可表征其地物物理属性的光谱信息,即人们常说的具有“图谱合一”的特性。可见,与全色、彩色和多光谱等图像数据相比,高光谱影像革命性地把地物的光谱反射信息、空间信息和地物间的几何关系结合在了一起[3]。因此,可以很客观地说,高光谱遥感是代表遥感最新成就的新型技术之一,同时也是目前国内外学者,特别是遥感领域的学者的研究热点之一[4-5]。 2高光谱遥感研究背景 在以美国为代表的成像光谱仪研制成功,并获得高光谱影像数据后,高光谱遥感影像由于其蕴含了丰富的信息(包括地物的空间位置、结构以及光谱特性等信息)使得人们对地物的识别有了显著的提高,并且在许多方面和领域(比如,农业、林业、地质勘探与调查和军事等)都体现出了潜在的巨大应用价值[6]。虽然高光谱影像数据的确为我们的提供了丰富的对地观测信息,但也正是因为高光谱庞大的数据量和高维数的问题使得我们目前对高光谱数据的处理能力显得较为低效,而这也在一定程度上制约了高光谱数据在现实生产和生活的广泛应用与推广[7-8]。因此,为了响应人们对高光谱影像数据处理方法所提出的新的迫切要求,也为了充分利用高光谱数据所包含的丰富信息以最大程度地发挥高光谱的应用价值,我们必须针对高光谱数据的独有特点,在以往遥感图像数据处理技术的基础上,进一步改善和发展高光谱遥感影像处理分析的方法与技术。 3高光谱遥感分类研究 3.1分类的意义 分类是人类了解和认识世界的不可或缺的基本手段。人类的日常生活和生产实践都离不开,也不可能离开分类活动。面对海量数据,人类需要借助计算机来对自身感兴趣的数据进行自动、高效和准确地分类。这一迫切需求已体现在各个

高光谱遥感影像的光谱匹配算法研究概要

https://www.360docs.net/doc/4217201759.html, 中国科技论文在线高光谱遥感影像的光谱匹配算法研究 蔡燕1,梅玲2作者简介:蔡燕,(1984-),女,硕士研究生,主要研究方向:高光谱遥感 通信联系人:梅玲,(1984-),女,助理工程师,主要研究方向:水文地质. E-mail: meilingcumt@https://www.360docs.net/doc/4217201759.html, (1. 中国矿业大学环境与测绘学院,江苏徐州 221008; 2. 江苏煤炭地质勘探四队,南京 210046) 摘要:在高光谱遥感影像处理中,光谱匹配技术是高光谱地物识别的关键技术之一。本文主要围绕光谱匹配算法的研究展开,分析讨论了常用的几种光谱匹配技术的特点,根据先验知识建立了多种地物标准光谱库,并将其读入程序存储,基于Visual C++平台实现了最小距离匹配,光谱角度匹配,四值编码匹配法,最后基于混淆矩阵对分类图像进行精度比较分析并对三种编码匹配法进行比较。 关键词:高光谱;光谱匹配;最小距离匹配;光谱角度匹配;四值编码 中图分类号:TP751 The Study on the Spectral Matching Technique of hyperspectral romote sensing Cai Yan1, Mei Ling2 (1. School Of Environment Science and Spatial Informatics China University of Mining and Technology, JiangSu XuZhou 221008;

2. JiangSu Geological Prospecting Team Four, NanJing 210046 Abstract: In the hyperspectral image processing, the spectral match technique is one of key techniques to identify and classify materials in the image. This paper addresses some issues of spectral matching methods. Several algorithms are analyzed and compared, such as minimum distance matching, spectral angle mapping and quad-encoding. According to the prior knowledge, standard spectral library including typical land-cover types is built, which is stored and used for spectral matching. All of work is done in the programming environment of Visual C++. Finally, the experimental results are tested and compared when classification accuracies are computed based on confusion matrixes. Keywords:hyperspectral; spectral match; minimum distance matching; spectral angle mapping; quad-encoding 0 引言 高光谱遥感技术的发展和广泛应用是20世纪最具有标志性的科学技术成就之一,与传统的多光谱遥感技术相比,高光谱分辨率遥感的核心特点是图谱合一,即能获取目标的连续窄波段的图像数据[1]。高光谱遥感信息的分析处理集中于光谱 维上进行图像信息的展开和定量分析。 高光谱影像分类与地物识别是建立在传统的遥感图像分类算法基础之上,结合高光谱数据特点,对高光谱图像数据进行目标识别,是对遥感图像基本分类方法的扩展与延伸。高光谱遥感影像有着很高的光谱分辨率,且光谱通道连续,因此对于影像中的任一像元均能获取一条平滑而完整的光谱曲线,将其与地物波谱库中的光谱曲线进行匹配运算,实现地物识别与定量反演[2-4]。光谱匹配技术是成像光谱地物识别的关键技术之一,主要通过对地物光谱与参考光谱的匹配或地物光谱与数据库的比较,求算他们之间的相似性或差异性,突出特征谱段,有小提取光谱维信息,以便对地物特征进行详细分析[5]。本文紧紧围绕光谱匹配的算法分析了最小 距离法,光谱角度匹配法,以及四值编码法,进行精度分析与方法比较。

简述高光谱遥感及其进展与应用综述

高光谱遥感及其进展与应用综述 摘要:高光谱遥感是20世纪80年代兴起的新型对地观测技术。文中归纳了高光谱遥感技术波段多、波段宽度窄,光谱分辨率高,数据量大、信息冗余,“图谱合一”等特点,具有近似连续的地物光谱信息、地表覆盖的识别能力极大提高、地形要素分类识别方法灵活多样、地形要素的定量或半定量分类识别成为可能等优势,简单介绍了高光谱遥感在国外及国内的发展情况。在此基础上,概述了高光谱遥感在植被生态、大气科学、地质矿产、海洋、农业等领域的应用。 关键词:高光谱遥感;发展;应用 高光谱遥感(Hyperspectral Remote Sensing)的兴起是20世纪80年代遥感技术发展的主要成就之一,是当前遥感的前沿技术。高光谱遥感在光谱分辨率上具有巨大的优势,被称为遥感发展的里程碑。世界各国对此类遥感的发展都十分重视,随着高光谱遥感技术的日趋成熟,其应用领域也日益广泛。本文系统地阐述了高光谱遥感及其发展的概况,并简要介绍了高光谱遥感技术的主要应用。 1 高光谱遥感 孙钊在《高光谱遥感的应用》中提到,高光谱遥感是在电磁波谱的可见光、近红外、中红外和热红外波段范围内,利用成像光谱仪获取许多非常窄的光谱连续的影像数据的技术。[1] 高光谱遥感具有较高的光谱分辨率,通常达到10~2λ数量级。[2] 1.1 高光谱遥感特点 综合多篇关于高光谱的期刊文章,总结高光谱具有如下特点: (1)波段多,波段宽度窄。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。 [3]与传统的遥感相比,高光谱分辨率的成像光谱仪为每一个成像象元提供很窄的(一般<10nm) 成像波段,波段数与多光谱遥感相比大大增多,在可见光和近红外波段可达几十到几百个,且在某个光谱区间是连续分布的,这不只是简单的数量的增加,而是有关地物光谱空间信息量的增加。[4] (2)光谱响应范围广,光谱分辨率高。成像光谱仪响应的电磁波长从可见光延伸到近红外,甚至到中红外。[5]成像光谱仪采样的间隔小,光谱分辨率达到纳米级,一般为10nm左右。精细的光谱分辨率反映了地物光谱的细微特征。 (3)可提供空间域信息和光谱域信息,即“谱像合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。在成像高光谱遥感中,以波长为横轴,灰度值为纵轴建立坐标系,可以使高光谱图像中的每一个像元在各通道的灰度值都能产生1 条完整、连续的光谱曲线,即所谓的“谱像合一”。 (4)数据量大,信息冗余多。高光谱数据的波段众多,其数据量巨大,而且由于相邻波段的相关性高,信息冗余度增加。 (5)数据描述模型多,分析更加灵活。高光谱影像通常有三种描述模型:图像模型、光谱模型与特征模型。 1.2 高光谱遥感的优势

高光谱遥感及其发展与应用综述

高光谱遥感及其发展与应用综述 摘要:高光谱遥感是20世纪80年代兴起的新型对地观测技术。文中归纳了高光谱遥感技术波段多、波段宽度窄,光谱分辨率高,数据量大、信息冗余,“图谱合一”等特点,具有近似连续的地物光谱信息、地表覆盖的识别能力极大提高、地形要素分类识别方法灵活多样、地形要素的定量或半定量分类识别成为可能等优势,简单介绍了高光谱遥感在国外及国内的发展情况。在此基础上,概述了高光谱遥感在地质矿产、植被生态、大气科学、海洋、农业等领域的应用。 关键词:高光谱遥感;发展;应用 1高光谱遥感 高光谱分辨率遥感是指利用很多很窄的电磁波波段从感兴趣的物体获取有关数据。它的基础是测谱学。测谱学早在20世纪初就被用于识别分子和原子及其结构,20世纪80年代才开始建立成像光谱学。它是在电磁波谱的紫外、可见光、近红外和中红外区域,获取许多非常窄且光谱连续的图像数据的技术。成像光谱仪为每个象元提供数十至数百个窄波段光谱信息,能产生一条完整而连续的光谱曲线。 1.1高光谱遥感的特点 (1)波段多,波段宽度窄。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。与传统的遥感相比,高光谱分辨率的成像光谱仪为每一个成像象元提供很窄的(一般<10nm) 成像波段,波段数与多光谱遥感相比大大增多,在可见光和近红外波段可达几十到几百个,且在某个光谱区间是连续分布的,这不只是简单的数量的增加,而是有关地物光谱空间信息量的增加。 (2)光谱响应范围广,光谱分辨率高。成像光谱仪响应的电磁波长从可见光延伸到近红外,甚至到中红外。成像光谱仪采样的间隔小,光谱分辨率达到纳米级,一般为10nm左右。精细的光谱分辨率反映了地物光谱的细微特征。 (3)可提供空间域信息和光谱域信息,即“谱像合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。在成像高光谱遥感中,以波长为横轴,灰度值为纵轴建立坐标系,可以使高光谱图像中的每一个像元在各通道的灰度值都能产生1 条完整、连续的光谱曲线,即所谓的“谱像合一”。(4)数据量大,信息冗余多。高光谱数据的波段众多,其数据量巨大,而且由于相邻波段的相关性高,信息冗余度增加。 (5)数据描述模型多,分析更加灵活。高光谱影像通常有三种描述模型:图像模型、光谱模型与特征模型。 1.2高光谱的优势 高光谱遥感的光谱分辨率的提高,使地物目标的属性信息探测能力有所增强。因此,较之全色和多光谱遥感,高光谱遥感有以下显著优势: (1)蕴含着近似连续的地物光谱信息。高光谱影像经过光谱反射率重建,能获取

高光谱图像分类实验报告

实验报告 姓名专业:学号日期:2015 年12 月22 日 课程名称:高光谱遥感指导教师(学生填写): 成绩:教师签名: 一、实验项目:高光谱遥感图像的分类 二、实验类型(√选):0演示实验;1验证实验;2综合实验;3设计性实验;4创新实验 三、实验目的:利用ENVI软件实现高光谱遥感图像的分类 四、实验准备:电脑一台,ENVI Classic软件,HSI数据 五、实验简要操作步骤及结果: 1、EFFORT Folishing处理。 本次实验所用HIS数据是进行了大气校正等处理后的数据,由于数据光谱曲线呈明显的锯齿状。所以先利用EFFORT Folishing工具进行处理。 1)选择Spectral->EFFORT Folishing 2)出现“Select EFFORT Input File”对话框,选择数据,点击OK。 3)出现“EFFORT Input Parameters”窗口,进行目标的选择以及参数的设置。

处理完成后生成数据Memory1 4)将处理前后同一像元的光谱曲线进行比较

处理前光谱曲线处理后光谱曲线 可以明显看出,经过EFFORT Folishing处理后的数据,其波谱曲线比较平缓,明显的锯齿状消失。 2、Spectral Angle Mapper 光谱角填图 光谱角填图是一种监督分类技术。该算法是将图像波谱直接同参考波谱匹配的一种交互式分类方法,是一种比较图像波谱与地物波谱或波谱库中地物波谱的自动分类方法。 定义示意图

计算公式 1)选择Spectral->Mapping Methods->Spectral Angle Mapper. 2)选择Memory1数据进行处理。出现Endmember Collection:Sam窗口。 3)在#3窗口选择Overlay->Region of Interest.用Zoom视野在图像上选择感兴趣区域(明显的地物类型区域)

高光谱遥感数据处理基础

泛函分析概括 高光谱遥感应用中,如何度量光谱间的相似性一直高光谱图象处理的核心问题,因而我们有必要先交代下度量空间的一些概念。 度量空间:所谓度量空间,就是指对偶(,)X d ,其中X 是一个集合,d 是X 上的一个度量(或X 上的距离函数),即d 是定义在X X ?上且对所有,,X ∈x y z 满足以下四条公理的函数: (1) d 是实值、有限和非负的。 (2) 当且仅当=x y 时,(,)0d =x y 。 (3) (,)(,)d d =x y y x (对称性)。 (4) (,)(,)(,)d d d ≤+x y x z z y (三角不等式)。 度量空间给出来空间中元素“距离”的度量,因而使得空间中的元素可比较。但是,仍需要在空间中引入代数结构,使得元素之间可进行代数运算。因而,这里需要引入线性空间。 线性空间:所谓域(K R 或C)上的线性空间是指一个非空集合X ,且其元素,,x y (称为矢量)关于X 和K 定义了两种代数运算。这两种运算分别叫做矢量的加法与标量的乘法。 矢量的加法是,对于X 中的每一对矢量(,)x y ,与其相联系的一个矢量+x y ,叫做矢量之和。按这种方式它还具有下述性质:矢量加法是可交换的和可结合的,即对所有矢量都有 ()()+=+++=++x y y x x y z x y z 此外存在零矢量,X ∈0并对每个矢量x ,存在有-x ,使得对一切矢量有 ()+=+-=x 0x x x 0 矢量与标量的乘法是,对于每个矢量x 和每个标量α,与其相联系的一个矢量αx ,叫做α与x 之积。按这种方式对一切,x y 和标量,,αβ具有

()()1αβαβ==x x x x 和分配律 ()()ααααβαβ+=++=+x y x y x x y 在很多情况下因为线性空间X 上定义了度量d ,所以X 同时也是一个度量空间。然而,如果X 的代数结构与度量没有什么关系的话,我们就不能指望把代数的概念和度量的概念结合在一起。为了保证X 的代数性质与几何性质有如此的关系,我们首先需要引入一个辅助的所谓“范数”的概念,其中要用到线性空间的代数运算。然后再用范数诱导出我们希望的度量d ,这一想法就导出了赋范空间的概念。简单的说,赋范空间把线性空间的代数结构和其作为度量空间的度量紧密结合在一起。 赋范空间:所谓赋范空间X ,就是指在其上定义了范数的线性空间X 。而所谓线性空间X 上的范数,就是指定义在X 上的一个实值函数,它在X ∈x 的值记为x ,并且具有如下性质: (1)0≥x (2)0=?=x x 0 (3)αα=x x (4)+≤+x y x y 其中,x y 是X 中的任意矢量,α为任意标量。 巴拿赫空间:所谓巴拿赫空间就是完备的赋范空间(这里的完备性是按范数定义的度量来衡量的,见下面公式) (,)d =-x y x y ,X ∈x y 此度量叫做由范数所诱导的度量。 由范数所诱导的度量具备以下基本性质: 引理(平移不变性):在赋范空间X 上,由范数诱导的度量d ,对所有的,X ∈x y 及每个标量α,都满足

基于深度学习的高光谱图像分类方法

Artificial Intelligence and Robotics Research 人工智能与机器人研究, 2017, 6(1), 31-39 Published Online February 2017 in Hans. https://www.360docs.net/doc/4217201759.html,/journal/airr https://https://www.360docs.net/doc/4217201759.html,/10.12677/airr.2017.61005 文章引用: 袁林, 胡少兴, 张爱武, 柴沙陀, 王兴. 基于深度学习的高光谱图像分类方法[J]. 人工智能与机器人研究, A Classification Method for Hyperspectral Imagery Based on Deep Learning Lin Yuan 1, Shaoxing Hu 1, Aiwu Zhang 2, Shatuo Chai 3, Xing Wang 3 1School of Mechanical Engineering and Automation, Beihang University, Beijing 2 Colledge of Resource Environment and Tourism, Capital Normal University, Beijing 3 Animal husbandry and Veterinary Hospital of Qinghai University, Xining Qinghai Received: Feb. 3rd , 2017; accepted: Feb. 18th , 2017; published: Feb. 24th , 2017 Abstract Remote sensing hyperspectral imaging can obtain abundant spectral information, which provides the possibility for the analysis of high precision terrain. The hyperspectral image has the charac-teristics of “map in one”, and the full use of spectral information and spatial information in hy- perspectral image is the premise of obtaining accurate classification results. Deep learning stack machine model in automatic encoding (Stack Auto-Encoder SAE) can effectively extract data in nonlinear information, and convolutional neural network (Convolutional Neural Network, CNN) can automatically extract features from the image. Based on this, this paper presents a classifica-tion method of hyperspectral images based on deep learning. Firstly, the spectral dimension of the hyperspectral data is reduced using automatic encoding machine, then convolutional neural net-work is used as the classifier, and the pixel and its neighborhood pixels are classified together as the input of the classifier, so as to realize the hyperspectral image classification with spectral space. Keywords Hyperspectral, Image Classification, Depth Learning, Automatic Coding Machine, Convolutional Neural Network 基于深度学习的高光谱图像分类方法 袁 林1,胡少兴1,张爱武2,柴沙陀3,王 兴3 1北京航空航天大学机械工程及自动化学院,北京 2 首都师范大学资源环境与旅游学院,北京 3 青海大学畜牧兽医院,青海 西宁 收稿日期:2017年2月3日;录用日期:2017年2月18日;发布日期:2017年2月24日

对高光谱遥感数据的分析与处理

对高光谱遥感数据的分析与处理 姓名:张俊飞 班级:021051 学号:02105058 E-mail:jeffei@https://www.360docs.net/doc/4217201759.html, 时间:2013年4月25日

对高光谱遥感数据的分析与处理 一、高光谱成像介绍 高光谱成像技术是近二十年来发展起来的基于非常多窄波段的影像数据技术,其最突出的应用是遥感探测领域,并在越来越多的民用领域有着更大的应用前景。高光谱成像技术集中了光学、光电子学、电子学、信息处理、计算机科学等领域的先进技术,是传统的二维成像技术和光谱技术有机的结合在一起的一门新兴技术。 近几年年来,自然灾害频发,所以,及时、准确的灾情评估对决策部门制定科学和有效的救灾减灾方案具有关键性的作用。遥感具有数据获取范围广、速度快等特点,应用在灾害评估中具有非常大的优势和潜力。在我国近年来的多次重大自然灾害评估中,遥感技术都发挥了极其重要的作用。遥感技术的应用不止于此。下面列举了主要的应用方面: 1.气象:天气预报、全球气候演变研究; 2.农业:作物估产、作物长势及病虫害预报; 3.林业:调查森林资源、监测森林火灾和病虫害; 4.水文与海洋:水资源调查、水资源动态研究、冰雪监控、海洋渔业; 5.国土资源:国土资源调查、规划和政府决策; 6.环境监测:水污染、海洋油污染、大气污染、固体垃圾等及其预报; 7.测绘:航空摄影测量测绘地形图、编制各种类型的专题地图和影像地图; 8.地理信息系统:基础数据、更新数据。 虽然拥有诸多优点,但其本身带有很大的数据,对硬件和软件有很高的要求,本文中,先不对硬件进行讨论,就软件方面,对数据进行一系列处理,做到既不丢失其主要数据,又能降低其时空复杂度。 二、PCA理论基础 对测试数据库说明如下: AVIRIS高光谱数据92AV3C:该场景由AVIRIS传感器于1992年6月获得,该数据为145*145大小,有220个波段。该数据及真实标记图可以由因特网下载:http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes。该数据共包含16个类别。 该数据维数为200维,维数较高,我们希望找到一种简洁的算法来把它的维数降下来,这样处理数据的速度可以加快,节省人力物力。 2.1PCA简介 主成分分析(Principal Component Analysis,简称PCA)是一种常用的基于变量

高光谱遥感

1、地面光谱测量的作用:;①地面光谱辐射计在成像光谱仪过顶时,常用于地面野;②在一些反射率转换模型中,需要引入地面光谱辐射计;③地面光谱辐射计可以为图像识别获取目标光谱和建立;④通过地面光谱辐射计测量数据和地面模拟,可以帮助;⑤地面光谱辐射计还可以勇于地面地质填图;⑥可以用来建立地物的表面方向性光谱反射特性;⑦建立目标地面光谱数据与目标特性间的定量关系; 2、 1、地面光谱测量的作用: ①地面光谱辐射计在成像光谱仪过顶时,常用于地面野外或实验室同步观测,获取下行太阳辐射,以用于遥感器定标。 ②在一些反射率转换模型中,需要引入地面光谱辐射计测取得地面点光谱来完成DN值图像到反射率图像的转换。 ③地面光谱辐射计可以为图像识别获取目标光谱和建立特征项。但是,这时地面光谱测量要在空间尺度上与图像像元尺度相对应,且要具有代表性;另外,地面光谱测量要与高光谱图像获取条件相一致。 ④通过地面光谱辐射计测量数据和地面模拟,可以帮助人们了解某一地物被高光谱遥感探测的可能性,理解其辐射特性,确定需要采用的探测波长、光谱分辨率、探测空间分辨率、信噪比、最佳遥感探测时间等重要参数。 ⑤地面光谱辐射计还可以勇于地面地质填图。它可以用于矿物的光谱吸收特征,识别地面矿物或矿物的集合,从而直接完成野外矿物填图。 ⑥可以用来建立地物的表面方向性光谱反射特性。 ⑦建立目标地面光谱数据与目标特性间的定量关系。 2、高光谱成像特点: ①高光谱分辨率。高光谱成像光谱仪能获得整个可见光、近红外、短波红外、热红外波段的多而窄的连续光谱,波段多至几十甚至数百个,其分辨率可以达到纳米级,由于分辨率高,数十、数百个光谱图像可以获得影像中每个像元的精细光谱。②图谱合一。高光谱遥感获取的地表图像包含了地物丰富的空间、辐射和光谱三重信息,这些信息表现了地物空间分布的影像特征,同时也可能以其中某一像元或像元组为目标获得他们的辐射强度以及光谱特征。 ③光谱波段多,在某一光谱段范围内连续成像。成像光谱仪连续测量相邻地物的光谱信号,可以转化城光谱反射曲线,真实地记录了入射光被物体所反射回来的能量百分比随波长的变化规律。不同物质间这种千差万别的光谱特征和形态也正是利用高光谱遥感技术实现地物精细探测的应用基础。 3、高光谱遥感图像数据表达: ①图像立方体——成像光谱信息集。 ②二维光谱信息表达——光谱曲线。 ③三维光谱信息表达——光谱曲线图。(书本44页) 4、成像光谱仪的空间成像方式: (1)摆扫型成像光谱仪。摆扫型成像光谱仪由光机左右摆扫和飞行平台向前运动完成二维空间成像,其线列探测器完成每个瞬时视场像元的光谱维获取。扫描镜对地左右平行扫描成像,即扫描的运动方向与遥感平台运动方向垂直。其优点:可以得到很大的总视场,像元配准好,不同波段任何时候都凝视同一像元;在每个光谱波段只有一个探测元件需要定标,增强了数据的稳定性;由于是进入物镜后再分光,一台仪器的光谱波

相关文档
最新文档