单元板基本原理简介

单元板基本原理简介
单元板基本原理简介

在这里给大家介绍一下LED单元板的原理,懂得原理后LED显示屏出现任

何问题都方便准确找出故障及维修。因为各种单元板的工作原理基本相同,这

里以常见的plo半户外型为例。

下面照片是单元板原件的组成:

I.电源

注意观察有两个接线柱,一个是电源地另一个是电源正5伏,旁边有注明,一边写的是“UND”即电源地,另一边写的是“tiCC"即电源正5伏,这个很简单,不做过多说

明。

2.电容

这里用到的是电解电容470iiF,让电源输入更加稳定,不会出现突然上电或,突然掉

电,其实做用也不是很大,如果没有它单元板也可以照常工作。

3.138芯片

138芯片全名74HC138D,是很常用的三线八线译码器,即三路输入八路输出,输出脚为1如下图(左)所示,有1。到17共八个脚Y的上面有一个横杠,说明是低电平有效。123脚是输入脚,A的上面没有横杠说明是高电平有效。另外-l56脚为使能脚,这几个脚的作用着重说明一下,只有当4,接低电平并且6接高电平时芯片才响应输入,否则无论怎么输入均无输出,同样有横的为低电平有效,没有横杠的为高电平有效,所有芯片使用都是这个原则大家可以记住。它的真值表如下图(右)所示。

4.04芯片

04芯片全名74HC04D,简单的说它就是六非门或六反

向器,它集成6个单独的非门,所谓非门就是输入低电平输

出高电平,输入高电平输出低电平,就是输入和输出总是相

反的,所以又称为反向器。同样A是输入Y是输出。如右

图所示。

5 .595芯片

595芯片全名74HC595D,这个芯片是单元板的核心

芯片,这个是串行输入并行输出,也称作移位器。Qo-Q7 为8路输出高电平有效,DS为数据输入脚,OE为使能脚

低电平有效,同样只有当OE为低电平时芯片才能正常工作,否则的话任何输入都不会有输出,SH CP为时钟线,

当时钟线有上升沿(即由低电平变高电平的瞬间)的时候

DS脚上的数据才写进芯片,STOP为输出锁存时钟钱,

当该脚电平上升沿时把输入的数据输出。MR为数据清。脚,当该脚为低电平时芯片里面数据清。,Q7’为输出脚,

可以接下一个595芯片的数据线即D.o

6 ,245芯片

56芯片全名74HC24SD,每一个A与一个B相对应,总共有八对,可以选择在A输入B输出或是B输入A输出,G为使能脚低电平有效,同样只有当G为低电平时芯片才能正常工作,否则数据每个方向都是不通的,DIR是方向选择,可以选择数据是从A到B还是从 B到A,当DIR为高电平时数据可以从A到B当DIR

为低电平时数据从B到A。这个芯片不做数据处理用,

只是提高数据的驱动能力。

7.输入输出接口

这块单元板用的是12接口,接口定义如右图所示:

各引月却说明如下:

OE使能脚

N电a地

A丑CT)行选择线

S时钟线

L锁存

RG分别是红绿数据线

另外也有用Os接口的,只是引脚顺序不一样,多一组红绿

数据线在单元板上一般也是不用的,而且每个引脚功能一样。

8.电容

这个是电容是贴片电容,这种电容的容抗远比电解电容的小,主要用于滤波,这里也是用到了它的滤波功能,每个芯片附近都有一个104的贴片电容。那么104的电容的容抗是多少呢?这个是这么算的,104即10'' 104PF= 0.1 uF,同样的道理474就是474`104pF,另

外电阻的阻值也是这么算的。

9 .4953芯片

4953芯片全名MEM49 5 3,是一种场效应管,与三管类

似,在这里可以当做无触点开关用,而且可以提高驱动能力。

当G为低电平时D与S导通。

1 0.电阻

电阴不用多说了,这里用到的电阻有八个脚,也相当于排阻,上下对应的一对引脚就是一个电阻,电阴的计算方法与电容一样。

1 1.LED灯

这个没有什么可讲的。

1 2.固定螺丝

固定螺丝当就是固定单元板的螺丝唆。

这个是1/4扫的单元板,所以AB CD四条行扫数据只用到了两条即AB,因为AB有

四种状态即00, 01, 10, 11,这样通过译码器就可以控制四行了;并且这块是单色的单

元板,所以G绿色数据线也是用不到的,所以只用到了OEAB SLR共6条线,分别通

过245芯片,在这里24,芯片不仅提高了数据的驱动能力,而且在这里有隔离作用,防止接错时数据逆行,再说为什么接口中要有电源地呢?因为在单元板上的高低电平是相对的,所有的单元板要把所有的地联起来才有相当的参考电平。

所有数据线通过了24,芯片之后就分别去了自己的岗位,AB接到了译码器138的Ao 与Al,因为高位匆没有用到,把A:接到了电源地,这里一定要接地的,如果悬空的话

它会默认为高电平,然后只有四路输出Y。·Y3,然后分别接到4953芯片来驱动行,Y4·Y7可以悬空。AB除了接到译码器之外还接到了输出接口的AB因为以下的单元板也要靠它

来驱动行扫。

OE接到了04芯片的一个输入脚,输出接到译码器的S2脚,因为只要译码器不工作

整块单元板就不工作,S2脚是低电平有效的使能脚,所以接口的使能接高电平时单元板

才会工作,另外从前一个非门输出之后还接到了另一个非门的输入,输出之后接到输出接口的OE,这样经过非门同样可以提高驱动能力,而且经过两个非门并不改变驱动电平。

1/4扫描的单元板上有16个59;芯片,这个芯片数与扫描方式是相关的,一般单元板上都有32*16个LED灯,1/4扫描的每个595芯片可以带4'':8个灯,那个要多少个595来驱动整块板可以这么算324:16/仕'} 8)=16。所有的;9;芯片通过行或列的顺序联起来,前一

个的Q7’接下一个的DS,第一个芯片的DS接到R红色数据线,最后一个芯片的Q7’接到输出接口的R。另外所有59,芯片的OE接到了电源地,AIR接到了电源,还有每个595

芯片的时钟线SH一P锁存线ST CP分别接到了输入输出接口的S和Lo

单元板上还用到了两个101的电阴1000,这里是上接电阻也接到了行上,这样可以提高L

ED的亮度.

595芯片工作时接到第一个数据放在Q7位,接到下一位数据时把前面接到的向后移一位,新

接到的再放到Q 7位,当总共8位接收满时它会移到下一个芯片的Q 7位,以此类推把数据一直传送

下去。

当LED显示屏工作的时候,很把数据发送到每一块单元板上的各个5 9 5芯片中,每发一个数

据时钟线S给出一个上升沿,全部发完后锁存线给出一个上升沿将所有芯片中的数据输出,这时LE

D显示屏上就出现了想要的内容,但这个过程只输出了,/4还要经过三个这样的周期才显示一帧内容,

每完成像这样一个周期AB的值会改变一次,把数据输出到不同的行中,因为变化非常快,所以看上

去是一真亮的,其实每行LED灯只有1/4的时间是处于亮的状态。

第一讲 天线基本原理

第一讲天线基本原理 1、天线的基本概念 1.天线的作用 在任何无线电通信设备中,总存在一个向空间辐射电磁能量和从空间接收电磁能量的装置,这个装置就是天线。 天线的作用就是将调制到射频频率的数字信号或模拟信号发射到空间无线信道,或从空间无线信道接收调制在射频频率上的数字或模拟信号。 2.天线问题的实质 从电磁场理论出发,天线问题实质上就是研究天线所产生的空间电磁场分布,以及由空间电磁场分布所决定的电特性。空间任何一点的电磁场满足电磁场方程——麦克斯韦方程及其边界条件。因此,天线问题是时变电磁场问题的一种特殊形式。 从信号系统的角度出发,天线问题可以理解为考察由一个电磁波激励源产生的电磁响应特性。从通信系统的角度出发,天线可以理解为信号发射和接收器,收发天线之间的无线电信号强度满足通道传输方程和多径衰落特性。 3.对天线结构的概念理解 采用不同的模型,对天线可以有不同的理解。典型的模型比如:开放的电容 [思考] 野外电台或电视发射塔,无线电视或电台接收机,为什么能构成一个天线,其电流回路在什么地方? 开放的传输线 从传输线理论理解,天线可以看做是将终端开路的传输线终端掰 开。 TM mn型波导 将天线辐射看做是在4π空间管道中传输的波导,则对应的传输波型是TM型波,但在传输过程中不断遇到波导的不连续性,因此不断激励

高次模。 由电磁波源和电磁波传输媒质形成电磁波传输的机构 波的形成都需要波源和传输媒质。在一盆水中形成机械波纹,可以使用点激励源产生波,并在水面上传播。波的传播特性只与媒质特性有关而与波源无关。将一个肉包子扔出去,这个肉包子可能产生不同的结果,或者被狗吃了,或者掉在什么地方了,都与扔包子的人不再有任何关系。而对天线来说,馈点的激励源就是这种波源,天线导体和外界空间就是传输媒质。不过电磁波的传输媒质可以是真空。 [思考] 电磁波具有波粒二象性。频率越低,波动性越强;频率越高,粒子性越强。所以光波主要表现出粒子性,而长波表现出波动性。射频电磁波就是介于这二者之间的一种电磁波,它既有显著的波动性,又有显著的粒子性。只要认清这一点,许多问题就会变得易于理解。认清事物的本质规律我们才能很好地利用它,我们不能把一头驴当马使,否则就会出现许多荒唐的错误。有人认为射频很复杂,有人认为很简单,就是这个道理。 [哲学启示] 电磁波由于看不见,摸不着,所以在很多人看来它很抽象。但考虑到世界是普遍联系的,尽管不同的事物也有许多不相同点,但找到它们之间的联系,就能获得认识抽象事物的“火眼金睛”。 2、电磁场基本方程 1.麦克斯韦方程 (电生磁。若电场变化,则磁场随之变化) (磁生电。若磁场变化,则电场随之变化) (磁力线是无始无终的封闭闭合曲线) (电力线出发和终止于自由电荷)

天线的几个重要参数介绍

一、天线的几个重要参数介绍 1.天线的输入阻抗 天线的输入阻抗是天线馈电端输入电压与输入电流的比值。天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。匹配的优劣一般用四个参数来衡量,即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。在我们日常维护中,用的较多的是驻波比和回波损耗。 xx: 它是行波系数的倒数,其值在1到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小于 1.5。回波损耗: 它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。0表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于 14dB。 2.天线的极化方式 所谓天线的极化,就是指天线辐射时形成的电场强度方向。当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。因此,在移动通信系统中,一般均采用垂直极化的传播方式。另外,随着新技术的发展,最近又出现了一种双极化天线。就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能

天线基本原理

第一讲天线基本原理 一、天线的基本概念 1.天线的作用 在任何无线电通信设备中,总存在一个向空间辐射电磁能量和从空间接收电磁能量的装置,这个装置就是天线。 天线的作用就是将调制到射频频率的数字信号或模拟信号发射到空间无线信道,或从空间无线信道接收调制在射频频率上的数字或模拟信号。 2.天线问题的实质 从电磁场理论出发,天线问题实质上就是研究天线所产生的空间电磁场分布,以及由空间电磁场分布所决定的电特性。空间任何一点的电磁场满足电磁场方程——麦克斯韦方程及其边界条件。因此,天线问题是时变电磁场问题的一种特殊形式。 从信号系统的角度出发,天线问题可以理解为考察由一个电磁波激励源产生的电磁响应特性。从通信系统的角度出发,天线可以理解为信号发射和接收器,收发天线之间的无线电信号强度满足通道传输方程和多径衰落特性。 3.对天线结构的概念理解 采用不同的模型,对天线可以有不同的理解。典型的模型比如: ●开放的电容 [思考] 野外电台或电视发射塔,无线电视或电台接收机,为什么能构成一个天线,其电流回路在什么地方? ●开放的传输线 从传输线理论理解,天线可以看做是将终端开路的传输线终端掰开。 ●TM mn型波导 将天线辐射看做是在4π空间管道中传输的波导,则对应的传输波型是TM型波,但在传输过程中不断遇到波导的不连续性,因此不断激励高次模。

由电磁波源和电磁波传输媒质形成电磁波传输的机构 波的形成都需要波源和传输媒质。在一盆水中形成机械波纹,可以使用点激励源产生波,并在水面上传播。波的传播特性只与媒质特性有关而与波源无关。将一个肉包子扔出去,这个肉包子可能产生不同的结果,或者被狗吃了,或者掉在什么地方了,都与扔包子的人不再有任何关系。而对天线来说,馈点的激励源就是这种波源,天线导体和外界空间就是传输媒质。不过电磁波的传输媒质可以是真空。 [思考] 电磁波具有波粒二象性。频率越低,波动性越强;频率越高,粒子性越强。所以光波主要表现出粒子性,而长波表现出波动性。射频电磁波就是介于这二者之间的一种电磁波,它既有显著的波动性,又有显著的粒子性。只要认清这一点,许多问题就会变得易于理解。认清事物的本质规律我们才能很好地利用它,我们不能把一头驴当马使,否则就会出现许多荒唐的错误。有人认为射频很复杂,有人认为很简单,就是这个道理。 [哲学启示] 电磁波由于看不见,摸不着,所以在很多人看来它很抽象。但考虑到世界是普遍联系的,尽管不同的事物也有许多不相同点,但找到它们之间的联系,就能获得认识抽象事物的“火眼金睛”。 二、电磁场基本方程 1.麦克斯韦方程 (电生磁。若电场变化,则磁场随之变化) (磁生电。若磁场变化,则电场随之变化) (磁力线是无始无终的封闭闭合曲线) (电力线出发和终止于自由电荷) 麦克斯韦方程的物理含义:变化的电场可以产生磁场,变化的磁场可以产生电场,这是电磁波可以脱离辐射体在空间存在的物理基础。 [思考] 自然界存在一些有趣的现象,尽管机理与电磁波不完全一致,但是其过程却可以帮助我们加深对我们问题的理解。请大家考虑一下,孩童吹肥皂泡时,肥皂泡能够

天线功能与工作原理

中国联通江苏分公司 技 术 交 流 材 料 江苏靖江亚信电子科技有限公司二00三年六月十一日 目录

一、天线功能与工作原理 (3) 二、天线的分类 (6) 三、性能指标与检测方法 (9) 四、天线结构和质量保证 (14) 五、天线选型原则 (20) 一、天线功能与工作原理 用来进行无线通讯的手机和基站,在空中是通过无线电波来传递信息的,需要有无线电波的辐射和接收。在无线电技术设备中,用来辐射和接收无线电波的装置称为天线。 天线的功能首先在于辐射和接收无线电波,但是能辐射或接收电磁波的装置并

不一定都能用来作为天线,任何高频电路,只要不被完全屏蔽,都可以向周围空间辐射电磁波,或者从周围空间接收电磁波,但是并非任何高频电路都能用作天线,因为辐射或接收效率有高有低,为了有效地辐射或接收电磁波,天线的结构形式应该满足一定的要求。 例如,像平行双导线传输线这样的封闭结构就不能用作天线,因为双导线传输线在周围空间激发的电磁场很微弱,终端开路的平行双导线传输线上的电流呈驻波分布。在两根互相平行的导线上,电流方向相反,线间距离远小于波长,所激发的电磁场在两线外部大部分空间中,由于相位相反而相互抵消。如果把两根导线的末端逐渐张开,辐射就会逐渐增强,当两根线完全张开时,张开的两臂短于半波长,上面电流的方向相同,在周围空中激发的电磁场在某些方向由于相位关系而互相抵消,在大部分方向则互相叠加,或者部分叠加、部分抵消,使辐射显著增强,这样的结构称为开放式结构,由末端开路的平行双导线传输线张开而成的天线,就是通常的对称振子天线。 作为基站天线,常常要求天线在水平面内向所有方向(一圈360o)均匀地辐射(或对所有方向具有同等的接收能力),具有这种特性的天线,叫做全向天线。而对某些基站天线,只要求能覆盖含有一定角度的一个扇区,这种天线叫做定向天线,对这种天线要求只向待定的扇形区域辐射(或只接收来自特定扇形区域的无线电波),在其它方向不辐射或辐射很弱(不能接收或接收能力很弱)。也就是说,要求天线具有所谓方向性。 如果天线没有方向性,无线电波呈球形向外均匀辐射,即所谓无方向性天线。此时,对发射天线来说,所辐射的功率中只有很少一部分到达所需要的方向,大部分功率浪费在不需要的方向上;对接收天线来说,在接收到所需要的信号同时,还接收到来自其它方向的干扰和噪声,甚至使信号完全淹没在干扰和噪

天线简介

天线介绍

版本历史 版本/状态责任人发布日期备注V1.0 张鑫2010年7月天线简介第一版

目录 一、基础知识 (4) 1.1天线的定义 (4) 1.2天线的原理 (4) 1.3天线的基本参数 (5) 1.3.1 谐振频率 (5) 1.3.2 增益 (5) 1.3.3 驻波比 (6) 1.3.4 极化 (7) 1.3.5 辐射方向图 (8) 1.3.6 波瓣宽度 (9) 1.3.7 天线类型 (9) 二、天线的类型与选购 (11) 2.1 全向天线 (11) 2.1.1 普通全向天线 (11) 2.1.2 室内吸顶天线 (11) 2.2 定向天线 (12) 2.2.1 平板定向天线(Patch Antenna) (12) 2.2.2 八木天线(Yagi Antenna) (14) 2.2.3 抛物面栅状天线(Grid Antenna) (15) 2.3 天线配件 (15) 2.3.1 接头 (16) 注解:如何辨别天线接头的公母类型 (19) 2.3.2 射频电缆 (20) 2.3.3 其他配件 (21) 2.4 法律法规 (22) 三、无线传输 (23) 3.1影响室内无线传输的因素 (23) 3.2 室外传输和增益选择 (24) 3.2.1 视距传输(Line of Sight Propagation) (24) 3.2.2 自由空间路径损耗与传输距离 (25) 3.2.3 衰落余量和距离计算 (25) 3.2.4 Fresnel Zone (26) 3.2.5 计算举例 (26)

一、基础知识 1.1天线的定义 天线(Antenna)是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。 天线是在无线电设备中用来发射或接收电磁波的部件。无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。同一天线作为发射或接收的基本特性参数是相同的。这就是天线的互易定理。 1.2天线的原理 当导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。如图a所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图b、c所示,电场就散播在周围空间,因而辐射增强。必须指出,当导线的长度L远小于波长λ时,辐射很微弱;导线的长度L增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。

天线工作原理与主要参数

天线工作原理与主要参数 、天线工作原理与主要参数<BR天线是任何一个无线电通信系统都不可 缺少的重要组成部分。合理慎重地选用天线,可以取得较远的通信距离和良好的通信效果。 (一)天线的作用<BR^类无线电设备所要执行的任务虽然不同,但天线在设备中的作用却是基本相同的。任何无线电设备都是通过无线电波来传递信息,因此就必须有能辐射或接收电磁波的装置。所以,天线的第一个作用就是辐射和接收电磁波。当然能辐射或接收电磁波的东西不一定都能用来作为天线。例如任何高频电路,只要不是完全屏蔽起来的,都可以向周围空间或多或少地辐射电磁波,或者从周围空间或多或少地接收到电磁波。但是,任意一个高频电路并不一定能作天线,因为它辐射和接收电磁波的效率很低。只有能够有效地辐射和接收电磁波的设备才有可能作为天线使用。天线的另一个作用是”能量转换”。大家知道,发信机通过馈线送入天线的并不是无线电波,收信天线也不能直接把无线电波送入收信机,这里有一个能量的转换过程,即把发信机所产生的高频振荡电流经馈线送入天线输入端,天线要把高频电流转换为空间高频电磁波,以波的形式向周围空间辐射。 反之在接收时,也是通过收信天线把截获的高频电磁波的能量转换成高频电流的能量后,再送给收信机。显然这里有一个转换效率问题。 天线增益越高,则转换效率就越高。 (二)天线的分类<BR沃线的形式繁多,按其用途可以分为发信天线和收信天线;按使用波段可以分为长、中、短、超短波天线和微波天线、微带天线等。此外,我们还可按其工作原理和结构来进行分类。 <BR>^便于分析和研究天线的性能,一般把天线按其结构形式分为两大类: 一类是半径远小于波长的金属导线构成的线状天线,另一类是用尺寸大于波长的金属或介质面构成的面状天线。线状天线主要用于长、中、短波频段,面状天线主要用于厘米或毫米波频段;甚高频段一般以线状天线为主,而特高频段则线、面状天线兼用。线状天线和面状天线的基本工作原理是相同的。 (三)天线的工作原理

相控阵天线的基本原理介绍

相控阵天线的基本原理介绍 相控阵天线是目前卫星移动通信系统中最重要的一种天线形式,由三个部分组成:天线阵、馈电网络和波束控制器。基本原理是微处理器接收到包含通信方向的控制信息后,根据控制软件提供的算法计算出各个移相器的相移量,然后通过天线控制器来控制馈电网络完成移相过程。由于移相能够补偿同一信号到达各个不同阵元而产生的时间差,所以此时天线阵的输出同相叠加达到最大。一旦信号方向发生变化,只要通过调整移相器的相移量就可使天线阵波束的最大指向做相应的变化,从而实现波束扫描和跟踪。相控阵天线有相控扫描线天线阵和平面相控阵天线。图一 图一 N单元相阵 远区观察点P处的总场强可以是认为线阵中N个单元在P点产生的辐 射场强叠加:

图二线性相控阵天线 这一天线阵的方向图函数为: 图三平面相控阵天线 相控阵在快速跟踪雷达、测相等领域得到广泛的应用,它可以使主瓣指向随着通信的需要而不断地调整。相控阵为主瓣最大值方向或方向图形主要由单位激励电流的相对来控制天线阵。通过控制阵列天线中辐射单元的馈电相位改变方向图形状的天线。控制相位可以改变

天线方向图最大值的指向,以达到波速扫描的目的。在特殊情况下,也可以控制副瓣电平、最小值位置和整个方向图的形状。用机械方法旋转天线时,惯性大、速度慢,相控阵天线克服了这已缺点,波速的扫描高。它的馈电相一般用电子计算机控制,相位变化速度快,即天线方向图最大值指向或其他参数的变化迅速。这是相控阵天线的最大特点。 一般相控阵天线应对每一辐射单元的相位进行控制。为了节省移相器和简化控制线路,有时几个辐射单元共用一个移相器。相控阵天线的关键器件是移相器和天线辐射单元。移相器分连续式移相器和数字式移相器两种。连续式移相器的移相值可在0°~360°范围内连续变化,数字式移相器的移相值是离散的,只能是360×(1/2)^n的整数倍,移相器应保证在一定的频率范围内获得所需要的移相值。天线辐射单元的设计应使一定移相范围内和一定频率范围内的输入阻抗的变化尽可能小,以保证发射机正常工作,防止由于射频信号的多次反射而出现寄生副瓣和方向图中出现凹点的现象。相控阵天线的馈电方式分传输线馈电和空间馈电两种。在传输线馈电方式下,射频能量通过波导、同轴线和微带线等微波传输线馈给辐射单元。在空间馈电方式下,发射机产生的射频能量通过辐射装置辐射至自由空间,传输一段距离后由一个接收阵接收,接收阵的每个单元或一组单元所接收到的信号,经过移相器移相后再馈给发射阵的发射单元并辐射出去。 相控阵天线阵列本身的设计主要是幅度、相位分布设计和单元阻

贴片天线的工作原理和基本参数

贴片天线的工作原理和基本 参数 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

2.1天线辐射分析的一般过程 天线辐射的来源是时变电流或者时变电荷。天线分析问题就是为了确定给定源的辐射场,与分析其它电磁场问题一样,分析天线辐射问题的本质仍然是在给定边值的条件下求解无源麦克斯韦方程组: (2-1) (2-2) (2-3) (2-4) 但是,通常天线上的时变电荷和电流是未知的而且难以确定,同时天线辐射源所激发的电磁场反过来会影响天线上的辐射源分布,因而直接求解这一边值问题是非常困难的。实际中常采用的近似方法来求解,即先近似提出天线上的场源分布,这里的场源包括时变的电流源和时变的磁流源,再计算由此近似场源分布产生的远区辐射电磁场和。由已知场源和求解和的方法有两种,如图2.1所示。一种是直接建立场源和与辐射场和的积分关系,但是这一积分通常很难求出。更为常用的另一种方法是引入所谓的辅助势函数,即矢量势函数(包括磁矢势和电矢势)。首先根据场源分布与矢量势的积分关系得到和,再对和微分即可求出远区场和。尽管看起来这种方法多了一个中间过程,而且需要同时求解积分和微分,但是这时的被积函数通常会简便很多积分容易求出。一旦求解出了矢势,则通过微分得到需要的场量就非常容易了。 Integration Path1 Sources Radiated fields Integration Differentiation Path1 Path2 Vector potentials 图2.1 天线辐射求解的两种途径

下面以仅存在电流源的情形为例进行说明。假设电流源产生的辐射磁场为,根据(2.3)可知磁场是无散的,可以由一个矢量的旋度来表示。引入磁矢势,定义为: (2-5) 于是磁场与磁矢势之间的关系为: (2-6) 将上式代入(2.2)得到电流源了产生的辐射电场巧与磁矢势才的关系: 引入标量势,将写成的梯度场,使得 = 接下来,对(6)式两端取旋度并应用二重矢量积的恒等式可以得到: 将(2.9)与(2.1)进行比较可以得到: 其中。 定义标量势满足洛仑兹条件: 将(2.11)代入(2.10)就得到了电流源与磁矢势之间的关系: 将(2.11)代入(2.8)就得到了磁矢势与辐射电场之间的关系: 而磁矢势与辐射磁场之间的关系已在(2.6)中给出。 一旦通过(2.12)由解出了,则立即可以由(2.13)和(2.6)得到辐射电场与辐射磁场。(2.13)是一个非齐次的矢量偏微分方程,它的解由下式给出:

相关文档
最新文档