最新磁性材料期末复习

最新磁性材料期末复习
最新磁性材料期末复习

一、名词解释

磁矩:反映磁偶极子的磁性大小及方向的物理量,定义为磁偶极子等效的平面回路内的电流和回路面积的乘积μ=i.s

磁化强度:定义为单位体积内磁偶极子具有的磁矩矢量和,是描述宏观磁体磁性强弱的物理量

磁场强度:单位正电荷在磁场中受到的力,用H表示

磁极化强度:单位体积内磁偶极矩的矢量和

磁感应强度:用来描述磁场强弱和方向的物理量,大小等于垂直于磁场方向长度为1m,电流为1A的导线所受力的大小;

可逆磁化:畴壁位移磁化过程中磁位能的降低和铁磁体内能的增加相等

不可逆磁化:每个磁化状态都处于亚稳态且磁化状态不随时间改变

涡流损耗:导体在非均匀磁场中移动或处在随时间变化的磁场中时,导体内的感生的电流导致的能量损耗

磁滞损耗:铁磁材料在磁化过程中由磁滞现象引起的能量损耗

交换作用:铁磁性物质中近邻原子之间通过电子间的静电交换作用实现的作用方式

超交换作用:反磁性物质中的磁性离子以隔在中间的非磁性离子为媒介实现的交换作用

磁化曲线:表征磁感应强度B,磁化强度M与磁场强度H之间的非线性关系的曲线

磁滞回线:在外加磁场H从正的最大到负的最大,再回到正的最大这个过程中,M-H或B-H形成了一条闭合曲线,称为磁滞回线

磁化率:置于外磁场中的磁体,其磁化率为磁化强度M与外磁场强度H的比值,是表征磁体磁性强弱的一个参量

磁导率:磁导率是表征磁体的磁性,导磁率及磁化难易程度的磁学量,是磁感应强度B与外磁场强度H 的比值

起始磁导率:磁中性化的磁性材料,当磁场强度趋近于零时磁导率的极限值

最大磁导率:对应基本磁化曲线上各点磁导率的最大值

退磁场:当一个有限大小的样品被外磁场磁化时,在他两端的自由磁极所产生的一个与磁化强度方向相反的磁场称为退磁场

退磁场Hd的强度与磁体的强度及形状有关,Hd=-NM

退磁因子:仅与材料形状有关的影响材料退磁场强度的参数

铁磁性:是指物质中相邻原子或离子的磁矩由于它们的相互作用而在某些区域中大致按同一方向排列,当所施加的磁场强度增大时,这些区域的合磁矩定向排列程度会随之增加到某一极限值的现象。

反铁磁性:在原子自旋(磁矩)受交换作用而呈现有序排列的磁性材料中,如果相邻原子自旋间是受负的交换作用,自旋为反平行排列,则磁矩虽处于有序状态(称为序磁性),但总的净磁矩在不受外场作用时仍为零。这种磁有序状态称为反铁磁性。

磁谱:指铁磁体在交变磁场中的复数磁导率的实部μ’和虚部μ“随频率变化的关系曲线

自发磁化:磁有序物质在无外加磁场的情况下,由于近邻原子间电子的交换作用或其他相互作用,使物质中各原子的磁矩在一定空间范围内呈现有序排列而达到的磁化,称为自发磁化

磁各向异性:单晶体的磁化曲线形状与单晶体的晶轴方向有关,即磁性随晶轴方向呈现各向异性

磁畴:为降低表面退磁场能,改变自发磁化的分布状态而在铁磁体内产生许多自发磁化区域,这样的每一个磁化区域称为磁畴

单畴:具有强磁化强度的颗粒其自发磁化强度能随着体积增大而迅速增大。而在某些非常小的颗粒中,这些电子自旋最终会定向排列,自发磁化强度取在一个磁化方向上,使得这种颗粒被均匀磁化,并被称为单畴

动态磁滞回线:铁磁材料的动态磁化特性曲线是指其在交变磁场磁化下,所得到的磁感应强度B和磁化强度H之间的关系曲线。

磁致伸缩:磁性材料由于磁化状态的改变导致其长度和体积都发生微小形变的现象

布洛赫畴壁:磁化矢量从一个畴内的方向过渡到相邻磁畴内的方向时磁化方向始终保持平行于磁畴平面,且畴壁面上无自由磁极出现,这种畴壁平面称为布洛赫畴壁

奈尔壁:磁化矢量从一个畴内的方向过渡到相邻磁畴内的方向时磁化方向始终保在磁畴平面内,且畴壁面上无自由磁极出现,这种畴壁平面称为奈尔壁

软磁材料:矫顽力很低且容易受外加磁场磁化又容易退磁的磁性材料

特点(1)高的初始磁导率μi和最大磁导率μmax

(2)低的矫顽力Hc

(3)高饱和磁化强度Ms和低的剩余磁感应强度Br

(4)低铁损,高电阻率以及低磁致伸缩系数

硬磁材料:外加磁场后除去外磁场仍能保留较强磁性的一类磁性物质

特点(1)高的剩余磁化强度Br

(2)高矫顽力Hc

(3)具有较高的最大磁能积(BH)max

(4)良好的稳定性

居里温度:磁矩的有序排列由于热扰动被完全破坏时的温度

复数磁导率:交变磁场中的为了描述磁感应强度B和磁场强度H间振幅和相位关系而引入的磁导率

截止频率:复数磁导率的实部下降到初始值的一半或者虚部达到极大值所对应的频率

品质因数:反映软磁材料在交变磁化时能量的储存与消耗的性能的参数,是软磁材料复数磁导率实部与虚部之比。

顺磁性:物质在受到外磁场作用后,感生出与外磁场同向的磁化强度的现象

超顺磁性:超顺磁性是指当某些具有磁性的颗粒小于某个尺吋时,外场产生的磁取向力太小而无法抵抗热骚动的干扰,而导致其磁化性质与顺磁体相似的现象。

垂直磁记录:记录介质中的剩磁方向平行于介质平面,通常采用垂直磁头与具有垂直磁各向异性的记录

介质相组合的形式

水平磁记录:记录介质中的剩磁方向平行于介质平面,通常采用环形磁头与具有纵向磁各向异性的记录介质相组合的的形式

磁性流体:是由直径为纳米量级的磁性固体颗粒、基载液以及表面活性剂三者混合而成的一种稳定的胶状液体。同时具有液体的流动性和固体磁性材料的磁性。

磁电阻效应:在外磁场作用下磁性材料的电阻发生变化的现象

磁热效应:磁性粒子系统在外磁场的施加和去除过程中所呈现的热现象

二、简答题

1.内禀矫顽力和磁感矫顽力有什么区别和联系?

答:使磁体的剩余磁化强度Mr降为零所需施加的反向磁场强度,称为内禀矫顽力。磁体在反向充磁时,使磁感应强度降为零所需反向磁场强度的值称为磁感矫顽力。

2.退磁场是怎么产生的?能克服吗?对于实测的材料磁化特性曲线如何进行退磁校正?

答:当样品被外加磁场磁化时,其两端的自由磁极将产生一个与磁化强度方向相反的磁场,即退磁场,退磁场仅与材料的形状及大小有关,但尺寸限制使得退磁场无法避免。由于受到退磁场的的影响有效磁场Heff比外加磁场Hex要小,即Heff=Hex-MN

3.物质的磁性分为几类?各有什么特点?

答:抗磁性,铁磁性,反铁磁性,顺磁性,超顺磁性,亚铁磁性

抗磁性:在外磁场作用下,原子系统获得与外磁场方向反向磁矩的现象

铁磁性:是指物质中相邻原子或离子的磁矩由于它们的相互作用而在某些区域中大致按同一方向排列,当所施加的磁场强度增大时,这些区域的合磁矩定向排列程度会随之增加到某一极限值的现象。

反铁磁性:在原子自旋(磁矩)受交换作用而呈现有序排列的磁性材料中,如果相邻原子自旋间是受负的交换作用,自旋为反平行排列,则磁矩虽处于有序状态(称为序磁性),但总的净磁矩在不受外场作用时仍为零。这种磁有序状态称为反铁磁性。

顺磁性:某些物质在受外磁场作用后,感生出与外磁场同向的磁化强度,其磁化率大于零但数值很小,这种磁性称为顺磁性

亚铁磁性:亚铁磁性宏观与铁磁性基本相同,只是磁化率相比更低,只有1-1000数量级

超顺磁性:

4.磁性材料可以分为几类?它们各有什么特点?

答:软磁材料:矫顽力很低且容易受外加磁场磁化又容易退磁的磁性材料

特点(1)高的初始磁导率μi和最大磁导率μmax

(2)低的矫顽力Hc

(3)高饱和磁化强度Ms和低的剩余磁感应强度Br

(4)低铁损,高电阻率以及低磁致伸缩系数

硬磁材料:外加磁场后除去外磁场仍能保留较强磁性的一类磁性物质

特点(1)高的剩余磁化强度Br

(2)高矫顽力Hc

(3)具有较高的最大磁能积(BH)max

(4)良好的稳定性

信磁材料:在信息技术中获得应用的磁性材料,具有将磁信号转化为其他信号的能力

特磁材料:具有多种特殊磁性功能和各种特别应用的磁性功能材料

第2章

1.铁磁性物质是怎样实现自发磁化的?为什么通常未经磁化的铁都不具有磁性?

答:铁磁性是一种强磁性,这种强磁性的起源是材料中的平行排列,而平行排列导致自发磁化;未经磁化的铁由于原子磁矩受到热运动无序效应的影响而无法平行排列,因而不具有磁性

2.试阐述物质反铁磁性,铁磁性和亚铁磁性之间的区别与联系。

答:铁磁性物质有固有磁矩,是直接相互作用,反铁磁性物质有磁矩但无固有磁矩,是直接相互作用,亚铁磁性物质有磁矩,无固有磁矩,是交换相互作用

3.交换作用模型与超交互作用模型的内容分别是什么?

答:交换作用模型认为,磁性体内原子之间存在交换相互作用,并且这种交换作用只发生在近邻原子之间。

超交换作用模型认为反铁磁性物质内的磁性离子之间的交换作用是通过个在中间的非磁性离子为媒介实现的

第3章

1.什么是磁晶各向异性和磁致伸缩?

答:磁各向异性是指单晶体的磁化曲线形状与单晶体的晶轴方向有关,即磁性随晶轴方向呈现各向异性;磁致伸缩是指磁性材料由于磁化状态的改变导致其长度和体积都发生微小形变的现象

2.材料的磁化机制有哪几种?各有什么特点?

答:①磁畴壁的位移磁化过程

②磁畴转动磁化过程

③顺磁磁化过程

畴壁位移磁化过程中,磁畴体积发生相对变化,相当于磁畴间的畴壁位移发生变化;在磁畴转动磁化过程中,磁畴的自发磁化强度Ms与外磁场强度H间的夹角发生变化,Ms与磁畴体积均未发生变化;顺磁磁化过程中,磁畴体积及Ms与H之间的夹角均未发生变化,而是自发磁化强度Ms的大小发生了变化从而导致了磁化。

4.磁损耗通常包括哪几类?各有那些影响因素?

答:磁滞损耗包括①涡流损耗②磁滞损耗③剩余损耗

涡流损耗的影响因素:交变磁场的工作频率,材料的厚度,电阻率

磁滞损耗的影响因素:材料的矫顽力

剩余损耗的影响因素:起始磁导率及扩散离子浓度

5.顺磁性和超顺磁性都表现为宏观上的磁无序,试论述其差异点。

答:顺磁性的主要特点是原子或分子中含有没有完全抵消的电子磁矩,因而具有原子或分子磁矩,但这些磁矩之间没有强的相互作用,会受到热扰动的影响,而对于超顺磁性,对于每一个颗粒而言,磁性原子或离子之间的交换作用很强,磁矩之间平行排列,而由于颗粒与颗粒之间的差异,是的磁矩的取向不同,从而宏观无序

第4章

1.对于软磁材料的基本性能的要求有哪些?

答:高的初始磁导率和最大磁导率,低矫顽力,高饱和磁感应强度,低功率损耗,高稳定性,低剩余磁感应强度,低铁损,高电阻率,低磁致伸缩系数

2.提高软磁材料初始磁导率的途径有哪些?

答:提高饱和磁化强度

降低磁晶各向异性常数和磁致伸缩系数

控制晶粒尺寸的大小

改善材料的显微结构(材料的织构化)

降低内应力

3.软磁材料可以分为哪几大类?他们在性能和应用场合上有哪些差别?

答:软磁材料分为金属软磁材料,铁氧体软磁材料,纳米晶软磁材料

金属软材材料具有高的饱和磁化强度

铁氧体软磁材料具有亚铁磁性,其饱和磁化强度比金属软磁材料低,但电阻率较高s,因而具有良好的高频特性,具有高初始磁导率,高品质因数,高稳定性和高截止频率

纳米晶软磁合金兼具了铁基非晶合金的高磁感应强度和钴基非晶合金的高磁导率,低损耗,低成本,同时由于非晶态软磁材料不具有晶粒结构,因而磁导率高,矫顽力较小,具有优良的综合软磁性能

4.常用的金属软磁材料有哪些?他们各有哪些特点,分别有哪些应用?

答:电工纯铁:磁性能受含碳量影响,且存在时效效应,涡流损耗较大,只能应用于直流磁场中,主要用于制造电磁铁的铁芯和磁极,继电器的磁路和各种零件等

硅钢:由于在电工纯铁中掺杂了硅形成固溶体,使得合金电阻率提高,降低了材料的涡流损耗并且随着硅含量的增加,磁滞损耗降低,在弱磁场和中等磁场强度的磁场下,磁导率增加,是交流电器用的比较理想的材料

坡莫合金:坡莫合金具有很高的磁导率,成分范围宽,且磁性能可以通过改变成分和热处理工艺进行调节,因此可以用在弱磁场下具有很高磁导率的铁芯材料和磁屏蔽材料,也可用在要求低剩磁和恒磁导率的脉冲变压器材料,还可用作各种矩磁合金,热磁合金和磁致伸缩合金

铁铝合金:与其他金属材料相比具有较高的强度、硬度和耐磨性;合金密度低,可以减轻磁性元件的铁芯重量;且对应力不敏感,适用于在冲击、震动等环境下工作,此外,铁铝合金还具有良好的温度稳定

性和抗核辐射性能等优点

铁硅铝合金(仙台斯特合金)该合金的磁致伸缩系数和磁给向异性常数几乎同时趋近于零,同时具有高磁导率和低矫顽力,且电阻率高耐磨性好,可作为理想的磁头磁芯材料

铁钴合金(坡莫合金)具有高饱和磁化强度,高的初始磁导率和最大磁导率,但加工性能较差,通常用作直流电磁铁铁芯,极头材料,由于其具有较高的饱和磁致伸缩系数,也是一种很好的磁致伸缩合金5.常用铁氧体软磁材料有哪些?他们各有什么特点,分别有哪些应用?

答:尖晶石型铁氧体,石榴石型铁氧体和磁铅石型铁氧体

尖晶石铁氧体在低频段下应用极广,在500Hz频率下较其他铁氧体具有更多优点,磁滞损耗低,在相同高磁导率的情况下居里温度较高

石榴石型铁氧体的电阻率远高于尖晶石的电阻率,因而比尖晶石型铁氧体具有更广的应用频段范围,而且在十二面体座(24c)离子的置换对居里温度影响不大,但却对其他性能如线宽DH,饱和磁化强度Ms 等可能会产生显著的改变,因此可以做到在居里温度变化不大的条件下改变Ms,DH 等量。主要用于高频范围

磁铅石型铁氧体具有单轴磁晶各向异性,在高频和超高频具有广泛的应用空间,主要作为超高频软磁材料、微波毫米波段材料

6.与传统晶态材料相比,非晶态软磁材料具有哪些优势?如何制备非晶态磁性材料?

答:非晶态材料具有的特征:

(1)结构长程无序,短程有序

(2)不存在位错和晶界,因而作为磁性材料,具有高磁导率和低矫顽力

(3)电阻率比同种晶态材料高,高频场合使用时,材料涡流损耗小

(4)机械强度较高且硬度较高

(5)抗化学腐蚀能力强,抗伽马射线及中子等辐射能力强

(6)不具有晶粒结构,在磁学性能上属于各向同性

制备方法

(1)气相沉积法

(2)液相急冷法

(3)高能粒子注入法

7.为什么说纳米晶合金的发明是软磁材料的一个突破性进展?纳米晶软磁材料如何制备,有哪些典型应用?

答:纳米晶软磁合金同时兼备了铁基非晶合金的高磁感应强度和钴基非晶合金的高磁导率、低损耗,并且是成本低廉的铁基材料,是理想的低成本高性能材料。制备方法主要通过非晶晶化法,先利用熔体急冷法获得非晶条带,然后再在略高于非晶晶化温度下退火一段时间,使之纳米晶化。典型应用主要有:功率变压器,脉冲变压器,高频变压器,可饱和电抗器,磁开关等。

第五章

1.对永磁材料的基本性能要求有哪些?

①剩余磁感应强度B

r

要高

②矫顽力H

c

要高

③最大磁能积(BH)

ax

要高

④从实用角度考虑,材料稳定性要高

2.如何提高永磁材料的剩磁M r和矫顽力H c?

提高剩磁M

r

:①定向结晶;②塑性变形;③磁场成型;④磁场处理

提高矫顽力H

c

①磁畴的不可逆角度:

a.对于高Ms的单畴材料,最好是通过形状各向异性来提高矫顽力,这时希望离子的细长比越大越

好,以增大(N

┴-N

)值;

b.对于具有高K1和λs的材料,应该利用磁晶各向异性和应力各向异性来提高矫顽力。当所有单畴

颗粒的易磁化方向(长轴)完全平行排列时,材料永磁性能越高。

②畴壁的不可逆位移角度:

a.传统永磁材料:适当增大非磁性掺杂含量并控制其形状(最好是片状掺杂)和弥散度(使掺杂尺

寸和畴壁宽度相近),同时应选择高磁晶各向异性的材料;或是增加材料中内应力的起伏,同时选择高磁致伸缩材料;

b.新型永磁材料:设法使材料中出现有效的钉扎中心(各种点缺陷、位错、晶界、堆垛层错、相界

等有关的局域性交换作用和局域各向异性起伏)即形成合适的晶体缺陷来提高矫顽力。

3. 永磁材料可以分为几大类?它们在磁性能和应用场合上有哪些差别?

5.铁氧体永磁材料有什么特点,有哪些应用,如何制备?

特点:综合磁性能低,原材料丰富,平均售价低,性价比高,工艺简便成熟,抗退磁性能优良,不存在氧化问题

应用:电机、电声、测量与控制器件、磁辊

制备:预烧→破碎→制粉→压制成型→烧结→磨加工

6.简述稀土永磁材料的发展历程。你认为哪种材料最有可能成为继Nd-Fe-B磁体后的新一代稀土永磁材料,并说明理由。

发展历程:60年代开发了以SmCo

5

为代表的第一代稀土永磁材料

70年代开发了以Sm

2Co

17

为代表的第二代稀土永磁材料

1983年佐川真人等发现了具有单轴各向异性的的Nd-Fe-B永磁

体,即第三代稀土永磁材料

新型稀土永磁材料:Sm-Fe-N系永磁材料。该类稀土永磁材料磁性能好,饱和磁化强度高,居里温度高,各向异性场高;价格低廉;资源丰富克服了Nd-Fe-B系永磁材料磁性温度稳定性差和抗腐蚀性能力差的缺点

第六章

6-3 磁头可分为几种类型?常用的磁头材料有哪些?

磁头可分为三种类型:体型磁头、薄膜磁头、磁电阻磁头。

常用的磁头材料有:①合金磁头材料②铁氧体磁头材料③非晶态磁头材料④微晶薄膜磁头材料⑤多层膜磁头材料⑥磁电阻磁头材料

6-4 磁记录介质应具备哪些性能?常用的磁记录介质材料有哪些?

性能:

①饱和磁感应强度(B

s )大;②矩形比(B

r

/B

s

)要大;

③矫顽力(H

c

)在允许的范围内应尽可能大;

④作为最小记录单位的微小永磁体应尽可能小,且大小及分布均匀;

⑤磁学性能分布均匀,随机偏差小;

⑥表面平滑,耐磨损、耐环境性能优良;

⑦磁学特征对于加压、加热等反应不敏感;

⑧化学的、机械的耐久性优良;

⑨不容易导电。

常用的磁记录介质材料有颗粒状涂布介质和薄膜介质。

7-1 什么是磁性液体?与传统意义上的固态磁性材料相比,磁液有何特征?

由纳米级(一般小于10nm)的磁性颗粒(Fe

3O

4

、γ-Fe

2

O

3

、Fe、Co、Ni、Fe-Co-Ni合金、α-Fe

3

N

及γFe

4

N等),通过界面活性剂(羧基、胺基、羟基、醛基、硫基等)高度地分散、悬浮在载液(水、矿物油、脂类、有机硅油、氟醚油及水银等)中,形成稳定的胶体体系。即使在重力、离心力或强磁场力的长期作用下,不仅纳米级的磁性颗粒不发生团聚现象,保持磁性能稳定,而且磁性液体的胶体也不被破坏,这种胶体的磁性材料被称为磁性液体。

磁性液体的特征是磁性颗粒、界面活性剂及载液性能的综合表征,作为一种特殊的胶体体系,磁性液体同时兼有软磁性和流动性,因此它具有特殊的物理特性、化学特性及流体特性。

7-2 磁性液体包括几类?有哪些应用?

按磁性颗粒的种类,磁性液体一般分为三类:

①铁氧体磁性液体②金属磁性液体③氮化铁磁性液体

应用:

①磁液密封②磁性液体研磨

③磁性液体在扬声器上的应用④磁性液体在潜艇推进器上的应用

⑤磁性液体在生物医学方面的应用⑥磁性液体在分离技术方面的应用

7-4 列举出典型的超磁致伸缩材料。磁致伸缩材料有何应用?

①稀土金属②稀土-过渡金属间化合物

③非金薄膜合金④稀土氧化物

⑤锕系金属化合物

应用:

⑴声学领域的应用

①声纳系统②声延迟线

⑵伺服领域的应用

⑶力学传感领域

①静应力传感领域②振动、冲击应力传感器领域

③扭矩传感领域

7-5 何谓磁电阻?磁电阻效应包括哪些种类?各自产生的机理是什么?

在外磁场作用下材料的电阻发生变化,这种现象称为磁电阻(MR)效应。

材料的磁电阻特性可分为两类:正常磁电阻效应(OMR)和反常磁电阻效应。

机理:

正常磁电阻效应:它是由于载流子在磁场运动中受到Lorentz力的作用,产生回旋运动,从而增加了电子受散射的几率,式电阻率上升,它与电子的自旋基本无关。

反常磁电阻效应:其起因被认为是自旋-轨道的相互作用或s-d相互作用引起的与磁化强度有关的电阻率变化,以及畴壁引起的电阻率变化。因此反常磁电阻效应有三种机制:①外加磁场引起自发磁场强度的增加,从而引起电阻率的变化,其变化率与磁场强度成正比,是各项同性的负的MR效应。②由于电流和磁化方向的相对方向不同而导致的MR效应,称为各向异性磁电阻效应。③铁磁体的畴壁对传导电子的散射产生的MR效应。

7-6 列举磁电阻效应的典型应用。

①磁电阻磁头②磁电阻随机存储器③磁电阻传感器

7-7 简述实现磁制冷的原理和技术。

磁制冷原理

次热效应,或称磁卡效应(MCE),是磁制冷得以实现的的基础。有磁性粒子构成的固体磁性物质,在受到外磁场的作用被磁化时,系统的磁有序度加强(磁熵减小),对外放出热量;再将其去磁,则磁有序度下降(磁熵增大),又要从外界吸收热量。这种磁性粒子系统在磁场的施加与去除过程中所呈现的热现象称为磁热效应。

当绝热磁化时,工质内的分子磁矩排列将由混乱无序趋于与外加磁场同向平行,根据系统论观点,

度量无序度的磁化熵减少了,即ΔS

M <0,所以ΔS

T

>0,故工质温度升高;当绝热去磁时,情况刚好相反,

使工质温度降低,从而达到制冷目的。如果绝热去磁引起的吸热过程和绝热磁化引起的放热过程用一个

循环连接起来,通过外加磁场,有意识地控制磁熵,就可以使

得磁性材料不断地从一端吸热而在另一端放热,从而达到制冷

的目的。这种制冷方法就是我们所说的磁致冷。

磁制冷技术

①等温磁化过程,热开关TS1闭合,TS2断开,磁场施加于磁

工质上,使熵减小,通过高温热源与磁工质的热端连接,热量

从磁工质传入高温热源。

②绝热去磁过程,热开关TS1断开,TS2断开,逐渐移去磁场,磁工质内自旋系统逐渐无序,再退磁过程中消耗内能,是磁工质温度下降到低温热源温度。

③等温去磁过程,TS2闭合,TS1仍断开,磁场继续减弱,磁工质从热源HS吸热。

④绝热磁化过程,断开TS2,TS1仍断开,施加一较小磁场,磁工质温度逐渐上升到高温热源温度。

1.简要介绍磁性材料中最常见的几种各向异性,并简述在软磁材料和永磁材料对各向异性的要求是什么?

答:形状各向异性,感生各向异性,磁晶各向异性,表面和界面各向异性

对软磁材料而言,要求尽量小的各向异性

对硬磁材料而言,要求较大的各向异性

2.简述纳米晶软磁材料中能获得优异的软磁性能的物理机制。

答:纳米晶合金的晶粒尺寸小于磁交换相互作用长度,导致平均磁晶各向异性很小,从而为纳米晶软磁材料提供了优异的软磁性能

3.简要概述目前应用最广泛的几种永磁材料,并对其优缺点作一对比。

答:

4.提高M型永磁铁氧体性能的主要途径有哪些?(从掺杂和制备工艺两方面来讨论)

答:提高M型磁纤石铁氧体性能的途径:

(1)提高取向度;提高取向磁场,增加粉体成型时的流动性

(2)提高烧结密度;高的成型密度,合适的烧结工艺;

高的填充量

(3)提高铁氧体M相的Ms、K1;提高Ms采用离子取代的方法

(4)细化晶粒,提高单畴颗粒的存在率;细磨粉体;

合适的烧结工艺;

5.Co2Z铁氧体为何具有很高的共振频率(截止频率)?

答:对Co2Z型六角平面铁氧体:

Haθ与Haφ分别为平面六角铁氧体中磁化强度矢量偏离易磁化平面以及在易磁化平面内转动时受到的有效场,一般Haθ > Haφ,约两个数量级。因而共振频率大幅提高。

https://www.360docs.net/doc/424046662.html,-Zn替代M型铁氧体后Ms提高的机理是什么?

答:La3+ 具有稳定磁铅石晶体结构的作用, 而Zn2+ 代换4f 1 晶位上Fe3+ 离子, 获得了更大的玻尔磁子数, 从而增大了

M型铁氧体的饱和磁化强度。

8.Mn-Zn铁氧体和Ni-Zn铁氧体的应用频率范围有何不同,为什么?

答:NiZn铁氧体在1-100MHz范围内应用最广,使用频率在1MHz以下使用时,性能不如MnZn铁氧体,但在1MHz以上时,由于它具有多孔性和高电阻率,其性能远优于MnZn铁氧体

9.Mn-Zn,Ni-Zn铁氧体中Zn替代后材料的饱和磁化强度提高的机理是什么?为什么替代量过高Ms反而会下降?

答:锌的分子磁矩为零,替代了

A位上的三价铁离子后

10.石榴石铁氧体中为何存在磁矩抵消点?石榴石铁氧体为何被称为旋磁材料?

答:

11.新一代垂直磁记录对写入磁头材料和记录介质材料的要求分别是什么?哪种材料最有潜力成为下一代磁头材料和记录介质材料?为什么?

答:

12.磁电阻效应主要包括哪几种,主要结构是什么?他们的主要应用是什么?

答:

三计算题

书上题目(要求熟练掌握磁学量国际单位制和SI单位制的换算。)

1.某一铁的旋转椭球长轴为1毫米,短轴直径为0.1毫米,饱和磁化强度为μ0Ms=

2.1T,求长轴和短轴方向的退磁场。

解:对于椭球体三个方向的退磁因子存在关系

Nx+Ny+Nz=1

纵横比为10:1,因而Nz=0.02,Nx=Ny=0.49

长轴退磁场Hd1=0.02*2.1=0.042T

短轴退磁场Hd2=0.49*2.1=1.029T

1.Zn如何取代镍铁氧体NiFe2O4中的Ni?在这个过程中离子的化合价和分子磁矩如何变化?给出定量

计算结果。

解:镍铁氧体NiFe2O4为尖晶石结构,Zn离子占据氧原子堆积的四面体空隙中,为正型尖晶石铁氧体,该过程中化合价不发生变化

尖晶石结构铁氧体中,设有x个锌离子参与替代,则

2.已知Co的饱和磁化强度μoMs=1.79T,Ku1 =4.1*10^5J/m^3,试计算Co中沿c轴的各向异性场。

解:

Co为六角晶体结构,c轴方向为其易磁化方向,对于主轴型六角晶体,其磁晶各向异性等效场为:Hk=2Ku1/μoMs

Hk = 2*4.1*10^5 / 1.79 = 4.58 * 10^5A/m = 576 Oe

磁性材料基本特性

1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或 B~H曲线上的某一点,该点常称为工作点。 饱和磁感应强度 Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; 剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; 矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); 磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关 初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp 居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度 损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r 在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 设计软磁器件通常包括三个步骤:正确选用磁性材料;

磁性材料基本特性的研究

实验报告 姓名:什么情况班级:F10 学号:51 实验成绩: 同组姓名:实验日期:2011- 指导老师:助教批阅日期: 磁性材料基本特性的研究 【实验目的】 1.了解磁性材料的磁滞回线和磁化曲线概念,加深对铁磁材料的主要物理量矫顽磁力、剩磁和磁导率的理解; 2.利用示波器观察并测量磁化曲线与磁滞回线; 3.测定所给定的铁磁材料的居里温度. 【实验原理】 1.磁化性质 一切可被磁化的物质叫作磁介质。磁介质的磁化规律可用磁感应强度B、磁化强度M、磁场强度H来描述,它们满足一定的关系 μr的不同一般可分为三类,顺磁质、抗磁质、铁磁质。 对非铁磁性的各向同性的磁介质,H和B之间满足线性关系,B =μH,而铁磁性介质的m 、B 与H 之间有着复杂的非线性关系。一般情况下,铁磁质内部存在自发的磁化强度,当温度越低自发磁化强度越大。如图一所示。 图一B~ H曲线图二μ~ T曲线 它反映了铁磁质的共同磁化特点:在刚开始时随着H的增加,B缓慢的增加,此时μ较小;而后便随H的增加B急剧增大,μ也迅速增加;最后随H增加,B趋向于饱和,而此时的μ值在到达最大值后又急剧减小。图一表明了磁导率μ是磁场H的函数。B-H曲线表示铁磁材料从没有磁性开始磁化,B随H的增加而增加,称为磁化曲线。从图二中可看到,磁导率μ还是温度的函数,当温度升高到某个值时,铁磁质由铁磁状态转变成顺磁状态,在曲线上变化率最大的点所对应的温度就是居里温度T C。 2.磁滞性质 铁磁材料除了具有高的磁导率外,另一重要的特性是磁滞现象.当铁磁材料磁化时,磁

感应强度B不仅与当时的磁场强度H有关,而且与 磁化的历史有关,如图3所示.曲线OA表示铁磁材 料从没有磁性开始磁化,B随H的增加而增加,称 为磁化曲线.当H值到达某一个值H S时,B值几乎 不再增加,磁化趋于饱和.如使得H减少,B将不 再沿着原路返回,而是沿另一条曲线AC'A'下降,当 H从-H S增加时,B将沿着A'CA曲线到达A形成一 闭合曲线.其中当H = 0时,|B| = Br,Br称为剩余 磁感应强度.要使得Br为零,就必须加一反向磁场, 当反向磁场强度增加到H = -H C时,磁感应强度B为零,达到退磁,HC称为矫顽力.各种铁磁材料有不同的磁滞回线,主要区别在于矫顽力的大小,矫顽力大的称为硬磁材料,矫顽力小的称为软磁材料. 3.用交流电桥测量居里温度 铁磁材料的居里温度可用任何一种交流电桥测量。本实验采用如图所示的RL交流电桥, 图三RL交流电桥 在电桥中输入电源由信号发生器提供,在实验中应适当选择不同的输出频率ω为信号发生器的角频率。选择合适的电子元件相匹配,在未放入铁氧体时,可直接使电桥平衡,但当其中一个电感放入铁氧体后,电感大小发生了变化,引起电桥不平衡。但随着温度的上升到某一个值时,铁氧体的铁磁性转变为顺磁性,CD两点间的电位差发生突变并趋于零,电桥又趋向于平衡,这个突变的点对应的温度就是居里温度。实验中可通过桥路电压与温度的关系曲线,求其曲线突变处的温度,并分析研究在升温与降温时的速率对实验结果的影响。4.用示波器测量动态磁化曲线和磁滞回线

纳米磁性材料的制备和研究进展综述教案资料

纳米磁性材料的制备和研究进展综述 一.前言 纳米材料又称纳米结构材料 ,是指在三维空间中至少有一维处于纳米尺度范围内的材料 (1-100 nm) ,或由它们作为基本单元构成的材料 ,是尺寸介于原子、分子与宏观物体之间的介观体系。磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。因此 ,纳米磁性材料的特殊磁性可以说是属于纳米磁性。 司马迁《史记》记载黄帝作战所用的指南针是人类首次对磁性材料的应用。而今纳米磁性材料广泛应用于生物学,磁流体力学,原子核磁学,机体物理学,磁化学,

天文学,磁波电子学等方面。随着雷达、微波通信、电子对抗和环保等军用、民用科学技术的,微波吸收材料的应用日趋广泛 ,磁性纳米吸波材料的研究受到人们的关注。纳米磁性材料也对人们的生产与生活带来诸多的利益。 本次综述,主要针对磁性纳米材料的制备方法和研究进展两个问题进行阐述。首先,介绍磁性纳米材料的发展历史,可以追溯到黄帝时期。其次,介绍磁性纳米材料的分类。------再次,重点介绍磁性纳米材料是怎么制备的。其制备方法一般分为三大类:1.由上到下,即由大到小,将块材破碎成纳米粒子,或将大面积刻蚀成纳米图形等。2.由下到上,即由小到大,将原子,分子按需要生长成纳米颗粒,纳米丝,纳米膜或纳米粒子复合物 3. 气相法、液相法、固相法等。第四、介绍磁性纳米材来噢的现状和发展前景。最后,将全文主题扼要总结,并且找出研究的优缺点和差距,提出自己的见解。 二、主题 1、纳米磁性材料的发展史 磁性材料是应用广泛、品类繁多、与时俱进的一类功能材料,磁性是物质的基本属性之一。人们对物质磁性的认识源远流长,早在公元前四世纪,人们就发现了天然的磁石(磁铁矿Fe3O4),,据传说,那是黄帝大战蚩尤于涿鹿,迷雾漫天,伸手不见五指,黄帝利用磁石指南的特性,制备了能指示方向的原始型的指南器,遂大获全胜.古代取其名为慈石,所谓“慈石吸铁,母子相恋”十分形象地表征磁性物体间的互作用。人们对物质磁性的研究具有悠久的历史,是在十七世纪末期和十八世纪前半叶开始发展起来的。1788年,库仑(Coulomb)把他的二点电荷之间的相互作用力规律推广到二磁极之间的相互作用上。1820年,丹麦物理学家奥斯特(Oersted)发现了电流的磁效应;同年法国物理学家安培(Ampere)提出了分子电流假说,认为物质磁性起源于分子电流。

磁学基础与磁性材料+严密第一章、三章以及第七章答案

磁性材料的分类

第一章磁学基础知识 答案: 1、磁矩 2、磁化强度

3、磁场强度H 4、磁感应强度 B 磁感应感度,用B表示,又称为磁通密度,用来描述空间中的磁场的物理量。其定义公式为 5、磁化曲线 6、磁滞回线 () (6 磁滞回线 (hysteresis loop):在磁场中,铁磁体的磁感应强度与磁场强度的关系可用曲线来表示,当磁化磁场作周期性变化时,铁磁体中的磁感应强度与磁场强度的关系是一条闭合线,这条闭合线叫做磁滞回线。) 7、磁化率

磁化率,表征磁介质属性的物理量。常用符号x表示,等于磁化强度M与磁场 强度H之比。对于各向同性磁介质,x是标量;对于各向异性磁介质,磁化率是 一个二阶张量。 8、磁导率 磁导率(permeability):又称导磁系数,是衡量物质的导磁性能的 一个物理量,可通过测取同一点的B、H值确定。 二 矫顽力----内禀矫顽力和磁感矫顽力的区别与联系 矫顽力分为磁感矫顽力(Hcb)和内禀矫顽力(Hcj)。磁体在反向充磁时,使磁感应强度B降为零所需反向磁场强度的值称之为磁感矫顽力。但此时磁体的磁化强度并不为零,只是所加的反向磁场与磁体的磁化强度作用相互抵消。(对外磁感应强度表现为零)此时若撤消外磁场,磁体仍具有一定的磁性能。使磁体的磁化强度M降为零所需施加的反向磁场强度,我们称之为内禀矫顽力。内禀矫顽力是衡量磁体抗退磁能力的一个物理量,是表示材料中的磁化强度M退到零的矫顽力。在磁体使用中,磁体矫顽力越高,温度稳定性越好。 (2)退磁场是怎样产生的?能克服吗?对于实测的材料磁化特性曲线如何进行退磁校正? 产生: 能否克服:因为退磁场只与材料的尺寸有关,短而粗的样品,退磁场就很大,因此可以将样品做成长而细的形状,退磁场就将会减小。

磁性材料的基本特性16505

1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或B ~H曲线上的某一点,该点常称为工作点。 饱和磁感应强度Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; 剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; 矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); 磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关 初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp 居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度 损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r 在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3.软磁材料的磁性参数与器件的电气参数之间的转换 ?设计软磁器件通常包括三个步骤:正确选用磁性材料; ?合理确定磁芯的几何形状及尺寸;

永磁材料基本知识

永磁材料基本知识 1、什么是永磁材料的磁性能,它包括哪些指标? 永磁材料的主要磁性能指标是:剩磁(Jr, Br)、矫顽力(bHc)、内禀矫顽力(jHc)、磁能积(BH)m。我们通常所说的永磁材料的磁性能,指的就是这四项。永磁材料的其它磁性能指标还有:居里温度(Tc)、可工作温度(Tw)、剩磁及内禀矫顽力的温度系数(Brθ, jHcθ)、回复导磁率(μrec.)、退磁曲线方形度( Hk/ jHc)、高温减磁性能以及磁性能的均一性等。 除磁性能外,永磁材料的物理性能还包括密度、电导率、热导率、热膨胀系数等;机械性能则包括维氏硬度、抗压(拉)强度、冲击韧性等。此外,永磁材料的性能指标中还有重要的一项,就是表面状态及其耐腐蚀性能。 2、什么叫磁场强度(H)? 1820年,丹麦科学家奥斯特(H. C. Oersted)发现通有电流的导线可以使其附近的磁针发生偏转,从而揭示了电与磁的基本关系,诞生了电磁学。实践表明:通有电流的无限长导线在其周围所产生的磁场强弱与电流的大小成正比,与离开导线的距离成反比。定义载有1安培电流的无限长导线在距离导线1/2π米远处的磁场强度为1A/m(安/米,国际单位制SI);在CGS单位制(厘米-克-秒)中,为纪念奥斯特对电磁学的贡献,定义载有1安培电流的无限长导线在距离导线0.2厘米远处磁场强度为1Oe(奥斯特),1Oe=1/(4π×103) A/m。磁场强度通常用H表示。 3、什么叫磁极化强度(J),什么叫磁化强度(M),二者有何区别? 现代磁学研究表明:一切磁现象都起源于电流。磁性材料也不例外,其铁磁现象是起源于材料内部原子的核外电子运动形成的微电流,亦称分子电流。这些微电流的集合效应使得材料对外呈现各种各样的宏观磁特性。因为每一个微电流都产生磁效应,所以把一个单位微电流称为一个磁偶极子。定义在真空中每单位外磁场对一个磁偶极子产生的最大力矩为磁偶极矩pm,每单位材料体积内磁偶极矩的矢量和为磁极化强度J,其单位为T(特斯拉,在CGS单位制中,J的单位为Gs,1T=10000Gs)。 定义一个磁偶极子的磁矩为pm/μ0,μ0为真空磁导率,每单位材料体积内磁矩的矢量和为磁化强度M,其SI单位为A/m,CGS单位为Gs(高斯)。 M与J的关系为:J=μ0 M,在CGS单位制中,μ0=1,故磁极化强度与磁化强度的值相等;在SI 单位制中,μ0=4π×10-7 H/m (亨/米)。 4、什么叫磁感应强度(B),什么叫磁通密度(B),B与H,J,M之间存在什么样的关系? 理论与实践均表明,对任何介质施加一磁场H时(该磁场可由外部电流或外部永磁体提供,亦可由永磁体对永磁介质本身提供,由永磁体对永磁介质本身提供的磁场又称退磁场---关于退磁场的概念,见9 Q),介质内部的磁场强度并不等于H,而是表现为H与介质的磁极化强度J 之和。由于介质内部的磁场强度是由磁场H通过介质的感应而表现出来的,为与H区别,称之为介质的磁感应强度,记为B: B=μ0 H+J (SI单位制)(1-1) B=H+4πM (CGS单位制) 磁感应强度B的单位为T,CGS单位为Gs(1T=104Gs)。 对于非铁磁性介质如空气、水、铜、铝等,其磁极化强度J、磁化强度M几乎等于0,故在这些介质中磁场强度H与磁感应强度B相等。 由于磁现象可以形象地用磁力线来表示,故磁感应强度B又可定义为磁力线通量的密度,磁感应强度B和磁通密度B在概念上可以通用。 5、什么叫剩磁(Jr,Br),为什么在永磁材料的退磁曲线上任意测量点的磁极化强度J值和磁感应强度B值必然小于剩磁Jr和Br值? 永磁材料在闭路状态下经外磁场磁化至饱和后,再撤消外磁场时,永磁材料的磁极化强度J 和内部磁感应强度B并不会因外磁场H的消失而消失,而会保持一定大小的值,该值即称为该材

磁性材料研究进展

磁性材料 引言 磁性材料作为重要的基础功能材料,已广泛用于信息、能源、交通运输、工业、农业及人们日常生活的各个领域,对社会进步和经济发展起着至关重要的推动作用。人们习惯按矫顽力的高低,对磁性材料进行分类:矫顽力大于1000A/m则称为硬磁材料,当硬磁材料受到外磁场磁化后,去掉外磁场仍能保留较高的剩磁,因此又称之为永磁材料或恒磁材料;矫顽力小于lOOA/m则称为软磁材料;矫顽力100A/m

磁性材料基本参数详解

磁性材料基本参数详解 磁性是物质的基本属性之一,磁性现象与各种形式的电荷的运动相关联,物质内部电子的运动和自旋会产生一定大小的磁矩,因而产生磁性。 自然界物质按其磁性的不同可分为:顺磁性物质、抗磁性物质、铁磁性物、反铁磁性物质以及亚铁磁性物质,其中铁磁性物质和亚铁磁性物质属于强磁性物质,通常将这两类物质统称为“ 磁性材料” 。 铁氧体颗粒料: 是已经过配料、混合、预烧、粉碎和造粒等工序,可以直接用于成形加工的铁氧体料粒。顾客使用该料可直接压制成毛坯,经烧结、磨削后即可制成所需磁芯。本公司生产并销售高品质的铁氧体颗粒料,品种包括功率铁氧体JK 系列和高磁导率铁氧体JL 系列。 锰锌铁氧体: 主要分为高稳定性、高功率、高导铁氧体材料。它是以氧化铁、氧化锌为主要成分的复合氧化物。其工作频率在1kHz 至10MHz 之间。主要用着开关电源的主变压器用磁芯. 。 随着射频通讯的迅猛发展,高电阻率、高居里温度、低温度系数、低损耗、高频特性好(高电阻率ρ、低损耗角正切tg δ)的镍锌铁氧体得到重用,我司生产的Ni-Zn 系列磁芯,其初始磁导率可由10 到2500 ,使用频率由1KHz 到100MHz 。但主要应用于1MHz 以上的频段、磁导率范围在7-1300 之间的EMC 领域、谐振电路以及超高频功率电路中。磁粉芯: 磁环按材料分为五大类:即铁粉芯、铁镍钼、铁镍50 、铁硅铝、羰基铁。使用频率可达100KHZ ,甚至更高。但最适合于10KHZ 以下使用。 磁场强度H : 磁场“ 是传递运动电荷或者电流之间相互作用的物理物” 。 它可以由运动电荷或者电流产生,同时场中其它运动或者电流发生力的作用。 均匀磁场中,作用在单位长磁路的磁势叫磁场强度,用H 表示; 使一个物体产生磁力线的原动力叫磁势,用F 表示:H=NI/L, F = N I H 单位为安培/ 米(A/m ),即: 奥斯特Oe ;N 为匝数;I 为电流,单位安培(A ),磁路长度L 单位为米(m )。 在磁芯中,加正弦波电流,可用有效磁路长度Le 来计算磁场强度: 1 奥斯特= 80 安/ 米 磁通密度,磁极化强度,磁化强度 在磁性材料中,加强磁场H 时,引起磁通密度变化,其表现为: B= ц o H+J= ц o (H+M) B 为磁通密度( 磁感应强度) ,J 称磁极化强度,M 称磁化强度,ц o 为真空磁导率,其值为4 π× 10 ˉ 7 亨利/ 米(H/m ) B 、J 单位为特斯拉,H 、M 单位为A/m, 1 特斯拉=10000 高斯(Gs ) 在磁芯中可用有效面积Ae 来计算磁通密度:

钕铁硼基本知识

磁材基本知识讲座

主要内容: 第一章磁物理基础 第二章磁性材料的发展概况 第三章钕铁硼的主要特点及应用第四章钕铁硼的主要成份组成第五章钕铁硼生产工艺及设备第六章性能参数测量原理及设备第七章机械加工工艺及设备 第八章表面处理工艺及设备 第九章充磁包装

第一章磁物理基础 1 物质的磁现象 磁性材料:magnetic material 钕铁硼磁铁:nd-fe-b magnet 铁氧体磁铁:ferrite magnet 牛磁棒:magnetic bar for cattle? 磁力架:magnetic separator 物质的磁性是一个历史悠久的研究领域,约在三千年前就已受到人们的注意。中国是最早应用磁性的国家,公元前四世纪,我国制成了世界上最早的指南针,成为中国的四大发明之一。磁学史上第一部关于磁性的专著是英国(WGilbert)吉耳伯特的《论磁石》(1600年),这本书介绍了那时书籍有关的磁性知识。然而,磁性作为一门科学却到19世纪前半期才开始发展。 1820年,丹麦物理学家奥斯特发现电流的磁效应,拉开了磁电之间联系的序幕; 1820年末,法国物理学安培证明通电圆形线圈和普通的磁铁一样具有吸引和排斥的现象。 1831年,英国科学家法拉第发现了电磁感应现象,并提出电磁感应定律,从而揭示电和磁之间的内在联系; 后来,苏格兰科学家麦克斯韦,将电磁的联系建立起严密的电磁场理论。他发展了法拉第的思想,用数学的形式总结出电场和磁场的联系,即麦克斯韦方程。 2 磁性的起源 物质的磁性起源于原子磁矩。 原子物理学告诉我们,组成物质的最小单元是原子,原子又由电子和原子核组成。电子的排布遵循三大原则:1 洪特规则,2泡利不相容规则,3 能量最低原理。原子中的电子绕着原子核进行高速运转,电子运转时同时有两种运动形式,即电子绕原子核的轨道运动和电子绕本身轴的旋转。前者叫电子轨道运动,后者叫电子自旋。处于旋转运动状态的电子相当于电流闭合回路,必然伴随有磁矩的

磁性材料的研究现状与应用

磁性材料的研究现状与应用 磁性材料是功能材料的重要分支,利用磁性材料制成的磁性元器件具有转换、传递、处理信息、存储能量、节约能源等功能,广泛地应用于能源、电信、自动控制、通讯、家用电器、生物、医疗卫生、轻工、选矿、物理探矿、军工等领域,尤其在信息技术领域已成为不可缺少的组成部分。 磁性材料大体上分为两类:其一为铁磁有序的金属磁性材料;其二绝大多数为亚铁磁有序、具有半导体导电性质的非金属磁性材料。磁性材料的发展过程大致可分为三个阶段:50年代以前主要研究金属磁性材料;50到80年代为铁氧体的黄金时代,除电力工业外,各领域中铁氧体占绝对优势;90年代以来,纳米磁性材料崛起。磁性材料由3d过渡族金属与合金的研究扩展到3d-(4f,4d,5d,5f)合金与化合物的研究与应用。同时,磁性功能材料也得到了显著的进展。 一、磁性的描述 磁及磁现象的根源是电流,或者说磁及磁现象的微观机制是电荷的运动形成原子磁矩造成的,而且,所有的物质都是磁性体,只是由于构成物质的原子结构不同,而显示出的磁学性能不同。有铁磁性、亚铁磁性、反铁磁性、顺磁性、抗磁性以及无磁性等。描述材料的磁性的物理量有磁化强度M、磁化率χ、磁感应强度B、磁导率μ。 根据物质磁化率的符号和大小,可以把物质的磁性大致分为五类:抗磁体、顺磁体、铁磁体、亚铁磁体和反铁磁体。影响材料性质的有磁化强度随温度的变化。即在不同温度下,磁化强度不同的性质。铁磁材料的自发磁化在居里温度Tc处发生相变,Tc以下为铁磁性,而Tc以上铁磁性消失。同样亚铁磁性材料也具有类似的特性。另外一个必须注意的因素便是磁各向异性,即磁学特性随材料的晶体学方向不同而不同的性质,典型特征便是在不同方向施加磁场会测得不同的磁滞回线。 磁性材料的基本特征可以分为两大类: (1)完全由物质本身(成分组分比)决定的特性。主要有饱和磁化强度Ms和磁感应强度Bs; (2)由物质决定,但随其晶体组织结构变化的特性。主要有磁导率、矫顽力Hc和矩形比Br/Bs,以及磁各向异性。 由此,利用和开发磁性材料就需要有分析技术和加工工艺两个方面的进展。从历史上而言,按材料加工技术进展区分,大体可有以下几个阶段: (1)熔炼铸造技术,获得铁及其合金等软磁和永磁材料。 (2)粉末冶金,开发绝缘性磁性材料、陶瓷材料和稀土永磁材料。 (3)真空镀膜,开发了镀膜磁性材料及非晶磁性材料,制成磁纪录介质及微磁学器件。 (4)单原子层控制技术,制备了定向晶体学取向型、巨磁电阻多层膜、人工超晶格等有特殊用途的磁性材料。 而磁性材料的开发和利用,也就是采取以上这几种技术工艺方法来加强所需要的性能,抑制不利于所需性能的因素。 二、软磁材料和永磁材料 软磁材料,也是高磁导率材料,是应用中占比例最大的传统磁性材料,多用于磁芯。是指由较低的外部磁场强度就可获得很大的磁化强度及高密度磁通量的材料,对这种材料的基本要求是: (1)初始磁导率μi和最大磁导率μm要高,以提高功能效率; (2)剩余磁通密度Br要低,饱和磁感应强度Ms要高,以节省资源并迅速响应外磁场; (3)矫顽力Hc要小,以提高高频性能; (4)铁损要低以提高功能效率;

国内磁性材料业状况和前景

国内磁性材料业状况和前景 1中国磁体产业的发展历程 目前,全球的经济已进入了一个信息时代,作为一种功能材料,磁性 材料所占的地位越来越重要。当前主要的商品磁体共有4类:20世纪 30年代开发的铝-镍-钴永磁(AlNiCo);50年代初期开发的铁氧体磁体;60年代末开发的钐-钴磁体(Sm-Co),包括第一代稀土永磁-SmCo5和第二代稀土永磁-Sm2Co17;80年代初开发的稀土永磁钕铁硼(Nd-Fe-B)。而稀土永磁,特别是钕铁硼是磁性材料里最重要的一部分,在永磁材料中发展最快,平均以每年10%的速度增长。中国磁体 产业在中国的出现远较西方发达国家晚,起始期是1969年到1987年 之间。因为当时的稀土永磁钐钴磁体的高成本、国内市场的需求量少,所以到八十年代初还没有形成自己的磁体工业。1987~1996的十年是 中国磁体产业开始发展的第一阶段,其特点是起点低:因为投资小, 设备简陋,生产设备基本完全是国产的,经营理念落后,仍局限于小 生产的模式。 1997~2002的五年是中国磁体产业发展的第二阶段,其特点是起点远高于前一阶段:投资强度大,引进一部分国外的先进技术设备,能够 按先进的工艺路线组织生产,产品质量一般属中低档。2003年起,中 国磁体产业的发展将进入第三阶段。企业建立的特点将是“三高”, 即高起点、高投入、高回报:1)产品瞄准特定用途所需的高档磁体; 投资规模巨大,引进整条先进生产线;2)按现代化管理的理念,组织 集约式分段联营的大生产:磁体生产分为两段—母合金/粉料的生产和 磁体制备,投资显著降低,效益则大为提升;3)按资本运作的规律运营,从而保证磁体产业较高的回报率。特别是有可能从国外引进最先 进的或采用国产先进生产线,生产高档的磁体产品。 进入21世纪,发达国家的磁体生产因为成本过高,已难以为继,世 界磁性材料行业纷纷向中国或第三世界地区转移,中国作为首选的国家。世界一些著名的磁性材料制造企业看好中国,如日本的TDK、FDK、

关于磁性材料的发展研究综述

关于磁性材料的发展研究综述 关键词:磁性材料、钕铁硼永磁材料、纳米磁性材料、磁电共存、应用及前景 摘要:磁性材料,是古老而用途十分广泛的功能材料,与信息化、自动化、机电一体化、国防、国民经济的方方面面紧密相关。人们对钕铁硼永磁材料的研究和优化,是磁性材料进一步发展,并逐渐深入到纳米磁性材料的研发和研究…… 关于磁性材料的研究发展综述 一、磁性材料简介 实验表明,任何物质在外磁场中都能够或多或少地被磁化,只是磁化的程度不同。根据物质在外磁场中表现出的特性,物质可分为五类:顺磁性物质,抗磁性物质,铁磁性物质,亚磁性物质,反磁性物质。根据分子电流假说,物质在磁场中应该表现出大体相似的特性,但在此告诉我们物质在外磁场中的特性差别很大.这反映了分子电流假说的局限性。实际上,各种物质的微观结构是有差异的,这种物质结构的差异性是物质磁性差异的原因。我们把顺磁性物质和抗磁性物质称为弱磁性物质,把铁磁性物质称为强磁性物质。通常所说的磁性材料是指强磁性物质。磁性材料按磁化后去磁的难易可分为软磁性材料和硬磁性材料。磁化后容易去掉磁性的物质叫软磁性材料,不容易去磁的物质叫硬磁性材料。一般来讲软磁性材料剩磁较小,硬磁性材料剩磁较大。 二、磁性材料分类 磁性是物质的一种基本属性。实验表明,任何物质在外磁场中都能够或多或少地被磁化,只是磁化的程度不同。物质按照其内部结构及其在外磁场中的性状可分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性物质。铁磁性和亚铁磁性物质为强磁性物质,抗磁性和顺磁性物质为弱磁性物质。磁性材料按性质分为金

属和非金属两类,前者主要有电工钢、镍基合金和稀土合金等,后者主要是铁氧体材料。按使用又分为软磁材料、硬磁材料和功能磁性材料。功能磁性材料主要有磁致伸缩材料、磁记录材料、磁电阻材料、磁泡材料、磁光材料,旋磁材料以及磁性薄膜材料等,反映磁性材料基本磁性能的有磁化曲线、磁滞回线和磁损耗等。 1、软磁材料软磁材料亦称高磁导率材料、磁芯材料,对磁场反应敏感,易于 磁化。大体上可分为四类:①合金薄带或薄片:FeNi(Mo)、FeSi、FeAl等。 ②非晶态合金薄带:Fe基、Co基、FeNi基或FeNiCo基等配以适当的Si、 B、P和其他掺杂元素,又称磁性玻璃。。磁介质(铁粉芯):FeNi(Mo)、FeSiAl、 羰基铁和铁氧体等粉料,经电绝缘介质包覆和粘合后按要求压制成形。④铁氧体:包括尖晶石型──M O·Fe2O3 (M代表NiZn、MnZn、MgZn、Li1/2Fe1/2Zn、CaZn等),磁铅石型──Ba3Me2Fe24O41(Me代表Co、Ni、Mg、Zn、Cu及其复合组分)。 2、硬磁材料硬磁材料,又称永磁材料,不易被磁化,一旦磁化,则磁性不易消 失。目前使用的永磁材料答题分为四类:①阿尔尼科磁铁:其构成元素Al、Ni、Co(其余为Fe),是强磁性相α1在非磁性相α2中以微晶析出而呈现高矫顽力的材料,对其进行适当处理,可增大磁积能。②铁氧体永磁材料:以Fe2O3为主要成分的复合氧化物,并加入钡的碳酸盐。③稀土类钴系磁铁:含有稀土金属的钴系合金,具有非常强的单轴磁性各向异性。④钕铁硼系稀土永磁合金:该合金采用粉末冶金方法制造,是由④Nd2Fe14B、 Nd2Fe7B6和富Nd相(Nd-Fe,Nd-Fe-O)三相构成,其磁积能是目前永磁材料中的最高纪录。 三、磁性材料的应用 由于磁体具有磁性,所以在功能材料中备受重视。磁体能够进行电能转换(变压器)、机械能转换(磁铁、磁致伸缩振子)和信息储存(磁带)等。 磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。由于铁磁

磁性材料的基本特性

一.磁性材料的基本特性 1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2.软磁材料的常用磁性能参数 ?饱和磁感应强度Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; ?剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; ?矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); ?磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关; ?初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp; ?居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度; ?损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r; ?在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3.软磁材料的磁性参数与器件的电气参数之间的转换 ?设计软磁器件通常包括三个步骤:正确选用磁性材料;

磁性材料论文

磁性材料论文 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

摘要磁性材料最开始在中国被发现并应用于中国四大发明中的指南针上,随后历经多年的发展,磁性材料已经广泛的应用在我们的生活之中,也与信息化、自动化、机电一体化、国防、国民经济的方方面面紧密相关。本文综述了对磁性材料的认识,磁性材料的分类与相关概况,磁性材料的基本特性,磁性材料的机理与生产工艺,实际应用以及发展前景等。 Abtract:Magnetic materials in the beginning in China was found and applied in the four great inventions of the compass, and after many years of development, magnetic materials have been widely used in our life, and with the information, automation, mechanical and electrical integration, national defense, national economy is closely related to all aspects of. This paper summarizes the magnetic material understanding, magnetic materials classification and related survey, the basic characteristic of the magnetic material, the mechanism of magnetic materials and production process, application and development prospect, etc. Key words:Magnetic materials Applications of Magnetic materials Development of Magnetic materials 磁性材料 关键词磁性材料磁性材料的应用磁性材料的发展前景 1 磁性材料的认识 中国是世界上最先发现物质磁性现象和应用磁性材料的国家。早在战国时期就有关于天然磁性材料(如磁铁矿)的记载。11世纪就发明了制造人工永磁材料的方法。1086年《梦溪笔谈》记载了指南针的制作和使用。1099~1102年有指南针用于航海的记述,同时还发现了地磁偏角的现象。 近代,电力工业的发展促进了金属磁性材料——硅钢片(Si-Fe合金)的研制。永磁金属从 19世纪的碳钢发展到后来的稀土永磁合金,性能提高二百多倍。20世纪40年代,荷兰.斯诺伊克发明电阻率高、高频特性好的铁氧体软磁材

永磁材料基本知识

永磁材料基本知识 2006 年08 月26 日星期六08:56 1、什么是永磁材料的磁性能,它包括哪些指标? 永磁材料的主要磁性能指标是:剩磁(Jr, Br)、矫顽力(bHc)、内禀矫顽力(jHc)、磁能积(BH)m。我们通常所说的永磁材料的磁性能,指的就是这四项。永磁材料的其它磁性能指标还有:居里温度(Tc)、可工作温度(Tw)、剩磁及内禀矫 顽力的温度系数(Br 0 , jHc 0 )、回复导磁率(卩rec.)、退磁曲线方形度(Hk/jHc)、高温减磁性能以及磁性能的均一性等。 除磁性能外,永磁材料的物理性能还包括密度、电导率、热导率、热膨胀系数等;机械性能则包括维氏硬度、抗压(拉)强度、冲击韧性等。此外,永磁材料的性能指标中还有重要的一项,就是表面状态及其耐腐蚀性能。 2、什么叫磁场强度(H)? 1820 年,丹麦科学家奥斯特(H. C. Oersted)发现通有电流的导线可以使其附近的磁针发生偏转,从而揭示了电与磁的基本关系,诞生了电磁学。实践表明:通有电流的无限长导线在其周围所产生的磁场强弱与电流的大小成正比,与离开导线的距离成反比。定义载有1安培电流的无限长导线在距离导线1/2 n米远处的磁场强度为1A/m(安/米,国际单 位制SI);在CGS单位制(厘米-克-秒)中,为纪念奥斯特对电磁学的贡献,定义载有1安培电流的无限长导线在距离导 线0.2厘米远处磁场强度为1Oe (奥斯特),10e=1/(4 n x 103) A/m。磁场强度通常用H表示。 3、什么叫磁极化强度(J),什么叫磁化强度(M),二者有何区别? 现代磁学研究表明:一切磁现象都起源于电流。磁性材料也不例外,其铁磁现象是起源于材料内部原子的核外电子运动形成的微电流,亦称分子电流。这些微电流的集合效应使得材料对外呈现各种各样的宏观磁特性。因为每一个微电流都产生磁效应,所以把一个单位微电流称为一个磁偶极子。定义在真空中每单位外磁场对一个磁偶极子产生的最大力矩为磁偶极矩pm,每单位材料体积内磁偶极矩的矢量和为磁极化强度J,其单位为T (特斯拉,在CGS单位制中,J的单 位为Gs,1T=10000Gs)。 定义一个磁偶极子的磁矩为pm/卩0,卩0为真空磁导率,每单位材料体积内磁矩的矢量和为磁化强度M其SI单位为 A/m,CGS单位为Gs(高斯)。 M与J的关系为:J=卩0 M在CGS单位制中,卩0=1,故磁极化强度与磁化强度的值相等;在SI单位制中,卩0=4 n X 10-7H/m (亨/ 米)。 4、什么叫磁感应强度(B),什么叫磁通密度(B),B与H,J,M之间存在什么样的关系? 理论与实践均表明,对任何介质施加一磁场H 时(该磁场可由外部电流或外部永磁体提供,亦可由永磁体对永磁介质本身提供,由永磁体对永磁介质本身提供的磁场又称退磁场--- 关于退磁场的概念,见9 Q),介质内部的磁场强度并不 等于H,而是表现为H与介质的磁极化强度J之和。由于介质内部的磁场强度是由磁场H通过介质的感应而表现岀来 的,为与H区别,称之为介质的磁感应强度,记为B: B=^ 0 H+J (SI 单位制)(1-1 ) B=H+4t M (CGS单位制)

分子磁性材料及其研究进展

第27卷第4期2012年8月 大学化学 UNIVERSITY CHEMISTRY Vol.27No.4 Aug.2012  分子磁性材料及其研究进展* 袁梅 王新益 张闻 高松** (北京大学化学与分子工程学院 北京100871) 摘要 对分子磁性材料的一些基本概念和磁学现象作了简单介绍,主要包括磁耦合二磁有序二磁弛豫和自旋交叉等几个方面三重点综述了单分子磁体二单链磁体二自旋交叉化合物二多功能复合磁体以及磁性分子组装领域的研究进展三 关键词 分子磁性 单分子磁体 单链磁体 自旋交叉 多功能复合磁体 分子磁性材料是一类通过化学方法将自由基或顺磁离子(包括过渡金属离子和稀土金属离子)及抗磁配体以自发组装和控制组装的方式组合而形成的磁性化合物三由于较传统磁体有着密度小二透明度高二溶解性好二易于加工二可控性好等优点,并有望在航天材料二微波材料二信息记录材料二光磁及电磁材料等领域得到应用,所以近年来对分子磁性的研究已经成为化学二物理学以及材料科学等多个领域研究的热点之一[1]三 分子磁性是指由材料中具有未成对电子的顺磁中心在配位化学环境中通过孤立或者协同作用表现出来的行为三通过研究孤立顺磁离子在配体场中的自旋状态,人们可以实现高低自旋态之间的转变,并通过温度二压力二光照等外场实现可控调节[2];通过研究自旋之间的协同行为,人们可以对磁耦合作用二磁有序温度等进行调节,从而得到各种具有不同体相磁性质的材料三除了常见的抗磁二顺磁二铁磁二亚铁磁和反铁磁性外,在分子磁性材料中还发现了很多新颖和复杂的磁现象,如单分子磁体二单链磁体二自旋交叉等磁性双稳态,spin?flop转变,变磁性和弱铁磁性等三化学家希望在分子化合物中实现和观察到这些新的磁现象,给物理学家提供新的研究模型,进而探讨它们的物理机制三本文将对这些分子磁性材料的基本概念和各种磁现象作简单介绍,并对目前的若干研究热点如单分子磁体二单链磁体以及自旋交叉配合物等作重点介绍[3?5]三 1 磁耦合[6?10] 要得到具有协同磁作用的磁性材料,体系中就必须存在磁耦合三在量子理论中,耦合也称为交换(exchange),最重要的几种交换作用包括直接交换二间接交换二各向异性交换以及偶极?偶极交换等三1.1 直接交换 直接交换(direct exchange)作用起源于相邻原子轨道的重叠,仅涉及相邻原子局域的电子自旋,即原子间没有其他原子来隔开传递交换的通路三这种作用主要存在于金属和合金中,而在金属配合物中则可以被忽略三 * **基金资助:国家自然科学基金项目;科技部项目通讯联系人,E?mail:gaosong@https://www.360docs.net/doc/424046662.html,

磁性材料的研究进展汇总

《磁性材料的研究进展》 学院:物理与材料科学学院 班级:13级材料物理 姓名: 王郁 学号:B51314019 指导老师:李秋菊 完成日期:2016年5月11日

摘要: 目前,磁性材料蓬勃发展,磁性材料的应用已渗透到国防、工业、信息等各个领域,对我们的生活产生了巨大的影响。同时,各种新磁性材料的诞生,也不断推动着现代材料科学的进展。本文对磁性材料进行了概述,并简介了其最新研究进展,尤其是对稀土磁性材料、巨磁电阻材料、纳米微晶磁性材料的研究进展进行了详细论述。 关键词: 磁性材料铁氧体稀土磁性材料巨磁电阻材料 前言 磁性材料广义上分为两大类:软磁材料和硬磁材料。软磁材料能够用相对低的磁场强度磁化,当外磁场移走后保持相对低的剩磁。软磁材料的矫顽力为400~0116A?m-1 ,主要应用于任何包括磁感应变化的场合。硬磁材料是在经受外磁场后能保持大量剩磁的磁性材料,这类磁性材料的典型矫顽力值,Hc为10~1000kA?m-1 ,具有高Hc值的硬磁材料称为永磁材料,主要用于提供磁场。磁性材料的磁导率、矫顽力、磁致损失、剩磁和磁稳定性是结构敏感性的,这些性能可以通过加工(包括机械加工和热处理)来控制。目前,磁性材料的研究方向主要有软磁材料、硬磁材料、磁力学材料、磁电子材料。磁性材料的进展大致上分几个历史阶段:当人类进入铁器时代时,标志着金属磁性材料的开端。直到18世纪,金属镍、钴相继被提炼成功,这一漫长的历史时期是3d过渡族金属磁性材料生产与原始应用的阶段;20世纪初期,FeSi、FeNi、FeCoNi磁性合金人工制备成功,并广泛地应用于电力工业、电机工业等行业,成为3d过渡族金属磁性材料的鼎盛时期;从20世纪50年代开始,3d过渡族的磁性氧化物(铁氧体)逐步进入生产旺期,由于铁氧体具有高电阻率,高频损耗低等优点,从而为当时兴起的无线电、雷达等工业的发展提供了所必需的磁性材料,标志着磁性材料进入到铁氧体的历史阶段;1967年,SmCo合金问世,这是磁性材料进入稀土-3d化合物领域的历史性开端。巨磁致收缩材料与稀土磁光材料的问世更丰富了稀土-3d化合物磁性材料的内涵。1972年的非晶磁性材料与1988年的纳米微晶材料的呈现,更添磁性材料新风采。1988年,磁电阻效应的发现揭开了自旋电子学的序幕.因此从20世纪后期延续至今,磁性材料进入了前所未有的兴旺发达时期,并融入到信息行业,成为信息时代重要的基础性材料之一。 1、磁性材料的分类 磁性材料从材质和结构上讲,可分为金属及合金磁性材料和“铁氧体磁性材料两大类,铁氧体磁性材料又分为多晶结构和单晶结构材料[1]。从应用功能上讲,磁性材料分为:软磁材料、永磁材料、磁记录-矩磁材料、旋磁材料等种类。软磁材料、永磁材料、磁记录-矩磁材料中既有金属材料又有铁氧体材料;而旋磁材料和高频软磁材料就只能是铁氧体材料了,因为金属在高频和微波频率下将产生巨大的涡流效应,导致金属磁性材料无法使用,而铁氧体的电阻率非常高,将有效的克服这一问题、得到广泛应用。磁性材料从形态上讲。包括粉体材料、液

相关文档
最新文档