C专题-构造三角形中位线

C专题-构造三角形中位线
C专题-构造三角形中位线

G E

H

D A

B C

N M B

A C

D

G

F

H

N

M

D A

B

D A

N

专题 构造三角形中位线

【方法归纳】中点问题的处理方法较多,构造三角形中位线是常用方法之一. 一、连接两点构造三角形中位线

1.如图,E 、F 、G 、H 分别为四边形ABCD 的四边中点,试判断四边形EFGH 的形状并予以证明. 【解析】:四边形EFGH 为平行四边形.

2.如图,平行四边形ABCD 中,E 、F 分别是AD 、BC 上的点,且AE =BF ,BE 交AF 于M ,CE 交DF 于N ,求证:

1

//2

MN AD .

【解析】:连EF ,证平行四边形ABEF 和平行四边形EFCD ,∴EM =BM ,EN =CN .

3.如图,点是P 四边形ABCD 的对角线的中点,E 、F 分别是AB 、CD 的中点,AD =BC ,∠CBD =450,∠ADB =1050,探究EF 与PF 之间的数量关系,并证明.

【解析】:连PE ,证PE =PF ,∠EPF =1200,∴EF 3. 4.如图,点B 为AC 上一点,分别以AB 、BC 为边在AC 同侧作等边三角形ABD 和等边三角形BCE ,点P 、M 、N 分别为AC 、AD 、CE 的中点.

⑴求证:PM =PN ;⑵求∠MPN 的度数. 【解析】:⑴连AE ,CD ,证PM //

12CD ,PN //1

2

AE ,证△ABE ≌△BDC ,AE =CD ,∴PM =PN .

⑵设PM 交AE 于F ,PN 交CD 于G ,AE 交CD 于H ,由⑴知∠BAE =∠BDC ,∠ADH =∠ABD =600,∠FHG =1200,易证四边形PFHG 为平行四边形,∴∠MPN =1200.

二、利用角平分线+垂直构造中位线

5.如图三角形ABC 中,点M 为BC 的中点,AD 为三角形ABC 的外角平分线,且AD ⊥BD ,若AB =12,AC =18,求MD 的长.

A

F

A

B

B

A

F

D E

【解析】:延长BD ,CA 交于N ,证DN =DB ,MD =

1

2

CN =15. 6.如图,三角形ABC 中,AB =BC ,∠ABC =900,F 为BC 上的一点,M 为AF 的中点,BE 平分∠ABC ,且EF ⊥BE ,求证:CF

=2ME .

【解析】:延长FE 交AB 于N ,证EF =EN ,CF =AN ,∵AN =2ME ,∴CF =2ME .

三、倍长构造三角形中位线

7.如图,三角形ABC 中,∠ABC =900,BA =BC ,三角形BEF 为等腰直角三角形,∠BEF =900,M 为AF 的中点,求证:ME =

1

2

CF . 【解析】:延长EF 至N ,使EN =EF ,连BN ,AN ,证ME =

1

2

AN ,证△BCF ≌△BAN ,∴CF =AN =2ME . 四、取中点构造三角形中位线

8.如图,四边形ABCD 中,M 、N 分别为AD 、BC 的中点,连BD ,若AB =10,CD =8,求MN 的取值范围. 【解析】:取BD 的中点P ,连PM ,PN ,∵PM =1

2

AB =5,PN =1

2

CD =4,∴1<MN <9.

9.如图,三角形ABC 中,∠ C =900,CA =CB ,E 、F 分别为CA 、CB 上点,CE =CF ,M

、N 分别为AF 、BE 的中点,求证:AE MN . 【解析】:取AB 的中点H ,连MH ,NH ,则MH =

12BF ,NH =1

2

AH , ∵AE =BF ,∴MH =NH ,易证∠MHN =900,∴AE =2NH =

2

MN MN .

10.如图,点P 为三角形ABC 的边BC 的中点,分别以AB 、

AC为斜边作直角三角形ABD和直角三角形ACE,且∠BAD=∠CAE,求证:PD=PE.【解析】:分别取AB、AC的中点M、N,证DM=PN,PM=EN,∠DMP=∠ENP,△PMD≌△ENP即可.

构造中位线巧解圆锥曲线题

构造中位线 巧解圆锥曲线题 徐志平 (浙江金华一中 321000) 在求一些与圆锥曲线有关的题目时,通常需要先构造出三角形或梯形的中位线,然后借助中位线的性质定理来求解,现举例加以分析说明。 1.求点的坐标 例1. 椭圆13 122 2=+y x 的一个焦点为1F ,点P 在椭圆上。如果线段1PF 的 中点M 在y 轴上,那么点M 的纵坐标是 ( ) A. 43± B. 2 2± C. 23± D. 43± M 的坐标,只需先求点P 的坐标即可。 连接PF 2,由于M 是PF 1的中点,O 是F 1F 2的中点, 所以MO 是21F PF ?的中位线,又轴x MO ⊥,则有 轴x PF PF MO ⊥22,//,3312=-=P x 2 3±=,43±=∴M y ,故选(D )。 例2.定长为3的线段AB 的两端点在抛物线y 2 =x 上移动,记线段AB 的中点 为M ,求点M 到y 轴的最短距离,并求此时点M 的坐标。 分析:利用抛物线的定义,结合梯形的中位线性质 定理可以解决问题。 解:抛物线的焦点)0,41(F ,准线 方程:41 -=x ,上分别作点A 、B 、M 的射影A 1、B 1、M 1,则由MM 1 是梯形AA 1B 1B )(21 )(21111BF AF BB AA MM +=+= ,在ABF ?可以取等号) 通径∴>≥+AB AB BF AF (,2 211=≥AB MM ∴M 到y 轴的最短距离= 。 4 5 4123=-即45=M x 。 ∴显然这时弦AB 过焦点),(04 1F 。设A (x 1,y 1),B (x 2,y 2),则有12 1x y = ① 22 2x y = ②,①-②得M y x x y y x x y y y y 21))((2121212121=--?-=-+

三角形中位线定理 知识讲解

三角形中位线定理 【学习目标】 1. 理解三角形的中位线的概念,掌握三角形的中位线定理. 2. 掌握中点四边形的形成规律. 【要点梳理】 要点一、三角形的中位线 1.连接三角形两边中点的线段叫做三角形的中位线. 2.定理:三角形的中位线平行于第三边,并且等于第三边的一半. 要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系. (2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个 小三角形的周长为原三角形周长的1 2 ,每个小三角形的面积为原三角形 面积的1 4 . (3)三角形的中位线不同于三角形的中线. 要点二、顺次连接特殊的平行四边形各边中点得到的四边形的形状 (1)顺次连接平行四边形各边中点得到的四边形是平行四边形. (2)顺次连接矩形各边中点得到的四边形是菱形. (3)顺次连接菱形各边中点得到的四边形是矩形. (4)顺次连接正方形各边中点得到的四边形是正方形. 要点诠释:新四边形由原四边形各边中点顺次连接而成. (1)若原四边形的对角线互相垂直,则新四边形是矩形. (2)若原四边形的对角线相等,则新四边形是菱形. (3)若原四边形的对角线垂直且相等,则新四边形是正方形. 【典型例题】 类型一、三角形的中位线 1、(优质试题?北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN. (1)求证:BM=MN; (2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长. 【思路点拨】(1)根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明.

中考数学专题复习三角形专题训练

三角形 一、选择题 1.若一个直角三角形的两边长为12和5,则第三边为() A. 13 B.13或 C. 13或5 D. 15 2.三角形的角平分线、中线和高() A. 都是射线 B. 都是直线 C. 都是线段 D. 都在三角形内 3.小明用同种材料制成的金属框架如图所示,已知∠B=∠E,AB=DE,BF=EC,其中框架△ABC的质量为840克,CF的质量为106克,则整个金属框架的质量为() A. 734克 B. 946克 C. 1052克 D. 1574克 4.到△ABC的三条边距离相等的点是△ABC的是() A. 三条中线的交点, B. 三条角平分线的交点 C. 三条高线的交点 D. 三条边的垂直平分线的交点 5.如图,为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做使用的数学道理是() A. 两点之间线段最短 B. 三角形的稳定性 C. 两点确定一条直线 D. 长方形的四个角都是直角 6.如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是( )

A. 100° B. 80° C. 70° D. 50° 7.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( ) A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D. 无法确定 8.已知在△ABC和△DEF中,∠A=∠D=90°,则下列条件中不能判定△ABC和△DEF全等的是( ) A. AB=DE,AC=DF- B. AC=EF,BC=DF - C. AB=DE,BC=EF- D. ∠C=∠F,AC=DF 9.若等腰三角形的顶角为80°,则它的一个底角度数为() A. 20° B. 50° C. 80° D. 100° 10.如图,点M是边长为4cm的正方形的边AB的中点,点P是正方形边上的动点,从点M出发沿着逆时针方向在正方形的边上以每秒1cm的速度运动,则当点P逆时针旋转一周时,随着运动时间的增加,△DMP面积达到5cm2的时刻的个数是() A. 5 B. 4 C. 3 D. 2 二、填空题 11.在△ABC中,已知∠A=30°,∠B=70°,则∠C的度数是________。 12.将一副三角板如图叠放,则图中∠α的度数为________. 13.如图,点P为△ABC三条角平分线的交点,PD⊥AB,PE⊥BC,PF⊥AC,则PD____________PF.

【精品】2021年八年级数学解题技巧训练7构造中位线解题的五种常用方法含答案与试题解析

2021年八年级数学解题技巧训练7构造中位线解题的五种常用 方法含答案与试题解析 一、经典试题 1.如图,已知BD,CE分别为∠ABC,∠ACB的平分线,AM⊥CE于M,AN⊥BD于N.求 证:MN=1 2(AB+AC﹣BC). 二、技巧分类 技巧1 连接两点构造三角形的中位线 2.如图,点B为AC上一点,分别以AB,BC为边在AC同侧作等边△ABD和等边△BCE,点P,M,N分别为AC,AD,CE的中点. (1)求证:PM=PN; (2)求∠MPN的度数. 技巧2 已知角平分线及垂直构造中位线 3.(2019秋?诸城市期末)如图,在△ABC中,点M为BC的中点,AD为△ABC的外角平分线,且AD⊥BD,若AB=6,AC=9,则MD的长为() A.3B.9 2C.5D. 15 2 4.(2018春?吉州区期末)如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD ⊥AD于点D,E为BC中点.求DE的长.

技巧3 倍长法构造中位线 5.如图,△ABC中,∠ABC=90°,BA=BC,△BEF为等腰直角三角形,∠BEF=90°, M为AF的中点,求证:ME=1 2CF. 技巧4 已知两边中点,取第三边中点构造三角形的中位线 6.如图,在△ABC中,∠C=90°,CA=CB,E,F分别为CA,CB上一点,CE=CF,M,N分别为AF,BE的中点,求证:AE=√2MN. 7.如图,在△ABC中,AB=AC,AD⊥BC于点D,点P是AD的中点,延长BP交AC于 点N,求证:AN=1 3AC.

2021年构造中位线解题的五种常用方法 参考答案与试题解析 一.试题(共7小题) 1.如图,已知BD,CE分别为∠ABC,∠ACB的平分线,AM⊥CE于M,AN⊥BD于N.求 证:MN=1 2(AB+AC﹣BC). 【专题】证明题. 【解答】证明:延长AN、AM分别交BC于点F、G.如图所示:∵BN为∠ABC的角平分线, ∴∠CBN=∠ABN, ∵BN⊥AG, ∴∠ABN+∠BAN=90°,∠G+∠CBN=90°, ∴∠BAN=∠AGB, ∴AB=BG, ∴AN=GN, 同理AC=CF,AM=MF, ∴MN为△AFG的中位线,GF=BG+CF﹣BC, ∴MN=1 2(AB+AC﹣BC). 2.如图,点B为AC上一点,分别以AB,BC为边在AC同侧作等边△ABD和等边△BCE,点P,M,N分别为AC,AD,CE的中点. (1)求证:PM=PN;

三角形中位线中的常见辅助线

三角形中位线中的常见 辅助线 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

三角形中位线中的常见辅助线 知识梳理 知识点一中点 一、与中点有关的概念 三角形中线的定义:三角形顶点和对边中点的连线 等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线. 三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半. 中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边.直角三角形斜边中线:直角三角形斜边中线等于斜边一半 斜边中线判定:若三角性一边上的中线等于该边的一半,则这个三角形是直角三角形 二、与中点有关的辅助线 方法一:倍长中线 解读:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的可以旋转等长度的线段,从而达到将条件进行转化的目的。 方法二:构造中位线 解读:凡是出现中点,或多个中点,都可以考虑取另一边中点,或延长三角形一边,从而达到构造三角形中位线的目的。

方法三:构造三线合一 解读:只要出现等腰三角形,或共顶点等线段,就需要考虑构造三线合一,从而找到突破口 其他位置的也要能看出 方法四:构造斜边中线 解读:只要出现直角三角形,或直角,则考虑连接斜边中线段,第一可以出现三条等线段,第二可以出现两个等腰三角形,从而转化线段关系。 其他位置的也要能看出

C E D B A 常见考点 构造三角形中位线 考点说明:①凡是出现中点,或多个中点,都可以考虑取四边形对角线中点、等腰三 角形底边中点、直角三角形斜边中点或其他线段中点; ②延长三角形一边,从而达到构造三角形中位线的目的。 “题中有中点,莫忘中位线”.与此很相近的几何思想是“题中有中线,莫忘加倍延”,这两个是常用几何思想,但注意倍长中线的主要目的是通过构造三角形全等将分散的条件集中起来.平移也有类似作用. 典型例题 【例1】 已知:AD 是ABC △的中线,AE 是ABD △的中线,且AB BD =,求证: 2AC AE =. 举一反三 1. 如右下图,在ABC ?中,若2B C ∠=∠,AD BC ⊥,E 为BC 边的中点.求证: 2AB DE =.

(完整版)三角形的中位线专题训练.docx

专题 三角形的中位线 第 1 页 共 3 页 三角形的中位线 例题精讲 例 1 如图 1, D 、E 、 F 分别是△ ABC 三边的中点. G 是 AE 的中点, BE 与 DF 、 DG 分别交于 P 、 Q 两点 . 求 PQ:BE 的值 . 例 2 如图 2,在△ ABC 中, AC>AB , M 为 BC 的中点. AD 是∠ BAC 的平分线,若 CF ⊥ AD 交 AD 的延长 1 AC AB . 线于 F.求证: MF 2 例 3 如图 3,在△ ABC 中, AD 是△ BAC 的角平分线, M 是 BC 的中点, ME ⊥ AD 交 AC 的延长线于 E .且 CE 1 CD .求证:∠ ACB=2∠B. 2 D C E F A B 图 1 图 2 图 3 图 4 图 5 巩固基础练 1. 已知△ ABC 周长为 16, D 、 E 分别是 AB 、 AC 的中点,则△ ADE 的周长等于 ( ) A .1 B. 2 C. 4 D. 8 2. 在△ ABC 中,D 、E 分别是 AB 、AC 的中点, P 是 BC 上任意一点, 那么△ PDE 面积是△ ABC'面积的 ( ) 1 1 1 1 A . B. C. D. 2 3 4 8 3. 如图 4,在四边形 ABCD 中, E 、F 分别为 AC 、 BD 的中点,则 EF 与 AB+CD 的关系是 ( ) A . 2EF AB CD B. 2EF AB CD C. 2EF AB CD D. 不确定 4. 如图 5,AB ∥CD , E 、 F 分别是 BC 、 AD 的中点,且 AB=a,CD=b ,则 EF 的长为 . 图 6 图 7 图 8 图 9 图 10 5. 如图 6,四边形 ABCD 中,AD=BC ,F 、E 、G 分别是 AB 、CD 、AC 的中点, 若∠ DAC= 200,∠ ACB= 600, 则∠ FEG= . 6. ( 呼和浩特市中考题 ) 如图 7,△ ABC 的周长为 1,连接△ ABC 三边的中点构成第二个三角,再连接第二 个三角形三边中点构成第三个三角形,依此类推,第 2003 个三角形的周长为 . 7. 已知三角形三条中位线的比为3:5:6 ,三角形的周长是 112cm ,求三条中位线长 . 8. 如图 8,△ ABC 中, AD 是高, BE 是中线,∠ EBC= 300,求证: AD=BE . 9. 如图 9,在△ ABC 中, AB=AC ,延长 AB 到 D ,使 BD=AB , E 为 AB 中点,连接 CE 、 CD . 求证: CD=2EC . 10.如图 10, AD 是△ ABC 的外角平分线, CD ⊥AD 于 D , E 是 BC 的中点 . 求证: (1)DE ∥AB; (2) DE 1 AB AC . 2

三角形中考总复习专题训练(精华)

《三角形》专题训练 一、选择题 1.若等腰三角形底角为72°,则顶角为()。 A.108° B.72° C.54° D.36° 2.等腰三角形的两边长分别为5和6,则这个三角形的周长是()。A.16 B.17 C.13 D.16或17 3. 下列条件能确定△ABC是直角三角形的条件有()。 (1) ∠A+∠B=∠C; (2) ∠A:∠B:∠C=1:2:3; 1∠C (3) ∠A=90°-∠B; (4)∠A=∠B= 2 A.1个 B.2个 C.3个 D.4个 4. 正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于() A.60° B.90° C.120° D.150° 5.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()。 A.60°B.120° C.60°或150° D.60°或120°

个外角都相等的三角形;(3)一边上的高也是这边上的中线的等腰三角形;(4)有一个角为60°的等腰三角形。其中一定是等边三角形的有( )。 A .4个 B .3个 C .2个 D .1个 7.已知△ABC ,⑴如图1,若P 点是∠ABC 和∠ACB 的角平分线的交点,则∠P=90°2 1 ∠A ; ⑵如图2,若P 点是∠ABC 和外角∠ACE 的角平分线的交点,则∠P=90°-∠A ; ⑶如图3,若P 点是外角∠CBF 和∠BCE 的角平分线的交点,则∠P=90°-21 ∠A 。 上述说法下确的个数是( )。A .0个 B .1个 C .2个 D .3个 8.如图4,工人师傅砌门时,常用木条EF 固定矩形门框ABCD ,使其 不变形,这种做法的根据是( )。 A.两点之间线段最短 B.矩形的对称性 C.矩形的四个角都是直角 D.三角形的稳定性

构造中位线巧解题复习过程

三角形的中位线定理,是一个非常有价值的定理。它是一个遇到中点,必须联想到的重要定理之一。但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。本文就向同学们介绍三种在不同条件下寻找中点的方法,供同学们学习时参考。 一、知识回顾 1、三角形中位线定理: 三角形的中位线平行于第三边,并且等于它的一半。 2、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 3、应用时注意的几个细节: ①定理的使用前提:三角形或梯形。 ②定理使用时,满足的具体条件: 两条边的中点,且连接这两点,成一条线段。 ③定理的结论: 位置上:与第三边是平行的;与底是平行的(梯形) 大小上:等于第三边的一半;等于两底和的一半(梯形)。 在应用时,要灵活选择结论。 4、梯形的中位线: 中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L. L=(a+b)÷2 已知中位线长度和高,就能求出梯形的面积. S梯=2Lh÷2=Lh 中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。 二、什么情况下该用中位线 1、直接找线段的中点,应用中位线定理 例1、小峰身高1.70m,眼睛距头顶8cm,直立在水平地面上照镜子.如果他想从竖直挂在墙上的平面镜里看到自己的脚,这面镜子的底边离地面的高度不应超过 cm 2、利用等腰三角形的三线合一找中点,应用中位线定理 例2、如图3所示,在三角形ABC中,AD是三角形ABC∠BAC的角平分线,BD⊥AD,点D是垂足,点E是边BC 的中点,如果AB=6,AC=14,则DE的长为。 3、利用平行四边形对角线的交点找中点,应用中位线定理

三角形的中位线

三角形的中位线(一) 一、教学目的和要求 使学生了解三角形中位线的定义,掌握三角形中位线性质定理的证明和应用。 通过定理的证明进一步培养学生的逻辑推理能力。 二、教学重点和难点 重点:掌握三角形中位线定义,及性质定理的证明。 难点:证题中正确添加辅助线。 三、教学过程 (一)复习、引入 提问: 1、平行线等分线段定理的内容 2、叙述定理的两个推论(画图示意) 练习:见图1 AD 是ABC ?中BC 边上的中线,E 为AD 的中点,连结BE 并延长交AC 于F ,若AF=2,求AC 的长。 A B D C 图1 过D 点作BF 的平行线交AC 于M ,因为BD=DC ,AE=ED ,利用平行线等分线段定理推论2,可得AF=FM=MC ,所以AC=6。 如果我们将平行线等分线段定理推论2的条件、结论交换一下,是否成立? 已知:D 、E 是ABC ?中AB 、AC 边的中点,则DE//BC 。这就是我们今天将要研究的课题。 (二)新课 定义:连结三角形两边中点的线段叫做三角形的中位线。 DE 叫做ABC ?的中位线。 注意: 1. 中位线是线段,它的端点是三角形两边的中点。 2. 中位线与中线都是三角形的重要线段,它们端点位置不同,是两个不同的概念。 每个三角形有三条中位线。 下面我们研究三角形的中位线与第三边的数量及位置关系。 三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。 已知:如图2,ABC ?中,AD=DB ,AE=EC 求证:BC DE BC DE 2 1,//=

图2 分析:证明一条线段是第二条线段的一半,可将第一条线段倍长,证明等于第二条线段;也可将第二条线段取中点,证明其一半等于第一条线段。这里我们用第一种方法。 证明:延长DE到F使EF=DE,连结CF 在中 四边形DBCF是平行四边形。 DE//BC 小结:到目前为止,在我们学过的定理中,结论存在一条线段等于另一条线段一半的有哪些? 1. 直角三角形中,角所对直角边等于斜边的一半。 2. 直角三角形中,斜边的中线等于斜边的一半。 3. 三角形中位线定理。 例1已知:如图3,中,,D、E、F分别是BC、AB、CA边的中点,求证:AD=EF C D F A E B 图3 分析:要证AD=EF,我们先要结合图形认识线段AD、EF在图形的位置就会很容易找到解决问题的方法。 AD是斜边BC的中线,所以,EF是的中位线,所以。

中考数学专题复习《三角形》专题训练

、选择题 A. 13 C. 13 或 5 2. 三角形的角平分线、中线和高( 克,CF 的质量为106克,则整个金属框架的质量为( 4. 到厶ABC 的三条边距离相等的点是厶 ABC 的是( 5. 如图,为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做使用的数学道理是 6. 如图,△ ABC 内有一点 D,且 DA=DB=DC 若/ DAB=20,/ DAC=30,则/ BDC 的大小是( 三角形 1.若一个直角三角形的两边长为 12和 5,则第三边为 D. 15 A. 都是射线 B. 都是直线 C.都是线段 D. 都在三角形内 3. 小明用同种材料制成的金属框架如图所示,已知/ B=Z E , AB=DE BF=EC 其中框架厶ABC 的质量为840 A. 734 克 B. 946 克 C. 1052 克 D. 1574 克 A. 三条中线的交点, B. 三条角平分线的交点 C.三条高线的交点 D.三条边的垂直平分线的交点 A.两点之间线段最短 角都是直角 B.三角形的稳定性 C.两点确定一条直线 D.长方形的四个 B.13 或

A. 100° B. 80° C. 70° D. 50° 7. 若一个三角形的一个外角小于与它相邻的内角,则这个三角形是() A.直角三角形 B.锐角三角形 C. 钝角三角形 D.无法确定 8. 已知在△DEF中,/ A=Z D=9C°,则下列条件中不能判定△DEF全等的是() A. AB=DE AC=DF- B. AC=EF BC=DF - C. AB=DE BC=EF- D. / C=Z F , AC=DF 9. 若等腰三角形的顶角为80°,则它的一个底角度数为() A. 20° B. 50° C. 80° D. 100° 10. 如图,点M是边长为4cm的正方形的边AB的中点,点P是正方形边上的动点,从点M出发沿着逆时针方向在正方形的边上以每秒1cm的速度运动,则当点P逆时针旋转一周时,随着运动时间的增加,△ DMP 面积达到5cm2的时刻的个数是() D C A 冠B A. 5 B. 4 C. 3 D. 2 二、填空题 11. 在厶ABC中,已知/ A=30°,/ B=70°,则/ C的度数是______________ 12. 将一副三角板如图叠放,则图中/ a的度数为________ ?

构造中位线巧解题

构造中位线巧解题 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

三角形的中位线定理,是一个非常有价值的定理。它是一个遇到中点,必须联想到的重要定理之一。但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。本文就向同学们介绍三种在不同条件下寻找中点的方法,供同学们学习时参考。 一、知识回顾 1、三角形中位线定理: 的平行于第三边,并且等于它的一半。 2、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 3、应用时注意的几个细节: ①定理的使用前提:三角形或梯形。 ②定理使用时,满足的具体条件: 两条边的中点,且连接这两点,成一条线段。 ③定理的结论: 位置上:与第三边是平行的;与底是平行的(梯形) 大小上:等于第三边的一半;等于两底和的一半(梯形)。 在应用时,要灵活选择结论。 4、梯形的中位线: 中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L. L=(a+b)÷2 已知中位线长度和高,就能求出梯形的面积. S梯=2Lh÷2=Lh 中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。 二、什么情况下该用中位线 1、直接找线段的中点,应用中位线定理 例1、小峰身高,眼睛距头顶8cm,直立在水平地面上照镜子.如果他想从竖直挂在墙上的平面镜里看到自己的脚,这面镜子的底边离地面的高度不应超过 cm 2、利用等腰三角形的三线合一找中点,应用中位线定理 例2、如图3所示,在三角形ABC中,AD是三角形ABC∠BAC的角平分线,BD⊥AD,点D是垂足,点E是边BC 的中点,如果AB=6,AC=14,则DE的长为。 3、利用平行四边形对角线的交点找中点,应用中位线定 理 例3、如图5所示,AB∥CD,BC∥AD ,DE⊥BE ,DF=EF,甲从B出发,沿着 BA、AD、DF的方向运动,乙B出发,沿着BC、CE、EF的方向运动,如果两人的速 度是相同的,且同时从B出发,则谁先到达?

构造三角形中位线的方法

构造三角形中位线的方法

构造三角形中位线的方法 方法1 连接两点构造三角形的中位线 1.已知:如图,△ABC是锐角三角形,分别以AB、AC为边向外作两个正△ABM和△CAN,D、E、F分别是MB,BC,CN的中点,连结DE、FE,求证:DE=EF 证明:连接、, 和是等边三角形, ,,, , 即, 在与中 , , , 、、分别是、、的中点, ,, .

(2)延长BD交CA的延长线于E, ∵AD为∠BAC的平分线,BD⊥AD, ∴BD=DE,AB=AE=12, ∴CE=AC+AE=18+12=30, 又∵M为△ABC的边BC的中点, ∴DM是△BCE的中位线, ∴MD=1/2CE=15. 3.如图 , 在 Rt△ABC 中 ,∠ACB=90°,D 为△ABC 外一点 , 使∠DAC=∠BAC,E 为 BD 的中点 ,∠ABC=60°,求∠ACE 的度数。 解:延长 AD 、 BC 交于F. ∵在△ABC 与△ACF 中, ∠DAC=∠BAC,AC=AC,∠ACB=∠ACF=90°,∴△ABC ≌△ACF(ASA) , ∴BC=FC,∠F=∠ABC=60°, ∴∠CAF=30°,

∵E 为 BD 的 中点, ∴EC ∥ AF , ∴∠ACE=∠ CAF=30°. 方法3倍长法构造三角形的中位线 4.如图,在△ABC 中,∠ABC =90°,BA =BC ,△BEF 为等腰直角三角形, ∠BEF =90°,M 为AF 的中点,求证:CF ME 2 1 . 证明:如图,延长EF 到D ,使DE=EF ,连接AD 、BD , ∵△BEF 为等腰直角三角形,∠BEF=90°, ∴∠BFE=45°,BE ⊥DF , ∴BE 垂直平分DF ,

专题--三角形的中位线(含提示答案)

三角形的中位线 例题精讲 例1如图1,D、E、F分别是△ABC三边的中点.G是AE的中点,BE 与DF、DG分别交于P、Q两点.求PQ:BE的值. 例2如图2,在△ABC中,AC>AB,M为BC的中点.AD是∠BAC的平分线,若CF⊥AD交AD的延长线于F.求证:. 例3如图3,在△ABC中,AD是△BAC的角平分线,M是BC的中点,ME⊥AD交AC的延长线于E.且.求证:∠ACB=2∠B. 图1 图2 图3 图4 图5 巩固基础练 1. 已知△ABC周长为16,D、E分别是AB、AC的中点,则△ADE的周长 等于 ( ) A .1 B. 2 C. 4 D. 8 2. 在△ABC中,D、E分别是AB、AC的中点,P是BC上任意一点,那么

△PDE面积是△ABC'面积的 ( ) A . B. C. D. 3. 如图4,在四边形ABCD中,E、F分别为AC、BD的中点,则EF 与AB+CD的关系是 ( ) A . B. C. D. 不确定 4. 如图5,AB∥CD,E、F分别是BC、AD的中点,且AB=a,CD=b,则EF 的长为 . 图6 图7 图8 图9 图10 5. 如图6,四边形ABCD中,AD=BC,F、E、G分别是AB、CD、AC的中

点,若∠DAC=200,∠ACB=600,则∠FEG= . 6.如图7,△ABC的周长为1,连接△ABC三边的中点构成第二个三角, 再连接第二个三角形三边中点构成第三个三角形,依此类推,第2003个三角形的周长为 . 7. 已知三角形三条中位线的比为3:5:6,三角形的周长是112cm,求三条 中位线长. 8. 如图8,△ABC中,AD是高,BE是中线,∠EBC=300,求证:AD=BE. (过E点向BC作垂线) 9. 如图9,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点, 连接CE、CD. 求证:CD=2EC.(延长AC到F,使AC=CF,则CD=BF) 10.如图10,AD是△ABC的外角平分线,CD⊥AD于D,E是BC的中点. 求证:(1)DE∥AB; (2).(延长DC交BA的延长线于G) 提高过渡练 1. 如图11,M、P分别为△ABC的AB、AC上的点, 且AM=BM,AP=2CP,BP与CM相交于N,已知PN=1,则PB的长为 ( ) A. 2 B. 3 C .4 D. 5 2. 如图12,△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的中 点,AB=10,则MD的长为 ( ) A. 10 B. 8 C .6 D. 5 3. 如图13,△ABC是等边三角形,D、E、F分别是AB、BC、AC的中 点,P为不同于B、E、C的BC上的任意一点,△DPH为等边三角形.连接FH,则EP与FH的大小关系是 ( ) A. E P>FH B. EP=FH C. EP

三角形的中位线

第十八章平行四边形 18.1.2 平行四边形的判定 第3课时三角形的中位线 学习目标:1.理解三角形中位线的概念,掌握三角形的中位线定理; 2.能利用三角形的中位线定理解决有关证明和计算问题. 重点:理解三角形中位线的概念,掌握三角形的中位线定理. 难点:能利用三角形的中位线定理解决有关证明和计算问题. 一、知识回顾 1.平行四边形的性质和判定有哪些? 边:①AB∥CD,AD____BC ②AB=CD,AD____BC 平行四边形ABCD ③AB∥CD,AB_____CD 角:∠BAD____∠BCD,∠ ABC____∠ADC 对角线:AO____CO,DO____BO 一、要点探究 探究点1:三角形的中位线定理 概念学习三角形中位线:连接三角形两边中点的线段. 如图,在△ABC中,D、E分别是AB、AC的中点,连接DE. 则线段DE就称为△ABC的中位线. 想一想 1.一个三角形有几条中位线?你能在△ABC中画出它所有 的中位线吗? 2.三角形的中位线与中线有什么区别? 猜一猜如图,DE是△ABC的中位线,DE与BC有怎样的位置关系,又有 怎样的数量关系? 猜想:三角形的中位线________三角形的第三边且 ________第三边的________. 量一量度量一下你手中的三角形,看看是否有同样的结论? 证一证如图,在△ABC中,点D,E分别是AB,AC边的中点. 1 . 2 DE BC DE BC 求证:∥, 分析: 课堂探究 自主学习 教学备注 学生在课前 完成自主学 习部分 配套PPT讲 授 1.情景引入 (见幻灯片 3-4) 2.探究点1新 知讲授 (见幻灯片 5-18) 性质 判定 教学备注 2.探究点1新 知讲授 (见幻灯片 5-18)倍长DE至F DF与AC互相平分 构造全等 三角形 角、边 相等 平行四 边形 线段相 等、平行

中考总复习专题训练(三角形)知识分享

2010年中考总复习专题训练(三角形)

2010年中考总复习专题训练(三角形) 考试时间:120分钟满分150分 一、选择题(每小题3分,共45分) 1. 满足下列条件的三角形,按角分类有三个属于同一类,则另一个是 ()。 A.∠A:∠B:∠C=1:2:3 B.∠A-∠B=∠C C.∠A=∠C=40° D.∠A=2∠B=2∠C 2. 如果线段a、b、c能组成直角三角形,则它们的比可以是()。 A. 1:2:4 B. 1:3:5 C. 3:4:7 D. 5:12:13 3. 已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为 ()。 A.90° B.110° C.100° D.120° 4. 在一个三角形中有两个内角相等,这个三角形还有一个外角为110°,则两个 相等的内角的度数为()。 A.40° B.55° C.70°或55° D.70° 5.一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周 长最小值是()。 A.14 B.15 C.16 D.17 6. 下列命题:(1)等边三角形也是等腰三角形;(2)三角形的外角等于两个内角的和;(3)三角形中最大的内角不能小于60°;(4)锐角三角形中, 任意两内角之和必大于90°,其中错误的个数是()。 A.0 个 B.1个 C.2个 D.3个

F E D C B 7.锐角三角形的三个内角是∠A 、∠B 、∠ C ,如果B A ∠+∠=∠α, C B ∠+∠=∠β,A C ∠+∠=∠γ,那么α∠、β∠、γ∠这三个角中 ( )。 A .没有锐角 B .有1个锐角 C .有2个锐角 D .有3个锐角 8.如图1,已知AB ∥CD ,则( )。 A .∠1=∠2+∠3 B .∠1=2∠2+∠3 C .∠1=2∠2-∠3 D .∠1=180o-∠2-∠3 9. 如图2,将一张矩形纸片ABCD 如图所示折叠,使顶点C 落在C '点.已知 2AB =,30DEC '∠=,则折痕DE 的长为( )。 A.2 B.23 C.4 D. 1 10. 如图3,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点, 且S ABC =4cm 2, 则阴影面积等于( )。 A.2cm 2 B.1cm 2 C.12cm 2 D.14 cm 2 图1 图2 图3 11.对于下列各组条件,不能判定△ABC ≌△C B A '''的一组是( )。 A.∠A=∠A ′,∠B=∠B ′,AB=A ′B ′ B.∠A=∠A ′,AB=A ′B ′,AC=A ′C ′ C.∠A=∠A ′,AB=A ′B ′,BC=B ′C ′ D.AB=A ′B ′,AC=A ′C ′,BC=B ′C ′ 12.有五根细木棒,长度分别为1cm ,3cm ,5cm ,7cm ,9cm ,现任取其中的三根 木棒,组成一个三角形,问有几种可能( )。 A.1种 B.2种 C.3种 D.4种

用三角形中位线定理解题

用三角形中位线定理解题 三角形中位线定理是平面几何中十分重要的定理,它说明中位线的位置与第三边平行,长度是第三边的一半,应用它可解许多几何命题,如: 1.证明线段的倍分关系 例1 如图1,AD是△ABC的中线,E为AD的中点,BE交AC于F. 证明:取CF的中点H,连接DH,则DH为△CBF的中位线,EF为△ADH的中位线,故DH=1 2 BF, EF=1 2 DH. 2.证明两线平行 例2 如图2,自△ABC的顶点A向∠B和∠C的平分线作垂线,D、E为垂足.求证DE∥ BC. 证明延长AD、AE交BC与CB的延长线于M、N. 由∠1=∠2,BD⊥AM,可得AD=DM;同理可得AE=EN.故DE为△ANM的中位线. ∴DE∥MN,即DE∥BC 3.证线段相等 例3 如图3,D、E分别是△ABC的边AB、AC上的点,且BD=CE,M、N分别为BE、CD 的中点,直线MN分别交AB、AC于P、Q.求证AP=AQ

证明取BC中点F,连接MF与NF. ∵BM=ME,BF=FC. 同理可得NF∥BD,且 又BD=CE,∴MF=NF,故∠3=∠4, 又∠1=∠4,∠2=∠3, ∴∠1=∠2,故AP=AQ. 4.证两角相等 例4 如图4,在△ABC中,M、N分别在AB、AC上,且BM=CN,D、E分别为MN与BC的中点,AP∥DE交BC于P. 求证:∠BAP=∠CAP. 证明连接BN并取中点Q,连接DQ与EQ,则DQ∥BM,且DQ=1 2 BM,EQ∥CN,且EQ= 1 2 CN, 又BM=CN. ∴DQ=EQ,故∠1=∠2, 又∵∠1=∠BAP,∠2=∠CAP, ∴∠BAP=∠CAP. 5.证比例式 例5 如图5,AD为△ABC的中线,过点C的任一直线与AD、AB分别相交于E与F,求

三角形的中位线经典练习题及其答案

三角形的中位线练习题及其答案 1.连结三角形___________的线段叫做三角形的中位线. 2.三角形的中位线______于第三边,并且等于_______. 3.一个三角形的中位线有_________条. 4.如图△ABC 中,D 、E 分别是AB 、 AC 的中点,则线段CD 是△ABC 的___, 线段DE 是△ABC _______ 5、如图,D 、E 、F 分别是△ABC 各边的中点 (1)如果EF =4cm ,那么BC =__cm 如果AB =10cm ,那么DF =___cm (2)中线AD 与中位线EF 的关系是___ 6.如图1所示,EF 是△ABC 的中位线,若BC=8cm ,则EF=_______cm . (1) (2) (3) (4) 7.三角形的三边长分别是3cm ,5cm ,6cm ,则连结三边中点所围成的三角形的周长是_________cm . 8.在Rt △ABC 中,∠C=90°,AC=?5,?BC=?12,?则连结两条直角边中点的线段长为_______. 9.若三角形的三条中位线长分别为2cm ,3cm ,4cm ,则原三角形的周长为( ) A .4.5cm B .18cm C .9cm D .36cm 10.如图2所示,A ,B 两点分别位于一个池塘的两端,小聪想用绳子测量A ,B 间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A ,B 的点C ,找到AC ,BC 的中点D ,E ,并且测出DE 的长为10m ,则A ,B 间的距离为( ) A .15m B .25m C .30m D .20m 11.已知△ABC 的周长为1,连结△ABC 的三边中点构成第二个三角形,?再连结第二个三角形的三边中点构成第三个三角形,依此类推,第2010个三角形的周长是( ) A 、 20081 B 、20091 C 、220081 D 、2 20091 12.如图3所示,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上 从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( ) A .线段EF 的长逐渐增大 B .线段EF 的长逐渐减少 C .线段EF 的长不变 D .线段EF 的长不能确定 13.如图4,在△ABC 中,E ,D ,F 分别是AB ,BC ,CA 的中点,AB=6,AC=4,则四边形AEDF?的周长是( ) A .10 B .20 C .30 D .40 14.如图所示,□ ABCD 的对角线AC ,BD 相交于点O ,AE=EB ,求证:OE ∥BC .

七年级下册数学三角形专题训练

1.一个三角形的三个内角中( ) A 、至少有两个锐角 B 、至多有一个锐角 C 、至少有一个直角 D 、至少有一个钝角 2. 下列三条线段的长度能组成三角形的是( ) A 、3,4,8 B 、5,6,11 C 、1,2,3 D 、5,6,10 3.关于三角形的边的叙述正确.. 的是( ) A 、三边互不相等 B 、至少有两边相等 C 、任意两边之和一定大于第三边 D 、最多有两边相等 4.等腰三角形两边长分别为 3、7,则它的周长为( ) A 、13 B 、17 C 、13 或17 D 、不能确定 5.如右图,在△ABC 中,∠ACB=90°,CD 是AB 边上的高, 那么图中与∠A 相等的角是( ) A 、∠ B B 、∠ACD C 、∠BC D D 、∠BDC 6.下列图形中具有稳定性有( ) A 、正方形 B 、长方形 C 、梯形 D 、直角三角形 7. 若三角形两边长分别是4、5,则周长c 的范围是( ) A.1<c <9 B.9<c <14 C.10<c <18 D. 无法确定 8. 一个三角形的三个内角中( ) A. 至少有一个等于90° B. 至少有一个大于90° C. 不可能有两个大于89° D. 不可能都小于60° 9.等腰三角形的一边长等于4,一边长等于9,则它的周长是( ) A .17 B .13 C .17或22 D .22 10、一个三角形的两边分别为3和8,第三边长是一个偶数,则第三边的长不能为( ) A 、6 B 、8 C 、10 D 、12 A B C D

11.如图,图中共有_____个三角形 ,其中以BC 为一边的三角形是________________;以∠A 为一个内角的三角形是___________. 12.如图,AE 、AD 、CF 分别是△ABC 的高、中线和角平分线, ⑴∵AE 是△ABC 的高, ∴∠____=∠____=90°; ⑵∵AD 是△ABC 的中线,∴____=___=2 1 ____; ⑶∵CF 是△ABC 的角平分线,∴∠____=∠____= 2 1 ∠____. 13.如果三角形的两边分别是a=3cm ,b=4cm ,那么第三边c 的长度范围是__________. 14.△ABC 的周长为12,三边a 、b 、c 之间存在关系a -1=b ,b -1=c ,则三边长a=____,b=_____,c=____. 15.直角三角形两个锐角的外角平分线所组成的锐角等于_________度. 16.在△ABC 中,若∠C+∠A=2∠B ,∠C -∠A=80°,则∠A=___,∠B=___,∠C=___. 17.一个三角形三个外角度数的比是3∶3∶2,则该三角形的形状是______________. 18.等腰三角形的一腰中线分该三角形的周长为15cm 、18cm ,则底边长为__________. 19.△ABC 中,如果∠C=55°,∠B -∠A=10°,那么∠A=_____. 20.如图,△ABC 中,D 是BC 延长线上一点,E 是AC 上一点,∠A=∠B ,∠ACD=∠EDC ,如果∠AED=140°,那么∠ACD=________,∠B=_______. A B C D E F A B C D E

典中点平行四边形专训5 构造中位线解题的五种常用方法

典中点平行四边形专训5 构造中位线解题的五种常用方法 ?名师点金? 三角形的中位线具有两方面的性质: 一是位置上的平行关系,二是数量上的倍分关系.因此,当题目中给出三角形两边的中点时,可以直接 连出中位线;当题目中给出一边的中点时,往往需要找另一边的中点,作出三角形的中位线。 典例剖析:如图,在△ABC 中,BD,CE 分别平分∠ABC,∠ACB,AM ⊥CE 于点M,AN ⊥BD 于点N. 求证:MN=21(AB+AC-BC) 解题秘方:图中不存在中点,但结论与三角形中位线定理很类似,因此应设法寻找中点,再构造三角形的中位线.要证明MN=2 1(AB+AC-BC),可找以MN 为中位线的三角形,故延长AM 交BC 于点F,延长AN 交BC 于点G,易证明2MN=FG,而FG=BC+FC-BC.又易证明BG=AB,FC=AC,故问题得解。 方法1:连接两点构造三角形的中位线 1.如图,点B 为AC 上一点,分别以AB,BC 为边在AC 同侧作等边△ABD 和等边△BCE,点P,M,N 分别为AC,AD,CE 的中点。 (1)求证PM=PN ; (2)求∠MPN 的度数。 方法2:已知角平分线及垂直构造中位线 2.如图,在△ABC 中,点M 为BC 的中点,AD 为△ABC 的外角平分线,且AD ⊥BD.若AB=12,AC=18,求DM 的长。

3.如图,在△ABC 中,已知AB=6,AC=10,AD 平分∠BAC,BD ⊥AD 于点D,点E 为BC 的中点,求DE 的长。 方法3:倍长法构造三角形的中位线 4.如图,在△ABC 中,∠ABC=90°,BA=BC ,△BEF 为等腰直角三角形,∠BEF=90°,M 为AF 的中点, 求证ME=21CF 方法4:已知两边中点,取第三边中点构造三角形的中位线 5. 如图,在△ABC 中,∠C=90°,CA=CB,E,F 分别为CA,CB 上一点,CE=CF,M,N 分别为AF 、BE 的中点, 求证AE=2MN 方法5:已知一边中点推理得出另一边中点再取第三边中点构造三角形的中位线 6.如图,在△ABC 中,AB=AC,AD ⊥BC 于点D,点P 是AD 的中点,连接BP 并延长交AC 于点N ,求证AN=3 1AC

相关文档
最新文档