电磁场与电磁波实验报告-

电磁场与电磁波实验报告-
电磁场与电磁波实验报告-

电磁场与电磁波实验报告-

————————————————————————————————作者:————————————————————————————————日期:

电磁场与电磁波实验报告

实验一 电磁场参量的测量

一、 实验目的

1、 在学习均匀平面电磁波特性的基础上,观察电磁波传播特性互相垂直。

2、 熟悉并利用相干波原理,测定自由空间内电磁波波长λ,并确定电磁波

的相位常数β和波速υ。

二、 实验原理

两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反)

方向传播时,由于初始相位不同发生干涉现象,在传播路径上可形成驻波场分布。本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间内电磁波波长λ的值,再由 λ

πβ2=,βω

λν==f

得到电磁波的主要参量:β和ν等。

本实验采取了如下的实验装置

设入射波为φj i i e E E -=0,当入射波以入射角1θ向介质板斜投射时,则在

分界面上产生反射波r E 和折射波t E 。设介质板的反射系数为R ,由空气进入介质板的折射系数为0T ,由介质板进入空气的折射系数为c T ,另外,可动板

2r P 和固定板1r P 都是金属板,其电场反射系数都为-1。在一次近似的条件下,

接收喇叭处的相干波分别为1001Φ--=j i c r e E T RT E ,2002Φ--=j i c r e E T RT E

这里 ()13112r r r L L L ββφ=+=;()()231322222L L L L L L r r r r βββφ=+?+=+=;

其中12L L L -=?。

又因为1L 为定值,2L 则随可动板位移而变化。当2r P 移动L ?值,使3r P 有零指示输出时,必有1r E 与2r E 反相。故可采用改变2r P 的位置,使3r P 输出最大或零指示重复出现。从而测出电磁波的波长λ和相位常数β。下面用数学式来表达测定波长的关系式。 在3r P 处的相干波合成为()210021φφj j i c r r r e e E T RT E E E --+-=+=

或写成 ()

??

? ??+-?Φ-=200212cos 2φφj i c r e

E T RT E (1-2)

式中L ?=-=?Φβφφ221

为了测量准确,一般采用3r P 零指示法,即02cos =?φ

π)12(+=?Φn ,n=0,1,2......

这里n 表示相干波合成驻波场的波节点(0=r E )数。同时,除n=0以外的n 值,又表示相干波合成驻波的半波长数。故把n=0时0=r E 驻波节点为参考节点的位置0L 又因

L ???

?

??=?λπφ22

(1-3)

故 ()L n ???

?

??=+λ

π

π2212

或 λ)12(4+=?n L

(1-4)

由(1-4)式可知,只要确定驻波节点位置及波节数,就可以确定波长的

值。当n=0的节点处0L 作为第一个波节点,对其他N 值则有:

n=1,()λ24401=-=?L L L ,对应第二个波节点,或第一个半波长数。 n=1,()λ24412=-=?L L L ,对应第三个波节点,或第二个半波长数。

n=n ,()λ2441=-=?-n n L L L ,对应第n+1个波节点,或第n 个半波长数。

把以上各式相加,取波长的平均值得

()n

L L n 02-=λ

(1-5)

代入得到电磁波的参量νβλ,,等值。

三、 实验步骤

(1) 整体机械调整:调整发射喇叭0r P ,接收喇叭3r P ,使其处于同种极化

状态。

(2) 安装反射板,半透射板:注意反射板21r r P P 与轴向成90度角,半透

射板轴向与1r P 轴向成45度角,并注意反射板21r r P P 与的法向分别与

03,r r P P 轴向重合。

(3) 将所有调整到位部分用螺钉锁紧,调整发射端的衰减器以控制信号

电平,使3r P 表头指示为80。

(4) 旋转游标使可移动反射板2r P 的起始位置在最右侧(或最左侧),用

旋转手柄移动2r P 使所有节点位置处,

3r P 表头指示都为0.此时说明整个系统调整到位。

(5) 测量:用旋转手柄使反射板移动,从表头上测出n+1个零点,同时

从读数机构上得到所有节点位置n L L 到0,并记录。

(6) 连续测量3次,用公式(1-5)计算波长,并将3次波长求平均值,

取3或4即可。 (7) 用所测波长计算νβ,值。

四、 实验数据

试验次数n 1 2 3 4 微安表零指示(mm )

11.342

26.458

43.039

58.692

五、 实验结果整理,误差分析

)(983.154

458

.26342.11692.58039.432

mm =--+=

λ

mm 966.31=λ;

)

(987.313787.9mm f

c

GHZ

f ===λ理论上 误差=%0657.0%100987

.31966

.31987.31≈?-

误差分析:原因可能有:

⑴ 系统误差。由某些固定不变的因素引起的。在相同条件下进行多次测量,其误差数值的大小和正负保持恒定,或误差随条件改变按一定规律变化。

⑵ 随机误差 由某些不易控制的因素造成的。在相同条件下作多次测量,其误差数值和符号是不确定的,即时大时小,时正时负,无固定大小和偏向。随机误差服从统计规律,其误差与测量次数有关。随着测量次数的增加,平均值的随机误差可以减小,但不会消除。

例如:微安表读数存在一定的误差;装置摆放多靠目测,难以保证垂直、对准、水平等条件严格满足,如两个喇叭口不水平;

⑶ 粗大误差 与实际明显不符的误差,主要是由于实验人员粗心大意,如读数错误,记录错误或操作失败所致。这类误差往往与正常值相差很大,应在整理数据时依据常用的准则加以剔除。

减小误差:

(1)选定合适的实验仪器。工欲善其事,必先利其器,需要仔细考虑。

(2)严格按照实验步骤、方法操作。

(3)熟练掌握各种测量器具的使用方法,准确读数。

(4)创新,直接改进测量方法

六、思考题

用相干波测电磁波波长时,如图若介质板放置位置转90度,将出现什么现象?这时能否测准 ?为什么?

答:原测量方法时Er1= -Rn Tn0 TnEie-iφ1

Er2= -Rn Tn0 TnEie-iφ2

转后Er1= -Rn Eie-iφ1

Er2= -Rn Tn0 TnEie-iφ2

这将使得由Tn0 Tn所产生的幅度相位变化也计入两相的和中,因此很可能无法产生明显的驻波分布。因此不能准确测量λ值。

七、心得体会

本实验初步研究学习了电磁波基本参量的测量方法,从直观上得到了电磁波作为一种非机械波但仍具备波的基本特性的结论。

本次实验进行得较为顺利,期间得到的结果也比较理想。我和我的搭档在进行第一次实验就得到了理想的结果,误差在十分微小,这主要是我们开始调节装置时就非常到位,就像老师在课上所说的“欲速则不达”的道理。

这次实验是第一次做电磁场与电磁波实验,在熟悉了电磁波参量的测量手段和仪器的使用方法的基础上,从很多方面学习和加深了对理论知识的理解。

实验二 均匀无耗媒质参量的测量

一、 实验目的

(1) 应用相干波节点位移法,来研究均匀无损耗媒质参量r ε的测试。 (2) 了解均匀无损耗媒质中电磁波参量νβλ,,与自由空间内电磁波参量

c ,,00βλ的差别。

(3) 熟悉均匀无损耗媒质分界面对电磁波的反射和折射的特性。

二、 实验原理

媒质参量一般应包括介电常数ε和磁导率μ两个量。它们由媒质方程

H B E D με==和来表征。要确定ε,μ,总是要和E ,H 联系在一起,对于

损耗媒质来说,为复数,和με而且与频率有关。本实验仅对均匀无损耗电介质的介电常数ε进行讨论(1=r μ),最终以测定相对介电常数0

εε

ε=r 来了

解媒质的特性和参量。

用相干波原理和测驻波节点的方法可以确定自由空间内电磁波参量

c ,,00βλ。对于具有r ε(1=r μ)的均匀无耗媒质,无法直接测得媒质中的

νβλ,,值,不能得到媒质参量值。但是我们利用类似相干波原理装置如图所示

在2r P 前,根据对r ε板放置前后引起驻波节点位置变化的方法,测得相对变化值,进而测得媒质r ε的值。首先固定1r P ,移动2r P 使3r P 出现零指示,此时2r P 的位置在3L 处,由于r ε板的引入使得3r P 指示不再为零。

我们把喇叭辐射的电磁波近似地看作平面波。设接收喇叭处的平面波表达式为z j r r e E E β-=202

由于2r P 处存在厚为δ的r ε媒质板(非磁性材料的媒质1=r μ)使3r P 处的

21,r r E E 之间具有相位差(因幅度近似相等与板为无损耗,可认为21r r r E E ε)。

这里相当于板不存在时,相应距离所引起的相位滞后,因此得到时媒质板内

总的相位滞后值为

()

120'-=?-?=?r εδβφφφε

(2-1)

为了再次使实现相干波零指示接收,必须把连同板向前推进,造成一个相位增量,其值是

l l ??=??=

?22200

βλπ

φ

(2-2)

从而补偿了板的相位滞后,使整理上述式子得 2

1???

? ?

??+=δ

εl r (2-3)

?

?

?

???+=

=

δλελλl r 100

(2-4)

???

?

??+==

δβλπ

βl 120

(2-5)

?

?? ?

??+=

=

δενl c

c

r

1

(2-6)

根据测得的值,还可以确定该媒质与空气分界面上的反射系数和折射系数R ,

T 。当平面波垂直投射到空气与媒质分界面时,利用边界条件得

r

r

R εεηηηηεεε+-=+-=

11000

(2-7)

r

T εηηηεεε+=

+=

12

200 (2-8)

当平面电磁波由媒质向自由空间垂直投射时,相应的反射系数和折射系数为

εεε

εεεηηηη00001

1R R r r -=+-=+-=

(2-9)

εεεεεεηηη000

01

22T T r r r =+=+=

(2-10)

由表达式可看出,当测出的值时,也可确定相应材料的的值。

三、 实验步骤

(1) 整体机械调整,并测出r ε板的平均厚度δ

(2) 根据图安装反射板、透射板,固定1r P 移动2r P 、使3r P 表头指示为零,

记下3r P 处L 的位置。

(3) 将具有厚度为δ待测r ε介质板放在2r P ,必须紧贴r ε,同时注意在放

进板r ε之后,2r P 仍处于波节点L 的位置。此时指示3r P 不再为零。 (4) 将2r P 和r ε共同移动,使2r P 由L 移到L ’处时3r P 再次零指示,得到

'L L L -=?。

(5) 计算r ε、λ、β,v 、R 、T 的值。

四、 实验数据

板的厚度(cm ) 0.6.00 0.578

0.578

0.588

平均值δ(cm ) 0.586

L0 L1 L2 L (无r ε)(cm ) 26.458 43.039 58.692 L ’(有r ε)(cm )

22.988 38.515 54.532 L L L -=?'(CM)

3.470

4.524

4.160

L ?平均值(cm )

4.051 (

)2

1δεl

r ?+=

2.535

3.140

2.924

r ε平均值(rad/m )

2.866

五、 数据处理、误差分析

(1)由上次试验mm 966.310=λ,1966.020==λπ

β

r

ελλ0

=(mm )

20.077

18.039

18.694

的平均值

λ(mm )

18.937

r

r εββ0=(rad/m )

313.020 348.376 336.180

的平均值

r β(rad/m )

332.525

r

c

εν=(m/s )

810884.1?

810693.1? 810754.1?

V 的平均值(m/s ) 810777.1? ()()

r

r

R εε+-

=

11

-0.228

-0.279

-0.262

R 的平均值

-0.256 ()

r

T ε+

=12

0.772

0.721

0.738

T 的平均值

0.744

(2)误差分析:实验存在一定的误差,原因分析: 1.实验中实验台一起摆放可能达不到严格的标准要求; 2.游标卡尺读数存在误差; 3.仪器精度没有达到要求;

介质的相对介电常数的测量误差:

1. 介质板的厚度不均,导致测出了d 有误差。造成实验的误差。

2. 电表的灵敏度造成实验误差。

3. 两个喇叭口不水平

4. 读数时存在读数误差

六、思考题

本实验内容用μr=1,测试均匀无损耗媒质值。可否测μr≠1的磁介质?试说明原因。

答:本实验的方法不可以。因为本实验的所有推导公式均假设μr=1,才能满足非磁性介质材料,,因此不可。若μr≠1,会影响电磁场的原有分布,则需要确定μr=μ/μ0,方法更为复杂,无法测得正确的结果。

七、心得体会

本次实验我学习研究了测量均匀无损耗媒质参量的基本方法,更进一步巩固了理论课学习的知识。并且学到了利用间接法测量均匀无损耗媒质参量的方法,加深了对此的认识和理解,熟悉了均匀无损耗媒质分界面对电磁波的反射和折射的特性。

由于这次实验是建立在前一次的基础上,而第一次实验误差比较小,为这次实验打下了很好的基础,熟悉了游标卡尺的使用,总体来说依然比较简单,唯一需要注意的地方就是测量厚度的时候,把介质板夹在装置上的时候,要注意四周夹紧,不要出现缝隙,否则会出现较大的误差。

实验三电磁波反射、折射的研究

一、实验目的

(1)研究电磁波在良好导体表面的反射。

(2)研究电磁波在良好介质表面的反射和折射。

(3)研究电磁波发生全反射和全折射的条件。

二、实验原理

1、电磁波斜入射到两种不同媒质分界面上的反射和折射

均匀平面波斜入射到两种不同媒质的分界面上发生反射和折射,以平行

极化波为例:

(1)反射定律:(3-1)

(2)折射定律:(3-2)2、平行极化波入射到两种媒质分界面上发生全折射(无反射)的条件

平行极化波在两种媒质分界面上的反射系数分别为:

(3-3)

(3-4)

平行极化波斜入射时发生全反射,即=0,由上式应有

(3-5)

可以解出全折射时的入射角

(3-6)称为布儒斯特角,它表示在全折射时的入射角。

平行极化波斜入射到厚度为d的介质板上,如下图所示:

当时,入射波在第一个界面上发生全折射,折射波入射在第二个

界面上,仍然满足条件发生全折射,在介质板后面就可以接收到全部的入射信号。

1、垂直极化波不可能产生全折射(无反射)

垂直极化波入射到两种媒质的分界面上,反射系数和分别为:

(3-7)

(3-8)

对于一般媒质,,可以证明,垂直极化波无论是从光疏媒

质射入光密媒质,还是从光密媒质射入光疏媒质,总有:

,即

所以不可能发生全折射。

沿任意方向极化的平面电磁波,以入射到两种媒质的分界面上时

反射波中只有垂直极化波分量,利用这种方法可以产生垂直极化波。

4、电磁波入射到良导体表面的反射

对于良导体,, 所以

所以:在良导体表面上斜投射的电磁波,其反射场等于入射场,反射角等于入射角。

三、实验步骤

(1)调试实验装置:首先使两个喇叭天线互相对正,他们的轴线应在一条直线上。具体方法如下:旋转工作平台使刻线与固定臂上的指针对

正,再转动活动臂使活动臂上的指针对正工作平台上的刻线,然

后锁定活动臂。打开固态信号源上的开关,连接在接收喇叭天线上的

微安表将有指示,分别调整发射喇叭天线和接收喇叭天线的方向,使

微安表的指示最大,这时发射天线与接收天线互相对正。

(2)测试电磁波入射到良导体表面的反射特性

首先不加反射板,使发射天线与接收天线互相对正,调整固态信号源,

测出入射波电场(可使微安表指示80)。然后把良导体反射板放在

转台上,使导体板平面对准转台上的刻线,这时转台上的刻线

与导体板的法线方向一致。改变入射角,测在反射角时的反

射波场强(仍用微安表指示的电流表示),最后可把接收天线转到

导体板后(刻线处),观察有无折射波。

(3)平行极化波斜入射到介质板上的全折射实验

把发射天线和接收天线都转到平行极化波工作状态。首先,测量入射波电场。然后把玻璃板放在转台上,使

玻璃板平面对准转台上的90度刻线。转动转台改变入射角,使,同时得到斜投射时,反射波场强为零的入射角,这时,把测量数

据填入表中。

把发射天线和接收天线都转到垂直极化波工作状态,重复上述实验,观察有无全折射现象。

把发射天线喇叭转到任意方向,使入射角,在反射波方向分

别测量水平极化波和垂直极化波,记录实验结果,把测量的数据填入表

中。

四、实验数据

(1)电磁波入射到良导体表面的反射特性数据

入射场

入射角

反射角

80 79 90 94

反射场

(2)A、平行极化波的全折射现象

全折射现象

测量值计算值入射场反射场折射场

80 0 94

B、发射天线喇叭在任意方向(如)

位置

入射场

(水平)入射场

(垂直)

反射场

(水平)

反射场

(垂直)

顺时针旋转

31 40 0 28

五、数据处理、误差分析

由数据(1)可以看出:良导体表面上投射的电磁波满足反射定律。

在一定范围内,反射场基本上等于入射场。

由(2)中

A、发射天线和接收天线都在平行极化波工作状态

可以看出:平行极化波以入射到两种媒质分界面上,会发

生全折射,无反射场。

B、发射天线喇叭在任意方向(如)

可以看出:沿任意方向极化的平面电磁波入射到两种媒质的分界

面上时,反射波只有垂直极化波分量,无水平极化波分量,利用

这种方法可以产生垂直极化波。

误差分析:

1.发射喇叭和接收喇叭无法严格控制一条轴线上,存在一定的角

度偏移。

2.读数的误差:如微安表和分度盘读数。

3.周围环境因素会影响到本次实验结果的精度,如微小的震动以

及光线的干扰都会引起实验的误差,影响精度。

六、思考题

在介质板表面,斜投射垂直极化波时能否发生全折射(即无反射),为什么?

答:不能发生全折射。

由垂直极化波的反射系数

θεεθθεεθ2

122

12sin cos sin cos -???? ??+-???

? ??-=

N R 使分母为0,则:

θεεθ2

12sin cos -???? ??= 所以只有当ε1=ε2时才成立,所以不可以。

综上:垂直极化波不能发生全折射。

七、 心得体会

本次实验我研究了电磁波在良好导体表面的反射,掌握了电磁波发生全

反射和全折射的条件,进一步的巩固了理论知识的记忆和理解。本次实验进一步的巩固了实验仪器的操作方法。

总体来说,作为第一次有机会做电磁场与电磁波的实验的我们来说我们很幸运,意味着我们可以更好结合实际学习理论知识,学的更轻松,更快,接受的也更快。虽然只有一个下午,大家都很珍惜这次机会。我也不例外。去实验室看到实验仪器,和想象的有点不一样。构造比较简单。实验也比较简单。在老师讲解过后就开始了这次的实验。实验原理清晰,实验步骤明确,实验中没有出现大问题。很快就得到了实验数据。之后就是数据分析了,过程很简单,结果也很明显。电磁场与电磁波是通信专业的重点课程之一,本次试验设计的仪器精度系数比较高,而且仪器之间电磁波干扰不可避免,所以造成此次试验误差偏大, 但通过这次实验我们通过实验的方法验证了一系列公式定理,将书本上偏理论的东西。

电磁场与电磁波课后习题及答案六章习题解答

第六章 时变电磁场 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场 5cos mT z e t ω=B 之中,如题图所示。滑片的位置由0.35(1cos )m x t ω=-确定,轨道终 端接有电阻0.2R =Ω,试求电流i. 解 穿过导体回路abcda 的磁通为 5cos 0.2(0.7) cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==?=?-=--=+?g g B S e e 故感应电流为 11 0.35sin (12cos ) 1.75sin (12cos )mA in d i R R dt t t t t R ωωωωωωΦ = =-=-+-+E 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。设棒以角速 度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。 解 介质棒内距轴线距离为r 处的感应电场为 00 z r r r B φωω=?=?=E v B e e B e 故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X 极化电荷体密度为 200 00 11()()2()P rP r B r r r r B ρεεωεεω?? =-??=- =--??=--P 极化电荷面密度为 0000()()P r r r a e r a B σεεωεεω==?=-?=-P n B e 则介质体积内和表面上同单位长度的极化电荷分别为 220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=??=--=??=- 平行双线传输线与一矩形回路共面,如题图所示。设0.2a m =、0.1m b c d ===、7 1.0cos(210)A i t π=?,求回路中的感应电动势。

电磁场与电磁波课后习题及答案六章习题解答

第六章 时变电磁场 6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场 5cos mT z e t ω=B 之中,如题6.1图所示。滑片的位置由0.35(1cos )m x t ω=-确定,轨 道终端接有电阻0.2R =Ω,试求电流i. 解 穿过导体回路abcda 的磁通为 5cos 0.2(0.7)cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==?=?-=--=+?B S e e 故感应电流为 11 0.35sin (12cos ) 1.75sin (12cos )mA in d i R R dt t t t t R ωωωωωωΦ = =-=-+-+E 6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。设棒以角 速度ω绕轴作等速旋转,求介质的极化强度、体积和表面上单位长度的极化电荷。 解 介质棒距轴线距离为r 处的感应电场为 00 z r r r B φωω=?=?=E v B e e B e 故介质棒的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X 极化电荷体密度为 200 00 11()()2()P rP r B r r r r B ρεεωεεω?? =-??=- =--??=--P 极化电荷面密度为 0000()()P r r r a e r a B σεεωεεω==?=-?=-P n B e 则介质体积和表面上同单位长度的极化电荷分别为 220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=??=--=??=- 6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。设0.2a m = 、0.1m b c d ===、7 1.0cos(210)A i t π=?,求回路中的感应电动势。

电磁场与电磁波第二章课后答案

第二章 静电场 重点和难点 电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。 利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。 至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。 关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。至于电容和部分电容一节可以从简。 重要公式 真空中静电场方程: 积分形式: ? = ?S S E 0 d εq ?=?l l E 0d 微分形式: ερ= ??E 0=??E 已知电荷分布求解电场强度: 1, )()(r r E ?-?=; ? ' '-'= V V d ) (41)(| r r |r r ρπε? 2, ? '''-'-'=V V 3 d |4) )(()(|r r r r r r E περ 3, ? = ?S S E 0 d εq 高斯定律

介质中静电场方程: 积分形式: q S =?? d S D ?=?l l E 0d 微分形式: ρ=??D 0=??E 线性均匀各向同性介质中静电场方程: 积分形式: ε q S = ?? d S E ?=?l l E 0d 微分形式: ε ρ= ??E 0=??E 静电场边界条件: 1, t t E E 21=。对于两种各向同性的线性介质,则 2 21 1εεt t D D = 2, s n n D D ρ=-12。在两种介质形成的边界上,则 n n D D 21= 对于两种各向同性的线性介质,则 n n E E 2211εε= 3,介质与导体的边界条件: 0=?E e n ; S n D e ρ=? 若导体周围是各向同性的线性介质,则 ε ρS n E = ; ε ρ? S n -=?? 静电场的能量:

电磁场与电磁波(第三版)课后答案第9章

第九章习题解答 9.1 设元天线的轴线沿东西方向放置,在远方有一移动接收台停在正南方而收到最大电场强度,当电台沿以元天线为中心的圆周在地面移动时,电场强度渐渐减小,问当电场强 时,电台的位置偏离正南多少度? 解:元天线(电基本振子)的辐射场为 j k r j θ-=E e 可见其方向性函数为(),sin f θφθ=,当接收台停在正南方向(即090θ=)时,得到最大电场强度。由 s i n θ= 得 045θ= 此时接收台偏离正南方向045±。 9.2 上题中如果接收台不动,将元天线在水平面内绕中心旋转,结果如何?如果接收天线也是元天线,讨论收发两天线的相对方位对测量结果的影响。 解: 如果接收台处于正南方向不动,将天线在水平面内绕中心旋转,当天线的轴线转至沿东西方向时,接收台收到最大电场强度,随着天线地旋转,接收台收到电场强度将逐渐变小,天线的轴线转至沿东南北方向时,接收台收到电场强度为零。如果继续旋转元天线,收台收到电场强度将逐渐由零慢慢增加,直至达到最大,随着元天线地不断旋转,接收台收到电场强度将周而复始地变化。 当接收台也是元天线,只有当两天线轴线平行时接收台收到最大电场强度;当两天线轴线垂直时接收台收到的电场强度为零;当两天线轴线任意位置,接收台收到的电场强介于最大值和零值之间。 9.3 如题9.3图所示一半波天线,其上电流分布为() 11cos 2 2m I I kz z ??=-<< ??? (1)求证:当0r l >>时, 020 cos cos 22sin jkr m z I e A kr πθμπθ -?? ? ??= ? (2)求远区的磁场和电场; (3)求坡印廷矢量; (4)已知22 c o s c o s 20.609sin d π πθθθ ?? ? ?? =? ,求辐射电阻; (5)求方向性系数。 题9.3(1) 图 解:(1)沿z 方向的电流z I 在空间任意一点()0,P r θ产生的矢量磁位为

《电磁场与电磁波》(第四版)习题集:第8章 电磁辐射

第8章 电磁辐射 前面讨论了电磁波的传播问题,本章讨论电磁波的辐射问题。时变的电荷和电流是激发电磁波的源。为了有效地使电磁波能量按所要求的方向辐射出去,时变的电荷和电流必须按某种特殊的方式分布,天线就是设计成按规定方式有效地辐射电磁波能量的装置。 本章先讨论电磁辐射原理,再介绍一些常见的基本天线的辐射特性。 8.1滞后位 在洛仑兹条件下,电磁矢量位A 和标量位?满足的方程具有相同的形式 22 2t ?ρ ?μεε??-=-? (8.1.1) J A A μμε-=??-?222 t (8.1.2) 我们先来求标量位?满足的方程式(8.1.1)。该式为线性方程,其解满足叠加原理。设标量位?是由体积元'V ?内的电荷元'q V ρ?=?产生的,'V ?之外不存在电荷,则由式(8.1.1)'V ?之外的标量位?满足的方程 22 20t ? ?με??-=? (8.1.3) 可将q ?视为点电荷,它所产生的场具有球对称性,此时标量位?仅与r 、t 有关,与θ和φ无关,故在球坐标下,上式可简化为 222 210r r r r t ?? με?????-= ?????? (8.1.4) 设其解()() ,,U r t r t r ?= ,代入式(8.1.4)可得 012 2222=??-??t U v r U (8.1.5) 其中,με 1 = v 。该方程的通解为 (),()()r r U r t f t g t v v =-++ (8.1.6) 式中的()r f t v -和()r g t v +分别表示以()r t v -和()r t v +为变量的任意函数。所以q ?周围的 场为 ()11,()()r r r t f t g t r v r v ?= -++ (8.1.7) 式(8.1.7)中第一项代表向外辐射出去的波,第二项代表向内汇聚的波。在讨论发射天线的 电磁波辐射问题时,第二项没有实际意义,取0=g ,而f 的具体函数形式需由定解条件来确定。此时 ()1,()r r t f t r v ?= - (8.1.8)

电磁场与电磁波课后习题与答案七章习题解答(2)

《电磁场与电磁波》习题解答 第七章 正弦电磁波 7.1 求证在无界理想介质沿任意方向e n (e n 为单位矢量)传播的平面波可写成 j() e n r t m βω?-=e E E 。 解 E m 为常矢量。在直角坐标中 故 则 而 故 可见,已知的() n j e r t m e βω?-=E E 满足波动方程 故E 表示沿e n 方向传播的平面波。 7.2 试证明:任何椭圆极化波均可分解为两个旋向相反的圆极化波。 解 表征沿+z 方向传播的椭圆极化波的电场可表示为 式中取 显然,E 1和E 2分别表示沿+z 方向传播的左旋圆极化波和右旋圆极化波。 7.3 在自由空间中,已知电场3(,)10sin()V/m y z t t z ωβ=-E e ,试求磁场强度 (,)z t H 。 解 以余弦为基准,重新写出已知的电场表示式 这是一个沿+z 方向传播的均匀平面波的电场,其初相角为90? -。与之相伴的磁场为 7.4 均匀平面波的磁场强度H 的振幅为1 A/m 3π,以相位常数30rad/m 在空气中沿z -e 方向传播。当t=0和z=0时,若H 的取向为y -e ,试写出E 和H 的表示式,并求出波的频率和波长。 解 以余弦为基准,按题意先写出磁场表示式 与之相伴的电场为 由rad/m β=30得波长λ和频率f 分别为 则磁场和电场分别为 7.5 一个在空气中沿 y e +方向传播的均匀平面波,其磁场强度的瞬时值表示式为 (1)求β和在3ms t =时, z H =的位置;(2)写出E 的瞬时表示式。 解(1 ) 781π 10πrad /m rad /m 0.105rad /m 31030β==? ==? 在t =3ms 时,欲使H z =0,则要求 若取n =0,解得y =899992.m 。 考虑到波长260m π λβ = =,故 因此,t =3ms 时,H z =0的位置为 (2)电场的瞬时表示式为 7.6 在自由空间中,某一电磁波的波长为0.2m 。当该电磁波进入某理想介质后,波长变为0.09m 。设1r μ=,试求理想介质的相对介电常数r ε以及在该介质中的波速。 解 在自由空间,波的相速 80310m/s p v c ==?,故波的频率为 在理想介质中,波长0.09m λ=,故波的相速为 而

电磁场与电磁波(第三章)

第3章习题 习题3.3 解: (1) 由?-?=E 可得到 a <ρ时, 0=-?=?E a >ρ时, φρφρ?φρsin 1cos 12222??? ? ??-+???? ??+-=-?=a A e a A e E (2) 圆柱体为等位体且等于0,所以为导体制成,其电荷面密度为 φεεερρρρcos 2000A E e E e a a n s -=?=?=== 习题3.5 证: 根据高斯定律q S d D S =?? ,得 0R r <时。ρππ344312 r D r =,则0 01113,3εερεερr r r D E r D === 0R r >时。ρππ3443022 R D r =,则203002 223023,3r R D E r R D ερερ=== 则中心点的电位为 20 0200 203 020 13633)0(0 ερεερερεερ?R R dr r R dr r dr E dr E r R R R r R += +=+=?? ??∞ ∞ 习题3.8

解: 根据高斯定律q S d D S =?? ,得同轴线内、外导体间的电场强度为 περ ρ2)(l q E = 内、外导体间的电压为 a b q d q Ed U l b a b a l ln 22περπερ ρ= ==?? 则同轴线单位长度的电容为 ) /ln(2a b U q U Q C l πε = == 则同轴线单位长度的静电储能为 )/ln(422212122 2 a b q d q dV E W l b a l V e περπρπερεε=??? ? ??==?? 习题3.11 解: (1) 设同轴电缆中单位长度的径向电流为I ,电流密度 )(2c a I e J <<=ρπρ ρ 介质中的电场 )(21 1 1b a I e J E <<==ρπρσσρ )(22 2 2c b I e J E <<==ρπρσσρ 而 ? ?+= ?+?=b a b a b c I a b I d E d E U ln 2ln 221 210πσπσρρ ) /ln()/ln(2120 21b c a b U I σσσπσ+=

电磁场与电磁波刘岚课后习题解答(第八章)

第8章习题解答 【8.1】 已知:原子质量=107.9,密度=10.53×3 3 10/kg m , 阿佛加德罗常数 =6.02×26 10 /kg 原子质量 ,电荷量 q =1.6×C 1910- 电子质量m =9.11×kg 31 10 -,绝对介电系数(真空中) 0ε=8.85×1210/F m - 银是单价元素,由于价电子被认为是自由电子,因而单位体积内的电子数目等于单位体积内的原子数目。 9 .1071002.61053.10263)()(每立方米的原子数目???= 即 每立方米的自由电子数目:28 1088.5?=N 可得 s Nq m 142 1074.3/-?==στ(对于银) 将上述σ、τ和0 ε的值代入r k =+-)1(/12 20 τωεστ和l k =+ω τωε σ)1(2/2 20 中可得 52251061.2)1/(1061.21?-=+?-=τωr k 7 1055.5?=l k 则 7461242 /122=?? ? ? ????++-=l r r i k k k n 故 7 2 104.6-?==i n c ωδ 【8.4】 解:良导体 αβ== 场衰减因子 2z x z e e e π αβλ - --==

当传播距离 z λ=时, 220.002z e e e π λ απλ - --=== 用分贝表示即为 55dB 。 【8.2】 已知:电导率σ=4.6m s /,原子质量=63.5,海水平均密度=1.025×3 3 10/kg m , 阿佛加德罗常数 =6.02 ×26 10/kg 原子质量 ,电荷量q =1.6×C 19 10 - ,m 2=δ,电子质 量m =9.11×kg 31 10 -,绝对介电系数(真空中)0 ε=8.85 ×12 10 /F m - 解:(1)与8.1题一样,可以求出每立方米的自由电子数目:28 1034.3?=N s Nq m 212 1089.4/-?==στ 910545.2-?=r k f k l 10 10 14.4?= 则 f k k k k n l l r r i 10 2 /1221014.424?= ≈?? ? ? ????++-= 而 δω c n i = 所以: kHz f 8.13= (2)依题意,满足 %0001.0)exp(2 =??? ?? ?-δz 可以求出 m z 8.13=

电磁场与电磁波试题 (2)

. '. 《电磁场与电磁波》测验试卷﹙一﹚ 一、 填空题(每题8分,共40分) 1、在国际单位制中,电场强度的单位是________;电通量密度的单位是___________;磁场强度的单位是____________;磁感应强度的单位 是___________;真空中介电常数的单位是____________。 2、静电场 →E 和电位Ψ的关系是→E =_____________。→ E 的方向是从电位_______处指向电位______处。 3、位移电流与传导电流不同,它与电荷___________无关。只要电场随__________变化,就会有位移电流;而且频率越高,位移电流密度___________。位移电流存在于____________和一切___________中。 4、在两种媒质分界面的两侧,电场→ E 的切向分量E 1t -E 2t =________;而磁场 → B 的法向分量B 1n -B 2n =_________;电流密度→ J 的法向分 量J 1n -J 2n =___________。 5、沿Z 轴传播的平面电磁波的复数表示式为:_____________________=→ E , ____________________=→ H 。 二、计算题(题,共60分) 1、(15分)在真空中,有一均 匀带电的长度为L 的细杆, 其电荷线密度为τ。 求在其横坐标延长线上距 杆端为d 的一点P 处的电 场强度E P 。 2、(10分)已知某同轴电容器的内导体半径为a ,外导体的内半径为c , 在a ﹤r ﹤b (b ﹤c)部分填充电容率为ε的电介质,求其单位长度上的电容。 3、(10分)一根长直螺线管,其长度L =1.0米,截面积S =10厘米2,匝数N 1=1000匝。在其中段密绕一个匝数N 2=20匝的短线圈,请计算这两个线圈的互感M 。 4、(10分)某回路由两个半径分别为R 和r 的 半圆形导体与两段直导体组成,其中通有电流I 。 求中心点O 处的磁感应强度→ B 。 5、电场强度为)2106(7.378 Z t COS E Y a ππ+?=→ → 伏/米的电磁波在自由空间传播。问:该波是不是均匀平面波?并请说明 其传播方向。 求:(1)波阻抗; (2)相位常数; (3)波长; (4)相速; (5) → H 的大小和方向; (6)坡印廷矢量。 《电磁场与电磁波》测验试卷﹙二﹚ (一)、问答题(共50分) 1、(10分)请写出时变电磁场麦克斯韦方程组的积分形式和微分形式,并写出其辅助方程。 2、(10分)在两种媒质的交界面上,当自由电荷面密度为ρs 、面电流密度为J s 时,请写出→ →→→H B D ,,,E 的边界条件的矢量表达式。 3、(10分)什么叫TEM 波,TE 波,TM 波,TE 10波? 4、(10分)什么叫辐射电阻?偶极子天线的辐射电阻与哪些因素有关? 5、什么是滞后位?请简述其意义。 (二)、计算题(共60分) 1、(10分)在真空里,电偶极子电场中的任意点M (r 、θ、φ)的电位为2 cos 41r P θ πε= Φ (式中,P 为电偶极矩,l q P =) , 而 → →→?Φ?+?Φ?+?Φ?=Φ000sin 11φφ θθθr r r r 。 试求M 点的电场强度 → E 。 2、(15分)半径为R 的无限长圆柱体均匀带电,电荷 体密度为ρ。请以其轴线为参考电位点, 求该圆柱体内外电位的分布。 3、(10分)一个位于Z 轴上的直线电流I =3安培,在其旁 边放置一个矩形导线框,a =5米,b =8米,h =5米。 最初,导线框截面的法线与I 垂直(如图),然后将该 截面旋转900,保持a 、b 不变,让其法线与I 平行。 求:①两种情况下,载流导线与矩形线框的互感系数M 。 ②设线框中有I ′=4安培的电流,求两者间的互感磁能。 4、(10分)P 为介质(2)中离介质边界极近的一点。 已知电介质外的真空中电场强度为→ 1E ,其方向与 电介质分界面的夹角为θ。在电介质界面无自由电 荷存在。求:①P 点电场强度 → 2E 的大小和方向; 5、(15分)在半径为R、电荷体密度为ρ的球形 均匀带电体内部有一个不带电的球形空腔,其半径为r, 两球心的距离为a(r<a<R)。介电常数都按ε0计算。 求空腔内的电场强度E。 《电磁场与电磁波》测验试卷﹙三﹚ 二、 填空题(每题8分,共40分) R O r a x

电磁场与电磁波部分课后答案_郭辉萍版1-6章

第一章 习题解答 1.2解:⑴.A a =A A =149A ++ =(x a +2y a -3z a )/14 ⑵cos A B θ =A ·B /A B A B θ=135.5o ⑶A ·B =-11, A ?B =-10x a -y a -4z a ⑷A ·(B ?C )=-42 (A ?B )·C =-42 ⑸A ?(B ?C )=55x a -44y a -11z a (A ?B )?C =2x a -40y a +5z a 1.3有一个二维矢量场F(r) =x a (-y )+y a (x),求其矢量线方程,并定性画出该矢量场图 形。 解:由dx/(-y)=dy/x,得2x +2y =c 1.6求数量场ψ=ln (2x +2y +2z )通过点P (1,2,3)的等值面方程。 解:等值面方程为ln (2x +2 y +2z )=c 则c=ln(1+4+9)=ln14 那么2x +2 y +2z =14 1.9求标量场ψ(x,y,z )=62 x 3 y +z e 在点P (2,-1,0)的梯度。 解:由ψ?=x a x ψ??+y a y ψ??+z a z ψ??=12x 3y x a +182x 2y y a +z e z a 得 ψ?=-24x a +72y a +z a 1.10 在圆柱体2 x +2 y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S: ⑴求矢量场A 沿闭合曲面S 的通量,其中矢量场的表达式为 A =x a 32 x +y a (3y+z )+z a (3z -x)

错误!未找到引用源。验证散度定理。 解:⑴??s d A =?? 曲+A d S ?? xoz +A d S ?? yoz +A d S ?? 上+A d S ?? 下 A d S ?? 曲 =232 (3cos 3sin sin )z d d ρθρθθρθ++?曲 =156.4 A d S ?? xoz = (3)y z dxdz +? xoz =-6 A d S ?? yoz =- 2 3x dydz ? yoz =0 A d S ?? 上 +A d S ?? 下=(6cos )d d ρθρθρ-?上+cos d d ρθρθ?下 =272π ? ?s d A =193 ⑵dV A V ???=(66)V x dV +?=6(cos 1)V d d dz ρθρθ+?=193 即:??s s d A =dV A V ??? 1.13 求矢量A =x a x+y a x 2y 沿圆周2x +2y =2 a 的线积分,再求A ?? 对此圆周所包围的表 面积分,验证斯托克斯定理。 解:??l l d A =2 L xdx xy dy +? =44a π A ?? =z a 2 y ????S s d A =2S y dS ? =22sin S d d θ ρρρθ? =44a π 即:??l l d A =????S s d A ,得证。 1.15求下列标量场的梯度: ⑴u=xyz+2 x u ?=x a u x ??+y a u y ??+z a u z ??=x a (yz+zx)+y a xz+z a xy ⑵u=42 x y+2 y z -4xz u ?=x a u x ??+y a u y ??+z a u z ??=x a (8xy-4z)+y a (42 x +2yz)+z a (2y -4x) ⑶u ?=x a u x ??+y a u y ??+z a u z ??=x a 3x+y a 5z+z a 5y

电磁场与电磁波课后习题答案第一章

第一章 给定三个矢量A u r ,B u r ,C u r : A u r =x a u u r +2y a u u r -3z a u u r B u r = -4y a u u r +z a u u r C u r =5x a u u r -2z a u u r 求:⑴矢量A u r 的单位矢量A a u u r ; ⑵矢量A u r 和B u r 的夹角AB θ; ⑶A u r ·B u r 和A u r ?B u r ⑷A u r ·(B u r ?C u r )和(A u r ?B u r )·C u r ; ⑸A u r ?(B u r ?C u r )和(A u r ?B u r )?C u r 解:⑴A a u u r =A A u r u r =u r (x a u u r +2y a u u r -3z a u u r ) ⑵cos AB θu r u r =A u r ·B u r /A u r B u r AB θ=135.5o ⑶A u r ·B u r =-11, A u r ?B u r =-10x a u u r -y a u u r -4z a u u r ⑷A u r ·(B u r ?C u r )=-42 (A u r ?B u r )·C u r =-42 ⑸A u r ?(B u r ?C u r )=55x a u u r -44y a u u r -11z a u u r (A u r ?B u r )?C u r =2x a u u r -40y a u u r +5z a u u r 有一个二维矢量场F(r)r =x a u u r (-y )+y a u u r (x),求其矢量线方程,并定性画出该矢量场图形。 解:由dx/(-y)=dy/x,得2x +2y =c 求数量场ψ=ln (2x +2y +2z )通过点P (1,2,3)的等值面方程。 解:等值面方程为ln (2x +2y +2 z )=c

电磁场与电磁波习题答案8

第八章 8-1 导出非均匀的各向同性线性媒质中,正弦电磁场应该满足的波动方程及亥姆霍兹方程。 解 非均匀的各向同性线性媒质中,正弦电磁场应该满足的麦克斯韦方程如下: ??? ? ?? ?? ? =??=????-=????+=??)(),()(0),()() ,()(),(),()(),(),(r r E r r H r r H r r E r E r r J r H ρεμμεt t t t t t t t t , 分别对上面两式的两边再取旋度,利用矢量公式A A A 2)(?-???=????,得 ??? ? ????-?+??+????=??-?)()(),(),() ,()(),()() ,() ()(),(2 22 r r r E r r J r r H r r E r r r E εερμμμεt t t t t t t t t ??? ? ?????-????-?-?=??-?μμεμε)(),() ,()(),() ,() ()(),(2 22 r r H r E r r J r H r r r H t t t t t t t 则相应的亥姆霍兹方程为 ???? ????-?++??=+?)()()()()()(j )()(j ) ()()()(22r r r E r r J r r H r r E r r r E εερωμμωμεω??? ? ?????-??-?-?=+?μμεωμεω)()()()(j )() ()()()(22r r H r E r r J r H r r r H 8-2 设真空中0=z 平面上分布的表面电流t J s x s sin 0ωe J =,试求空间电场强度、磁场强度及能流密度。 解 0=z 平面上分布的表面电流将产生向z +和z -方向传播的两个平面波,

电磁场与电磁波课后答案_郭辉萍版1-6章

第一章 习题解答 1.2给定三个矢量A ,B ,C : A =x a +2y a -3z a B = -4y a +z a C =5x a -2z a 求:错误!未找到引用源。矢量A 的单位矢量A a ; 错误!未找到引用源。矢量A 和B 的夹角AB θ; 错误!未找到引用源。A ·B 和A ?B 错误!未找到引用源。A ·(B ?C )和(A ?B )·C ; 错误!未找到引用源。A ?(B ?C )和(A ?B )?C 解:错误!未找到引用源。A a =A A = 149A ++ =(x a +2y a -3z a )/14 错误!未找到引用源。cos AB θ =A ·B /A B AB θ=135.5o 错误!未找到引用源。A ·B =-11, A ?B =-10x a -y a -4z a 错误!未找到引用源。A ·(B ?C )=-42 (A ?B )·C =-42 错误!未找到引用源。A ?(B ?C )=55x a -44y a -11z a (A ?B )?C =2x a -40y a +5z a 1.3有一个二维矢量场F(r) =x a (-y )+y a (x),求其矢量线方程,并定性画出该矢量场图 形。 解:由dx/(-y)=dy/x,得2 x +2 y =c 1.6求数量场ψ=ln (2 x +2y +2 z )通过点P (1,2,3)的等值面方程。

解:等值面方程为ln (2x +2y +2 z )=c 则c=ln(1+4+9)=ln14 那么2 x +2y +2 z =14 1.9求标量场ψ(x,y,z )=62 x 3y +z e 在点P (2,-1,0)的梯度。 解:由ψ?=x a x ψ??+y a y ψ??+z a z ψ??=12x 3 y x a +182x 2y y a +z e z a 得 ψ?=-24x a +72y a +z a 1.10 在圆柱体2 x +2 y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S: 错误!未找到引用源。求矢量场A 沿闭合曲面S 的通量,其中矢量场的表达式为 A =x a 32x +y a (3y+z )+z a (3z -x) 错误!未找到引用源。验证散度定理。 解:错误!未找到引用源。??s d A = A d S ?? 曲 + A dS ?? xoz + A d S ?? yoz +A d S ?? 上 +A d S ?? 下 A d S ?? 曲 =232 (3cos 3sin sin )z d d ρθρθθρθ++?曲 =156.4 A dS ?? xoz = (3)y z dxdz +?xoz =-6 A d S ?? yoz =- 23x dydz ? yoz =0 A d S ?? 上+A d S ?? 下=(6cos )d d ρθρθρ-?上+cos d d ρθρθ?下=272π ??s d A =193 错误!未找到引用源。dV A V ???=(66)V x dV +?=6(cos 1)V d d dz ρθρθ+?=193 即:??s s d A =dV A V ??? 1.13 求矢量A =x a x+y a x 2 y 沿圆周2x +2 y =2a 的线积分,再求A ?? 对此圆周所包围的表 面积分,验证斯托克斯定理。 解:??l l d A =2 L xdx xy dy +? =44a π A ?? =z a 2 y

电磁场与电磁波课后答案第1章

第一章习题解答 给定三个矢量、和如下: 求:(1);(2);(3);(4);(5)在上的分量;(6); (7)和;(8)和。 解(1) (2) (3)-11 (4)由,得 (5)在上的分量 (6) (7)由于 所以 (8) 三角形的三个顶点为、和。 (1)判断是否为一直角三角形; (2)求三角形的面积。 解(1)三个顶点、和的位置矢量分别为 ,, 则,, 由此可见 故为一直角三角形。 (2)三角形的面积 求点到点的距离矢量及的方向。 解,, 则 且与、、轴的夹角分别为 给定两矢量和,求它们之间的夹角和在上的分量。 解与之间的夹角为 在上的分量为 给定两矢量和,求在上的分量。 解 所以在上的分量为 证明:如果和,则; 解由,则有,即 由于,于是得到 故 如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便可以确定该未知矢量。设为一已知矢量,而,和已知,试求。

解由,有 故得 在圆柱坐标中,一点的位置由定出,求该点在:(1)直角坐标中的坐标;(2)球坐标中的坐标。 解(1)在直角坐标系中、、 故该点的直角坐标为。 (2)在球坐标系中、、 故该点的球坐标为 用球坐标表示的场, (1)求在直角坐标中点处的和; (2)求在直角坐标中点处与矢量构成的夹角。 解(1)在直角坐标中点处,,故 (2)在直角坐标中点处,,所以 故与构成的夹角为 球坐标中两个点和定出两个位置矢量和。证明和间夹角的余弦为 解由 得到 一球面的半径为,球心在原点上,计算:的值。 解 在由、和围成的圆柱形区域,对矢量验证散度定理。 解在圆柱坐标系中 所以 又 故有 求(1)矢量的散度;(2)求对中心在原点的一个单位立方体的积分;(3)求对此立方体表面的积分,验证散度定理。 解(1) (2)对中心在原点的一个单位立方体的积分为 (3)对此立方体表面的积分 故有 计算矢量对一个球心在原点、半径为的球表面的积分,并求对球体积的积分。 解 又在球坐标系中,,所以 求矢量沿平面上的一个边长为的正方形回路的线积分,此正方形的两边分别与轴和轴相重合。再求对此回路所包围的曲面积分,验证斯托克斯定理。 解 又

电磁场与电磁波课后习题及答案8章习题解答

九章习题解答 9.1 设元天线的轴线沿东西方向放置,在远方有一移动接收台停在正南方而收到最大电场强度,当电台沿以元天线为中心的圆周在地面移动时,电场强度渐渐减小,问当电场强度减小到 时,电台的位置偏离正南多少度? 解:元天线(电基本振子)的辐射场为 j k r θ-=E e 可见其方向性函数为(),sin f θφθ=,当接收台停在正南方向(即090θ=)时,得到最 大电场强度。由 sin θ= 得 045θ= 此时接收台偏离正南方向045±。 9.2 上题中如果接收台不动,将元天线在水平面内绕中心旋转,结果如何?如果接收天线也是元天线,讨论收发两天线的相对方位对测量结果的影响。 解: 如果接收台处于正南方向不动,将天线在水平面内绕中心旋转,当天线的轴线转至沿东西方向时,接收台收到最大电场强度,随着天线地旋转,接收台收到电场强度将逐渐变小,天线的轴线转至沿东南北方向时,接收台收到电场强度为零。如果继续旋转元天线,收台收到电场强度将逐渐由零慢慢增加,直至达到最大,随着元天线地不断旋转,接收台收到电场强度将周而复始地变化。 当接收台也是元天线,只有当两天线轴线平行时接收台收到最大电场强度;当两天线轴线垂直时接收台收到的电场强度为零;当两天线轴线任意位置,接收台收到的电场强介于最大值和零值之间。 9.3 如题9.3图所示一半波天线,其上电流分布为() 1 1cos 2 2m I I kz z ??=-<< ? ?? (1)求证:当0r l >>时, 020 cos cos 22sin jkr m z I e A kr πθμπθ -?? ? ??= ? (2)求远区的磁场和电场; (3)求坡印廷矢量; (4)已知 220 cos cos 20.609sin d π πθθθ ?? ???=? ,求辐射电阻; (5)求方向性系数。 题9.3(1)图

电磁场与电磁波第二章课后答案

第二章静电场 重点与难点 电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式得静电场方程导出微分形式得静电场方程,即散度方程与旋度方程,并强调微分形式得场方程描述得就是静电场得微分特性或称为点特性。 利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间得关系。通过书中列举得4个例子,总结归纳出根据电荷分布计算电场强度得三种方法。 至于媒质得介电特性,应着重说明均匀与非均匀、线性与非线性、各向同性与各向异性等概念。讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。介绍边界条件时,应说明仅可依据积分形式得静电场方程,由于边界上场量不连续,因而微分形式得场方程不成立。 关于静电场得能量与力,应总结出计算能量得三种方法,指出电场能量不符合迭加原理。介绍利用虚位移得概念计算电场力,常电荷系统与常电位系统,以及广义力与广义坐标等概念。至于电容与部分电容一节可以从简。 重要公式 真空中静电场方程: 积分形式: 微分形式: 已知电荷分布求解电场强度: 1,; 2, 3, 高斯定律 介质中静电场方程: 积分形式: 微分形式: 线性均匀各向同性介质中静电场方程: 积分形式: 微分形式: 静电场边界条件: 1,。对于两种各向同性得线性介质,则

2,。在两种介质形成得边界上,则 对于两种各向同性得线性介质,则 3,介质与导体得边界条件: ; 若导体周围就是各向同性得线性介质,则 ; 静电场得能量: 孤立带电体得能量: 离散带电体得能量: 分布电荷得能量: 静电场得能量密度: 对于各向同性得线性介质,则 电场力: 库仑定律: 常电荷系统: 常电位系统: 题解 2-1若真空中相距为d得两个电荷q1及q2得电量分别为q及4q,当点电荷位于q1及q2得连线上时,系统处于平衡状态,试求得大小及位置。解要使系统处于平衡状态,点电荷受到点电荷q1及q2得力应该大小相等,方向相反,即。那么,由,同时考虑到,求得 可见点电荷可以任意,但应位于点电荷q 1与q 2 得连线上,且与点电荷相 距。 2-2已知真空中有三个点电荷,其电量及位置分别为: 试求位于点得电场强度。

6 电磁场与电磁波 第六章 答案

6.2 自由空间中一均匀平面波的磁场强度为 )cos()(0x wt H a a H z y π-+= m A / 求:(1)波的传播方向;(2)波长和频率;(3)电场强度; (4)瞬时坡印廷矢量。 解:)cos()(0x wt H a a H z y π-+= m A / (1) 波沿+x 方向传播 (2) 由题意得:k=π rad/m , 波长m k 22==πλ , 频率Hz c f 8105.1?==λ (3))cos(120 )(0x wt H a a a H E z y x ππη--=?= m v / (4))(cos 24020x wt H a H E S x ππ-=?= 2 /m w 6.3无耗媒质的相对介电常数4=r ε,相对磁导率1=r μ,一平面电磁波沿+z 方向传播,其电场强度的表 达式为)106cos(80z t E a E y β-?= 求:(1)电磁波的相速;(2)波阻抗和β;(3)磁场强度的瞬时表达式;(4)平均坡印廷矢量。 解: (1)s m c v r r p /105.11 8?===εμμε (2))(6000Ω===πεεμμεμηr r , m r a d c w w r r /4===εμμεβ (3))4106cos(60180z t E a E a H x z -?-=?=π η m A / (4)π120]Re[2120*E a H E S z av =?= 2/m w 6.4一均匀平面波从海水表面(x=0)沿+x 方向向海水中传播。在x=0处,电场强度为m v t a E y /)10cos(1007π =,若海水的80=r ε,1=r μ,m s /4=γ。 求:(1)衰减常数、相位常数、波阻抗、相位速度、波长、趋肤深度; (2)写出海水中的电场强度表达式; (3)电场强度的振幅衰减到表面值的1%时,波传播的距离; (4)当x=0.8m 时,电场和磁场得表达式; (5)如果电磁波的频率变为f=50kHz ,重复(3)的计算。比较两个结果会得到什么结论? 解: (1)

电磁场与电磁波第二章课后答案

第二章静电场 重点和难点 电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分 形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方 程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特 性。 利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。 通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三 种方法。 至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、 各向同性与各向异性等概念。讲解介质中静电场方程时,应强调电通密 度仅与自由电荷有关。介绍边界条件时,应说明仅可依据积分形式的静 电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。 关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量 不符合迭加原理。介绍利用虚位移的概念计算电场力,常电荷系统和常 电位系统,以及广义力和广义坐标等概念。至于电容和部分电容一节可 以从简。 重要公式 真空中静电场方程: q E d SE d l 0积分形式: Sl EE 0微分形式: 已知电荷分布求解电场强度: 1(r ) 1,E (r )(r );(r )d V 4|rr| V 0 2, E (r ) V 4 (r 0 )( | r r r r ) 3 | d V q E d S 3, 高斯定律 S

1

介质中静电场方程: E d l0 积分形式:D d S q S l 微分形式:DE0 线性均匀各向同性介质中静电场方程: q E d SE d l0积分形式: S l 微分形式:EE0 静电场边界条件: 1,E1t E2t。对于两种各向同性的线性介质,则 D 1tD t 2 12 2,D2n D1ns。在两种介质形成的边界上,则 D 1 2n nD 对于两种各向同性的线性介质,则 E 2n 1 12 nE 3,介质与导体的边界条件: e n E0;e n DS 若导体周围是各向同性的线性介质,则 S S E; n n 静电场的能量:

相关文档
最新文档