§2解析函数的孤立奇点解读

§2解析函数的孤立奇点解读
§2解析函数的孤立奇点解读

§2 解析函数的孤立奇点 一、教学目标或要求:

掌握解析函数的孤立奇点的分类 许瓦兹引理 二、教学内容(包括基本内容、重点、难点):

基本内容:解析函数的孤立奇点的分类 许瓦兹引理的叙述和证明 重点:解析函数的孤立奇点的分类 难点: 许瓦兹引理的叙述和证明 三、教学手段与方法: 讲授、练习

四、思考题、讨论题、作业与练习: 4-7

§2 解析函数的孤立奇点 1. 孤立奇点的三种类型

若为

的孤立奇点,则

在点的某去心邻域

内可以展开成

Laurent 展式 。

定义5.3 设点a 为函数)(z f 的孤立奇点:

(1)若)(z f 在点a 的罗朗级数的主要部分为零(即Laurent 展式不含负幂项),则称点a 为)(z f 的可去奇点;

(2)若)(z f 在点a 的罗朗级数的主要部分有有限多项,设为

0,)

()(1

1

)1(≠-++-+-------m m m m m c a z c a z c a z c 则称点a 为)(z f 的m 级(阶)极点;

(3)若)(z f 在点a 的罗朗级数的主要部分有无限多项,则称点a 为)(z f 的本性奇

点.

依定义,点0=z 为z z sin 的可去奇点,点0=z 为2e z

z

的二级极点,点1=z 为z z -1sin

的本性奇点. 2. 可去奇点

定理5.3 若点a 为)(z f 的孤立奇点,则下列三个条件是等价的: (1) 在点 的主要部分为0;

(2)

(3) 在点 的某去心邻域内有界。

由于

内解析,从而连续,故 。

由于

,故

取 ,则

,

即得。

考虑

在 的

主要部分

对 成立,故当 时, 即得。

3.Schwarz 引理

如果函数)(z f 在单位圆1||

),1|(|1|)(|,0)0(<<=z z f f

则在单位圆1||

如果上式等号成立,或在圆1||

)1|(|)(<=z z e z f ia ,其中a 为一实常数。

证 设

,令

由于在

内,作为和函数 是解析,又当

时,

,在

时,

,故在内,

,于是在 内,

是解析的。任取

,若满足条件

,则根据最大模原理,

,则

,从而

,又

,即

。由于

,故

,又,故可统一成(1)的

形式。当3)或4)成立时,由最大模定理 在 或0点

取到

了最大模,因此 常数 ,使

,即

,故

4. 极点 定理

5.4 若

以为孤立奇点,则下列三个条件是等价的:

(1) 在点的主要部分为;

(2) 在点的某去心邻域内能表示成,其中在点的

邻域内解析且;

(3) 以为级零点(可去奇点要当作解析点看,只要令

证“”在点的某去心邻域、内有

其中

在的邻域上解析,且

在的某去心邻域中,,其中在

内解析且,故在点连续,从而存在中的某一个邻域,

其上,从而在上解析,故由可去

奇点的特征知,为的可去奇点,令,则以为级零点。

若以为级零,则在的某个邻域内,

,其中在上解析,且,于是存在的某个邻域

,其上,于是在上解析,故有Taylor展式:

定理5.5的孤立奇点为极点.

证根据定理5.4,以为极点

以零点。

例求的奇点,并确定其类型。

解的奇点为,由于以为一级零点,

以为二级零点,故以为一级极点,以为二级极点。

例求的全部有限奇点。并确定其类型。

解的全部有限奇点为,由于为的聚点,

故为的非孤立奇点。现考虑为的几级零点。

故为的一级零点,从而为的一级极点。

5.本性奇点

定理5.6的孤立奇点为本性奇点

即不存在。

证由于的孤立奇点为可去奇点为为极点

,即得。

定理 5.7若为的孤立奇点,且在的充分小的去心邻域内不为0,则也为的本性奇点。

证令则由为的孤立奇点,且在的充分小的可去邻域内

知为的孤立奇点。若为的可去奇点,则

;若则此时为的极点,与已知矛盾;若,则,此时为的可去奇点, 也与已知矛盾。

若为的极点,则,从而,即为的可去奇点,与已知矛盾。综合知,只能是的本性奇点。

例 为的本性奇点,因为不存在。

6.毕卡定理

定理 5.8 如果点a 为)(z f 的本性奇点,则对于任何常数A ,不管它是有限数还是无穷,都有一个收敛于a 的点列}{n z ,使得

A z f n =)(lim .

换句话说,在本性奇点的无论怎样小的去心邻域内,函数)(z f 可以取任意接近于预先给定的任何数值(有限的或无穷的)。

证 “

” 当

时,由于为

的本性奇点,故一定不是

的可去

奇点,由定理 5.3,在的任何一个去心邻域内无界,对任意的

都存在

时,若在的任意小去心邻域内都有某一点使

,则结论已

得。若的充分小去心邻域

内,令则在

内解析。由于为

的本性奇点,也为的本性奇点,由定理 5.7,为的本性奇点,类似于中的证明由不是

的可去奇点知,存在

点列

从而

根据已知条件得

不存在,由定理5.6即得。

例 设1)e 1(5)(-+=z z f ,试求)(z f 在复平面上的奇点,并判定其类别. 解 首先,求)(z f 的奇点.)(z f 的奇点出自方程0e 1=+z 的解.解方程得)1(Ln -=z ,2,1,0,i π)12(±±=+=k k

若设),2,1,0(i π)12( ±±=+=k k z k ,则易知k z 为)(z f 的孤立奇点.另外,因

0)e 1(,0)

e 1(≠'

+=+==k

k

z z z z z z

所以,由零点的定义知k z 为z e 1+的一级零点.从而知),2,1,0( ±±=k z k 均为

)(z f 的一级极点.

??

+∞-+++-=t t

t t t t x x x d 12

)12,11(Ra d )sin ,(cos Ra 2222π

20

例 求出1sinz -的全部零点和级别。

解:由1sinz -=0 解此方程.即 i l l iz

iz 2--=1

即 iz e -iz

e -zi=0

两边同乘以iz e 得iz e -2i iz

e -1=0 即 ()

02

=-i

e

iz

,从而有iz e =I

令iy x z +=即有()

i e

iy x i =+ , 即 i e y ix =-,从而有 o y =,

22π

π+

=k x 。

(2

2=+

=k k z k π

π,±1,…)为sin 1-z 的全部零点。

(sin 0cos )1'

==-=zk

z z z

()1sinz 1sinz zk z '

'-=-=-=,

因此,

(2

2=+

=k k z k π

π,±1,…)是)(z f 的二级零点。

例 求函数)(z f =

πk z k 1

=

(k=±1,…) 0=z

是)(z f 的奇点,其中k z 是

孤立奇点,因为

=

→z

1sin 1lim

k

z z ∞,且()ππk k z z z k

111cos

.1

1sin 2'

-=-=??? ?

?≠0 故

πk z k 1=

是)(z f 的一级极点。又01lim lim k ==∞→∞→πk z k k ,因此,

0=z 是{}k z 的聚点, 故0=z 是非孤立零点。

课后讨论

1.到目前为止,我们学过了解析函数的哪些表达式?

2.何谓解析函数的零点?零点是否必是解析点?

https://www.360docs.net/doc/427528342.html,urent展开的条件是什么?有哪些展开方法?

4. 将函数以z=0为中心进行Laurent展开和在z=0的去中心领域中进行Laurent展开有区别?为什么?

5.在单连通区域内解析的函数的Taylor展开和Laurent展开是否一样?在复通区域中解析的函数呢?试举例说明。

6.以下推理是否正确?为什么?

因为Laurent展开的系数公式为

故由解析函数的高阶导数公式(1.2.18)有

以为中心的Laurent展开式为

7.易于得到,函数

还是否与Laurent展开的惟一性相矛盾

8.何谓孤立奇点?何谓非孤立奇点?孤立奇点又分为哪几类?

9.试小结判定奇点类型的方法,并用你所小结归纳的方法判定,函数,

的诸奇点各属哪类?

的解析性与奇点分类与函数的解析性与奇点分类之间

10.函数

有什么关系?

11.对于为孤立奇点,如何对其进行分类?

12.函数

在的去心邻域能否展开为Laurent级数?为什么?

复变函数 第五章 解析函数的罗朗展式与孤立奇点

第五章 解析函数的罗朗展式与孤立奇点 第一阶 解析函数的罗朗展式 一、双边幂级数 212 00102002 00()()()()() n n n n n c c c z z c c z z c z z c z z z z z z ∞ --=-∞ -=+-+-+-+ ++--∑L L 定理 双边幂级数 () n n n c z z ∞ =-∞ -∑的收敛圆环为:H r z a R <-<,则该级数满足 (1) 在H 内绝对且内闭一致收敛于函数()f z 。(2)函数()f z 在H 内解析 (2) 在H 内可逐项求导 (4)可沿H 内的曲线逐项积分。 定理 在圆环:H r z a R <-<内解析的函数()f z 可展为双边幂级数 () n n n c z z ∞ =-∞ -∑,其中 11() 2() n n f c d i a ζζπζ+Γ= -? (0,1,2,n =±±)Γ为圆环内的圆周a ζρ-=,并且展式是唯一的。 例如 将函数1 ()(1)(2) f z z z = --在以下三个圆环内展成罗朗展式 (1)1z <, (2)12z << (3)21z <<+∞。 解11()21 f z z z = --- (1)10 111111()()(1)2112212 n n n f z z z z z z ∞ +== -=-=-----∑。 (2)1101011111111111()()1212222112n n n n n n n n n z z f z z z z z z z z z ∞∞∞∞ -+===== -=-=-=-----∑∑∑∑。 (3)1002111111121121()212111n n n n n n n n f z z z z z z z z z z z z -∞∞∞ ===-=-=-=-=----∑∑∑。 二、 解析函数在孤立奇点邻域内的罗朗展式 定义 如果函数()f z 在z a =点的去心邻域0z a R <-<内解析,点a 是奇点,则称a 是()f z 的孤立奇点。 如果z a =为()f z 的孤立奇点,则必存在正整数R ,使得()f z 在z a =点的去心邻域0z a R <-<内展为罗朗展式。

浅谈复变函数中有限孤立奇点的类型判断

浅谈复变函数中有限孤立奇点的类型判断 桂林电子科技大学!王会勇 !摘!要"本文就工科复变函数课程中有关孤立奇点类型判断的教学提出了建议" !关键词"极点!判断!解析 !!留数与留数定理是复变函数课程中的重要内容!同时也是 一个难点"在实际的教学中!笔者发现!很多学生在完成’留数 定理在定积分计算上的应用(部分的学习后!对本章内容感觉 很生涩!并难于下手解题"笔者调查发现!多数同学反映此部 分的难点在于对孤立奇点的类型的判断和计算极点处的留数 两方面"这与现行通用教材%如文献#和文献)&中对该部分的 总结和选取有关"根据实际的教学经验!并参考相关文献!笔 者建议该部分教学内容和顺序简列如下$

简捷报数起卦 佛山科学技术学院!谭伟良 !摘!要"本文介绍一些报数快速起卦的八卦预测方法!文中透露了一些起卦等预测方面的奥妙" !关键词"易!起卦!预测!占卜 #C什么是报数起卦 本文重点介绍报两数起卦$要起卦时!想一下有关要预测的事!然后报或想出两个数!其中小的数除以E余数作外%上&卦!大的数除以E余数作内%下&卦!报或想出的两个数的和除以Q余数作动爻位"报数起卦法还有一数时辰法#两数时辰法和二数多数法" "C报数起卦法的特点和注意事项 报数起卦法不用知方向!纯两数起卦法则连时间也不用知道#不用时辰的运算!相当吸引人"用两数时辰法计算变爻位的方法设定了所问事物的存在值由所报两数和时辰三部分的组成!而纯两数起卦法则设定了所问事物的存在值分别由报出的两数组成"由于各个人的敏感点不一定相同!因工作或体育爱好而习惯腰#身转动的人!可能容易体会到转动身体起卦!%用多方向或方位起卦时!如果提问包含的时间和空间太长#太大或界定不太清楚!则变数很多!身体转很多次)一个多爻变的卦相当于一口气起了多个卦!可根据变爻出现先后分为多个卦&!方向和报数两种方法灵活运用也行"天机不可泄露!就像还没有到站的时候不要下车一样!什么时候出现什么都有一定的规则或惯性或过程!所以知道某些预测结果时!不要轻易泄露!以知而不太知#不太执着等技巧调整自我!以保安全!请参考本人其他文章" )C介绍某些重要原理 %#&设定原理$设起卦的方法为

解析函数的孤立奇点类型判断及应用

解析函数的孤立奇点类型判断及应用 摘要孤立奇点的应用在解析函数的学习和对其性质分析研究中有着重要作用,而留数计算是复变函数中经常碰到的问题。解析函数在不同类型的孤立奇点处的计算方法不同,关键我们要先判断其类型。本文在分析整理了相关资料的基础上,首先给出了孤立奇点的定义、分类及其类型的判别定理和相关推及引理,其中在考虑极点处的留数求法时,又根据单极点、二阶极点,m阶极点的求法不同,结合例子给出极点阶数的判断方法。并通过有限孤立奇点的判别对解析函数无穷远点的性态进行研究,分析能否把有限孤立奇点的特征应用到无穷远点,进而探讨了孤立奇点在留数计算中的应用,使得孤立奇点的知识更加系统、全面。关键词孤立奇点可去奇点极点本质奇点判断留数计算 前言 在复变函数论中,留数是非常重要的,而解析函数的孤立奇点是学习留数的基础,只有掌握了孤立奇点的相关性质,才能更好的学好留数。目前,在相关资料中,对孤立奇点的判别及应用已较为完备,如在许多版本的《复变函数论》中对孤立奇点的判别做了详细的说明和解释,使我们对孤立奇点的了解更透彻。但在现实中有时我们遇到的留数计算具体例子,运用定理判别会比较麻烦,还需要前后知识的衔接,这为留数计算增加了障碍。本文就是在此基础上作进一步的探讨,将判断这一工作拿出来单独讨论,通过对论文的撰写,将把孤立奇点类型的判别及在留数运算中的应用更全面化、系统化。此项研究内容可以对以后学习此部分内容的同学提供一定的帮助,使其对孤立奇点的理解更加清晰,应用得更加自如。 在复变函数课程上我们已学过了孤立奇点的分类及其类型的判别和其在留数计算中的应用,为对其作进一步的研究奠定了基础。在此基础上查阅大量书籍,搜集相关资料,并对所搜集资料进行分析、研究、筛选和处理。通过指导教师的耐心指导,已具备了研究解析函数类型的判别及其在留数计算中的应用这一课题的初步能力,并能解决现实生活中的相关例题,使理论和实践达到真正的结合和

121函数的概念(1)补充练习

变式训练 1.已知a 、b ∈N *,f (a +b )=f (a )f (b ),f (1)=2,则 )2006()2007()2()3()1()2(f f f f f f +++ =_________.分析:令a =x ,b =1(x ∈N *), 则有f (x +1)=f (x )f (1)=2f (x ), 即有) ()1(x f x f +=2(x ∈N *). 所以,原式= 2006222++=4012. 答案:4012 2.2007山东蓬莱一模,理13设函数f (n )=k (k ∈N *),k 是π的小数点后的第n 位数字,π= 3.1415926535…,则[]{} 100 )10(f f f 等于________. 分析:由题意得f (10)=5,f (5)=9,f (9)=3,f (3)=1,f (1)=1,…, 则有[]{} 100 )10(f f f =1. 答案:1 2.2007山东济宁二模,理10已知A={a ,b ,c },B={-1,0,1},函数f :A→B 满足f (a )+f (b )+f (c )=0,则这样的函数f (x )有( ) A.4个 B.6个 C.7个 D.8个 活动:学生思考函数的概念,什么是不同的函数.定义域和值域确定后,不同的对应法则就是不同的函数,因此对f (a ),f (b ),f (c )的值分类讨论,注意要满足f (a )+f (b )+f (c )=0. 解:当f (a )=-1时, 则f (b )=0,f (c )=1或f (b )=1,f (c )=0, 即此时满足条件的函数有2个; 当f (a )=0时, 则f (b )=-1,f (c )=1或f (b )=1,f (c )=-1或f (b )=0,f (c )=0, 即此时满足条件的函数有3个; 当f (a )=1时, 则f (b )=0,f (c )=-1或f (b )=-1,f (c )=0, 即此时满足条件的函数有2个. 综上所得,满足条件的函数共有2+3+2=7(个). 故选C. 点评:本题主要考查对函数概念的理解,用集合的观点来看待函数. 变式训练 若一系列函数的解析式相同,值域相同,但是定义域不同,则称这些函数为“同族函数”.那么解析式为y =x 2,值域是{1,4}的“同族函数”共有( ) A.9个 B.8个 C.5个 D.4个 分析:“同族函数”的个数由定义域的个数来确定,此题中每个“同族函数”的定义域中至少含有1个绝对值为1的实数和绝对值为2的实数. 令x 2=1,得x =±1;令x 2=4,得x =±2. 所有“同族函数”的定义域分别是{1,2},{1,-2},{-1,2},{-1,-2},{1,-1,2},{1,-1,-2},{1,-2,2},

解析函数的孤立奇点

..解析函数的孤立奇点

————————————————————————————————作者:————————————————————————————————日期:

第五章 教学课题:第二节 解析函数的孤立奇点 教学目的:1、掌握孤立奇点的三种类型; 2、理解孤立奇点的三种类型的判定定理; 3、归纳奇点的所有情况; 4、充分理解关于本性奇点的两大定理。 教学重点:孤立奇点的三种类型 教学难点:孤立奇点的三种类型的判定定理 教学方法:启发式、讨论式 教学手段:多媒体与板书相结合 教材分析:孤立奇点是解析函数中最简单最重要的一种类型,以解析函数的洛朗级数为工具,研究解析函数在孤立奇点去心邻域内一个解析函数的性质。 教学过程: 1、解析函数的孤立奇点: 设函数f (z )在去掉圆心的圆盘)0(||0:0+∞≤<<-

复变函数的孤立奇点及其应用(小学期论文)

复变函数的孤立奇点及其应用 数学科学学院 数学与应用数学专业 指导教师: xxx 摘要:本文讨论了孤立奇点的定义、判别方法以及孤立奇点在留数计算中的应用。 关键词:孤立奇点;定义;判别方法;留数 孤立奇点的应用在复变函数的教学以及学习中有着重要的作用,而留数的计算是复变函数中经常碰到的问题. 1 孤立奇点的定义 如果函数)(z f 在点a 的某一去心邻域}{a K -:R a z <-<0内解析,点a 是 )(z f 的奇点,则称a 为)(z f 的一个孤立奇点. 2 孤立奇点的判别方法 设函数)(z f 在区域D 内除有限个孤立奇点n z z z z ,,,,321 外处处解析,C 是D 内包围各奇点的一条正向简单闭曲线,那么)(Re 2)(1 z f s i dz z f n k a z C k ∑?===π.一般 来说,求函数在其孤立奇点0z 处的留数只须求出它在以0z 为中心的圆环域内的 洛朗级数中1 01---)(z z C 项系数1-C 就可以了.但如果能先知道奇点的类型,对求 留数更为有利.例如,如果0z 是)(z f 的可去奇点,那么0]),([Re 0=z z f s .如果0z 是本质奇点,那就往往只能用把)(z f 在0z 展开成洛朗级数的方法来求1-C .若0z 是极点的情形,则可用较方便的求导数与求极限的方法得到留数. 2.1 函数在极点处留数 法则1:如果0z 为)(z f 的简单极点,则 )()(lim ]),([Re 000 z f z z z z f s z z -=- 法则2:设) () ()(z Q z P z f = ,其中)(,)(z Q z P 在0z 处解析,如果0)(≠z P ,0z 为)(z Q 的

解析汇报函数地孤立奇点类型判断及指导应用

解析函数的孤立奇点类型判断及应用 摘 要 孤立奇点的应用在解析函数的学习和对其性质分析研究中有着重要作用,而留数计算是复变函数中经常碰到的问题。解析函数在不同类型的孤立奇点处的计算方法不同,关键我们要先判断其类型。本文在分析整理了相关资料的基础上,首先给出了孤立奇点的定义、分类及其类型的判别定理和相关推及引理,其中在考虑极点处的留数求法时,又根据单极点、二阶极点,m 阶极点的求法不同,结合例子给出极点阶数的判断方法。并通过有限孤立奇点的判别对解析函数无穷远点的性态进行研究,分析能否把有限孤立奇点的特征应用到无穷远点,进而探讨了孤立奇点在留数计算中的应用,使得孤立奇点的知识更加系统、全面。 关键词 孤立奇点 可去奇点 极点 本质奇点 判断 留数计算 前言 在复变函数论中,留数是非常重要的,而解析函数的孤立奇点是学习留数的基础,只有掌握了孤立奇点的相关性质,才能更好的学好留数。目前,在相关资料中,对孤立奇点的判别及应用已较为完备,如在许多版本的《复变函数论》中对孤立奇点的判别做了详细的说明和解释,使我们对孤立奇点的了解更透彻。但在现实中有时我们遇到的留数计算具体例子,运用定理判别会比较麻烦,还需要前后知识的衔接,这为留数计算增加了障碍。本文就是在此基础上作进一步的探讨,将判断这一工作拿出来单独讨论,通过对论文的撰写,将把孤立奇点类型的判别及在留数运算中的应用更全面化、系统化。此项研究容可以对以后学习此部分容的同学提供一定的帮助,使其对孤立奇点的理解更加清晰,应用得更加自如。 在复变函数课程上我们已学过了孤立奇点的分类及其类型的判别和其在留数计算中的应用,为对其作进一步的研究奠定了基础。在此基础上查阅大量书籍,搜集相关资料,并对所搜集资料进行分析、研究、筛选和处理。通过指导教师的耐心指导,已具备了研究解析函数类型的判别及其在留数计算中的应用这一课题的初步能力,并能解决现实生活中的相关例题,使理论和实践达到真正的结合和统一。 本文通过对已学知识的回顾总结,和相关资料的查阅,在老师的指导下自拟题目,将对孤立奇点的类型判别及应用进行说明,通过分析、整理、归纳、总结,对其进行更深入的研究。 正文 一、孤立奇点的定义及类型 (一)定义 如果函数)(z f 在点a 的某一去心邻域R a z a K <-<-0:}{(即除去圆心a 的某圆)解析,点a 是)(z f 的奇点,则称a 为)(z f 的一个孤立奇点。 如果a 为函数)(z f 的一个孤立奇点,则必存在正数 R ,使得)(z f 在点a 的去心邻域 R a z a K <-<-0:}{ 可展成洛朗级数。

§2解析函数的孤立奇点解读

§2 解析函数的孤立奇点 一、教学目标或要求: 掌握解析函数的孤立奇点的分类 许瓦兹引理 二、教学内容(包括基本内容、重点、难点): 基本内容:解析函数的孤立奇点的分类 许瓦兹引理的叙述和证明 重点:解析函数的孤立奇点的分类 难点: 许瓦兹引理的叙述和证明 三、教学手段与方法: 讲授、练习 四、思考题、讨论题、作业与练习: 4-7 §2 解析函数的孤立奇点 1. 孤立奇点的三种类型 若为 的孤立奇点,则 在点的某去心邻域 内可以展开成 Laurent 展式 。 定义5.3 设点a 为函数)(z f 的孤立奇点: (1)若)(z f 在点a 的罗朗级数的主要部分为零(即Laurent 展式不含负幂项),则称点a 为)(z f 的可去奇点; (2)若)(z f 在点a 的罗朗级数的主要部分有有限多项,设为 0,) ()(1 1 )1(≠-++-+-------m m m m m c a z c a z c a z c 则称点a 为)(z f 的m 级(阶)极点; (3)若)(z f 在点a 的罗朗级数的主要部分有无限多项,则称点a 为)(z f 的本性奇

点. 依定义,点0=z 为z z sin 的可去奇点,点0=z 为2e z z 的二级极点,点1=z 为z z -1sin 的本性奇点. 2. 可去奇点 定理5.3 若点a 为)(z f 的孤立奇点,则下列三个条件是等价的: (1) 在点 的主要部分为0; (2) (3) 在点 的某去心邻域内有界。 证 由于 且 在 内解析,从而连续,故 。 由于 ,故 取 ,则 , 即得。 设 , 考虑 在 的 主要部分 则

复变函数论 第五章 解析函数的洛朗展式与孤立奇点

第五章 解析函数的洛朗展式与孤立奇点 §1 解析函数的洛朗展式 教学目的与要求: 了解双边幂级数,了解洛朗级数与泰勒级数的关系,掌握解析函数在孤立奇点邻域内的洛朗展式的求法. 重点: 解析函数的洛朗展式;解析函数在孤立奇点邻域内的洛朗展式的求法. 难点:解析函数的洛朗展式的证明. 课时:2学时 定义5.1 级数 1 01()()()n n n n n C C C z a C C z a z a z a +∞ --=-∞ -=???+ +???+++-+???--∑(5.1) 称洛朗()Laurent 级数,n C 称为(4.22)的系数. 对于点z ,如果级数 01() ()()n n n n n C z a C C z a C z a +∞ =-∞ -=+-+???+-+???∑ (5.2) 收敛于1()f x ,且级数 1 ()()n n n n n C C C z a z a z a +∞ --=-∞ -=???+ +???+ --∑ (5.3) 收敛于2()f x ,则称级数(4.22)在 点z 收敛,其和函数为1()f x +2()f x 当0n C -=(1,2,)n =???时,(5.1)即变为幂级数. 类似于幂级数,我们有 定理5.1 设()f z 在圆环12:D R z a R <-<12(0)R R ≤<<+∞内解析,则在D 内 ()()n n n f z C z a +∞ =-∞ = - ∑ (5.4) 其中1 1() 2()n n f z C dz i z a π+Γ= -? (0,1, )n =±??? (5.5) :z a ρΓ-=,且12R R ρ<<,系数n C 被()f z 及D 唯一确定. (5.4)称为()f z 的洛朗展式. 证明:对:z H ?∈作1:1z a ρΓ-=,2:2z a ρΓ-=,(其中12r R ρρ<<<) 且使z D ∈:12z a ρρ<-<,(如图5.1)由柯西积分公式,有

第五章 解析函数的罗朗展式与孤立奇点

第五章解析函数的罗朗展式与孤立奇点 上一章主要介绍了函数在解析点的邻域(圆)内,可以展开成通常的幂级数,但在奇点的领域内 则不能,例如函数 在点,现在我们考虑挖去了奇点的圆 环 ,并讨论在圆环内解析函数的级数展开。这样将得到推广的幂级数——Laurent (罗朗)级数。 它既可以是函数在孤立奇点去心领域内的Laurent展式,反过来,以它为工具就便于研究解析函数在孤立奇点去心领域内的性质。 Taylor级数与Laurent级数都是研究解析函数的有力工具。 第一节解析函数的罗朗展式 教学课题:第一节解析函数的洛朗展式 教学目的:1、了解双边幂级数在其收敛圆环内的性质; 2、充分掌握洛朗级数与泰勒级数的关系; 3、了解解析函数在孤立奇点和非孤立奇点的洛朗级数 教学重点:掌握洛朗级数的展开方法 教学难点:掌握洛朗级数的展开方法 教学方法:启发式、讨论式 教学手段:多媒体与板书相结合 教材分析:洛朗级数是推广了的幂级数,它既可以是函数在孤立奇点去心邻域内的级数展开,也可以作为工具研究解析函数在孤立奇点去心邻域内的性质。 教学过程: 1、双边幂级数 在本节中,我们讲述解析函数的另一种重要的级数展式,即在圆环内解析函数的一种级数展式。首先考虑级数 ... ) ( ... ) ( ) ( 2 2 1 + - + + - + - + - - - - - - n n n z z z z z z β β β β 其中,... ,..., , , 1 0n z - - β β β是复常数。此级数可以看成变量 1 z z- 的幂级数;设这幂级数的收敛半

径是R 。如果0R <<+∞,那么不难看出,此级数在R z z 1 ||0>-内绝对收敛并且内闭一致收敛,在R z z 1 ||0< -内发散。同样,如果+∞=R ,那么此级数在0||0>-z z 内绝对收敛并且内闭一致收敛;如果R=0,那么此级数在每一点发散。在上列情形下,此级数在0z z =没有意义。于是根据定理2.3,按照不同情形,此级数分别在 0||)0(1 ||010>-+∞<<=> -z z R R R z z 及内收敛于一个解析函数。 2、解析函数的洛朗展式: 更一般地,考虑级数 ,)(0 ∑+∞ -∞ =-n n n z z β 这里0,(0,1,2,...)n z n β=±± 是复常数。当级数 ,)()(1 00 0∑∑-∞ -=+∞ =--n n n n n n z z z z ββ 及 都收敛时,我们说原级数 ∑+∞ -∞ =-n n n z z ) (0 β收敛,并且它的和等于上式中两个级数的和函数相加。 设上式中第一个级数在20||R z z <-内绝对收敛并且内闭一致收敛,第二个级数在10||R z z >-内绝对收敛并且内闭一致收敛。于是两级数的和函数分别20||R z z <-及10||R z z >-在内解析。又设21R R <,那么这两个级数都在圆环201||:R z z R D <-<内绝对收敛并且内闭一致收敛,于是我们说级数 ∑+∞ -∞ =-n n n z z ) (0β在这个圆环内绝对收敛并且内闭一致收敛;显然它的和函数是一个解 析函数。我们称级数∑+∞ -∞ =-n n n z z ) (0 β为洛朗级数。因此,洛朗级数的和函数是圆环D 内的解析 函数,我们也有 定理5.1 (洛朗定理)设函数f (z )在圆环:)0(||:21201+∞≤<≤<-

复变函数的解析点与孤立奇点的运算性质

万方数据

万方数据

万方数据

复变函数的解析点与孤立奇点的运算性质 作者:何彩香, 张晓玲, HE Caixiang, ZHANG Xiaoling 作者单位:大理学院数学与计算机学院,云南大理,671003 刊名: 大理学院学报 英文刊名:JOURNAL OF DALI UNIVERSITY 年,卷(期):2010,09(4) 被引用次数:0次 参考文献(12条) 1.钟玉泉复变函数论 2003 2.西安交通大学高等数学教研室复变函数 2005 3.何彩香复函数极点的运算性质 2004(5) 4.张元林积分变换 2006 5.何彩香.姚恩瑜.葛浩带有宵禁限制的动态最短费用路问题 2008(4) 6.何彩香.姚恩瑜带硬宵禁限制的动态最短费用路问题的讨论 2007(4) 7.何彩香.姜秀燕.施冰有宵禁限制的时间最短路 2006(6) 8.何彩香.胡竞湘.李汝烯有宵禁限制的成本最短路问题 2006(3) 9.顾作林.闫心丽.方影高等数学 2008 10.毛宗秀.姚金华高等数学 2005 11.何彩香.寸仙娥带硬宵禁限制的动态最短费用路逆问题的讨论 2008(8) 12.Cai-Xiang He.Shao-Ming Wang The math model and algorithm for the dynamic minimum time path problem with curfews 2008(2) 本文链接:https://www.360docs.net/doc/427528342.html,/Periodical_dlxyxb201004003.aspx 授权使用:中国科学技术大学(zgkxjsdx),授权号:8e5f20b4-183e-47d1-8915-9df800c027a2 下载时间:2010年9月21日

解析函数的孤立奇点类型判断及应用

解析函数的孤立奇点类型判断及应用 -CAL-FENGHAI.-(YICAI)-Company One1

解析函数的孤立奇点类型判断及应用 摘 要 孤立奇点的应用在解析函数的学习和对其性质分析研究中有着重要作用,而留数计算是复变函数中经常碰到的问题。解析函数在不同类型的孤立奇点处的计算方法不同,关键我们要先判断其类型。本文在分析整理了相关资料的基础上,首先给出了孤立奇点的定义、分类及其类型的判别定理和相关推及引理,其中在考虑极点处的留数求法时,又根据单极点、二阶极点,m 阶极点的求法不同,结合例子给出极点阶数的判断方法。并通过有限孤立奇点的判别对解析函数无穷远点的性态进行研究,分析能否把有限孤立奇点的特征应用到无穷远点,进而探讨了孤立奇点在留数计算中的应用,使得孤立奇点的知识更加系统、全面。 关键词 孤立奇点 可去奇点 极点 本质奇点 判断 留数计算 前言 在复变函数论中,留数是非常重要的,而解析函数的孤立奇点是学习留数的基础,只有掌握了孤立奇点的相关性质,才能更好的学好留数。目前,在相关资料中,对孤立奇点的判别及应用已较为完备,如在许多版本的《复变函数论》中对孤立奇点的判别做了详细的说明和解释,使我们对孤立奇点的了解更透彻。但在现实中有时我们遇到的留数计算具体例子,运用定理判别会比较麻烦,还需要前后知识的衔接,这为留数计算增加了障碍。本文就是在此基础上作进一步的探讨,将判断这一工作拿出来单独讨论,通过对论文的撰写,将把孤立奇点类型的判别及在留数运算中的应用更全面化、系统化。此项研究内容可以对以后学习此部分内容的同学提供一定的帮助,使其对孤立奇点的理解更加清晰,应用得更加自如。 在复变函数课程上我们已学过了孤立奇点的分类及其类型的判别和其在留数计算中的应用,为对其作进一步的研究奠定了基础。在此基础上查阅大量书籍,搜集相关资料,并对所搜集资料进行分析、研究、筛选和处理。通过指导教师的耐心指导,已具备了研究解析函数类型的判别及其在留数计算中的应用这一课题的初步能力,并能解决现实生活中的相关例题,使理论和实践达到真正的结合和统一。 本文通过对已学知识的回顾总结,和相关资料的查阅,在老师的指导下自拟题目,将对孤立奇点的类型判别及应用进行说明,通过分析、整理、归纳、总结,对其进行更深入的研究。 正文 一、孤立奇点的定义及类型 (一)定义 如果函数)(z f 在点a 的某一去心邻域R a z a K <-<-0:}{(即除去圆心a 的某圆)内解析,点a 是)(z f 的奇点,则称a 为)(z f 的一个孤立奇点。

高中数学121函数的概念同步测试(含解析,含尖子生题库)新人教A版必修

1.2.1函数的概念同步测试 一、选择题(每小题5分,共20分) 1.对于函数y =f (x ),以下说法正确的有( ) ①y 是x 的函数 ②对于不同的x ,y 的值也不同 ③f (a )表示当x =a 时函数f (x )的值,是一个常量 ④f (x )一定可以用一个具体的式子表示出来 A .1个 B .2个 C .3个 D .4个 2.函数f (x )=????x -120+|x 2-1|x +2 的定义域为( ) A.? ???-2,12 B .(-2,+∞) C.????-2,12∪????12,+∞ D.??? ?12,+∞ 3.已知函数f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)的值是( ) A .5 B .-5 C .6 D .-6 4.若函数g (x +2)=2x +3,则g (3)的值是( ) A .9 B .7 C .5 D .3 二、填空题(每小题5分,共10分) 5.函数f (x )=x 2-2x +5定义域为A ,值域为B ,则集合A 与B 的关系是________. 6.设f (x )=11+x ,则f [f (x )]=________. 三、解答题(每小题10分,共20分) 7.判断下列各组函数是否是相等函数. (1)f (x )=(x -2)2,g (x )=x -2; (2)f (x )=x 3+x x 2+1 ,g (x )=x . . 8.已知函数f (x )=6x -1 -x +4, (1)求函数f (x )的定义域; (2)求f (-1), f (12)的值. 尖子生题库☆☆☆ 9.(10分)已知函数f (x )=x 2 1+x 2 . (1)求f (2)与f ????12, f (3)与f ??? ?13. (2)由(1)中求得结果,你能发现f (x )与f ????1x 有什么关系?并证明你的发现. (3)求f (1)+f (2)+f (3)+…+f (2 013)+f ????12+f ????13+…+f ??? ?12 013. 1.2.2 函数的表示法(本栏目内容,在学生用书中以独立形式分册装订!) 一、选择题(每小题5分,共20分) 1.已知函数f (x )的定义域A ={x |0≤x ≤2},值域B ={y |1≤y ≤2},下列选项中,能表示f (x )的图象的只可能是( )

复变函数第五章解析函数的洛朗(Laurent)展式与孤立奇点知识点总结

第五章解析函数的洛朗(Laurent)展式与孤立奇点 §1.解析函数的洛朗展式 1.双边幂级数 2.(定理5.1):收敛圆环H, (1)H内绝对收敛且内闭一致收敛于f(z)=f1+f2 (2)函数f在H内解析 (3)f在H内可逐项求导p次 (4)可沿H内曲线C逐项积分 注:对应于定理4.13 3.(定理5.2 洛朗定理):在圆环内解析的函数f必可展成双边幂级数,其中 c n=1fξ n+1 Γ dξ,(n=0,±1,±2…) Γ为圆周|ξ?a|=ρ, f和圆环唯一决定系数c n 4.泰勒级数是洛朗级数的特殊情形 5.孤立奇点(奇点:不解析点) 注:多值性孤立奇点即支点 6.如果a为f(z)的一个孤立奇点,则必存在正数R,使得f(z)在点a的去心邻域K-{a}:0<|z-a|

则在单位圆|z|<1内恒有 f z≤z, 且有 f′0≤1 如果上式等号成立,或在圆|z|<1内一点z0≠0处前一式等号成立,则(当且仅当) f z=e iαz(z<1) 其中α是一实常数。 5.(定理5.4):m阶极点的特征(三点等价) (1)主要部分为有限项(系数c?m≠0) (2)f(z)在点a的某去心邻域内能表示成 f z=λ(z) m 其中λ(z)在点a的邻域内解析,且λ(a)≠0; (3)g z=1 f(z) 以点a为m阶零点(可去奇点要当作解析点看,只要令g(a)=0) 注:f(z)以a为m阶极点?1 f(z) 以点a为m阶零点 6.(定理5.5):函数f(z)的孤立奇点a为极点的充要条件是 lim z→a f z=∞ 7.(定理5.6):函数f(z)的孤立奇点a为本质奇点的充要条件是 lim z→a f z≠ b(有限数) ∞, 即lim z→a f(z)不存在 8.(定理5.7):若z=a为函数f(z)之一本质奇点,且在点a的充分小去心邻域内部委零,则z=a亦必为1 f(z) 的本质奇点。 9.(定理5.8 皮卡(Picard)定理):本质奇点的无论怎样小的去心邻域内,函数f(z)可以取任意接近于预先给定的任何数值(有限的或无穷的) 注:由本质奇点的稠密性,本质奇点仍为倒数的本质奇点 10.(定理5.9 皮卡(大)定理):如果a为函数的本质奇点,则对于每一个A≠∞,除掉可能一个值A=A0外,必有趋于a的无线点列{z n},使f(z n)=A. §3.解析函数在无穷远点的性质 分别对应于上节定理5.3-5.6

121函数的概念(1)

§1.2.1 函数的概念(1) 学习目标 1. 通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用; 2. 了解构成函数的要素; 3. 能够正确使用“区间”的符号表示某些集合. 学习过程 一、课前准备 15~ P 17,找出疑惑之处) 复习1:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系? 复习2:(初中对函数的定义)在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量. 表示方法有:解析法、列表法、图象法. 二、新课导学 探究任务一:函数模型思想及函数概念 问题:研究下面三个实例: A . 一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h (米)与时间t (秒)的变化规律是21305h t t =-. B . 近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞 问题,图中曲线是南极上空臭氧层空洞面积的变化情况. C . 国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低. 年份 1991 1992 1993 1994 1995 … 恩格尔系数% 53.8 52.9 50.1 49.9 49.9 … 讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着这样的对应关系? 三个实例有什么共同点? 归纳:三个实例变量之间的关系都可以描述为,对于数集A 中的每一个x ,按照某种对应关系f ,在数集B 中都与唯一确定的y 和它对应,记作::f A B →. 新知:函数定义. 设A 、B 是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作:(),y f x x A =∈. 其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ). 试试:

BP算法及径向基函数网络

BP 算法及径向基函数网络 B0503194班 高翔 1050319110 杨柳青 1050319113 题目1: 2.5 利用BP 算法及Sigmoid 算法,研究以下各函数的逼近问题: (1) 1 () , 1x 100f x x = ≤≤ (2) 10()log x , 1x 10f x =≤≤ (3) ()exp() , 1x 10f x x =-≤≤ (4) ()sin , 1x 2 f x x π =≤≤ 解:该题可以采用BP 神经网络或者是径向基函数网络来解决,首先给出我们利用BP 网络的解决方法,关于如何利用径向基函数网络来解决问题,放在2.6 题中的通过径向基函数网络解决XOR 问题一起讨论。 一、 概述 人工神经网络作为一门20世纪中叶起步的新技术,随着其理论的逐步完善,其应用日益广泛,应用领域也在不断拓展,已经在各个工程领域里得到了广泛的应用。通常神经网络技术主要应用在以下方面。 模式信息处理和模式识别。 最优化问题计算。 信息的智能化处理。 复杂控制。 信号处理。 在1959年,当时的两位美国工程师B.Widrow 和M.Hoff 提出了自适应线形元件。在 1969年,人工智能的创始人之一M.Minsky 和S.Papert 指出单层感知器只能够进行线形分类,对线形不可分的输入模式,哪怕是简单的异或逻辑运算,单层感知器也无能为力,而解决其的唯一方法就是设计训练出具有隐含层的多层神经网络。这一难题在1986年得到了解决。 1986年,D.E. Rumelhart 等人提出解决多层神经网络权值修正的算法——误差反向传播法(Error Back-Propagation )。这种算法也通常被应用在BP (Back-Propagation Network )中。 在目前,在人工神经网络的实际应用中,绝大部分的神经网络模型(80%--90%)是采

孤立奇点的类型及判断方1

孤立奇点的类型及其判定方法 摘要:本文归纳了孤立奇点的类型及其主要判定的方法.分别对函数在有限点和无限点的孤立奇 点研究,得到了判定孤立奇点类型的三种方法:定义法、极限值法、极点与零点关系法.接着阐述了有两个函数的和、差、积、商所得的新函数与原函数在孤立奇点类型的关系,并且结合一下例子介绍了判定孤立奇点类型的三种方法的应用. 关键词: 可去奇点 极点 本质奇点 1.引言 复变函数的孤立奇点是复变函数论中的重要概念.函数在孤立奇点的附近可以展示洛朗展开式,对一个函数而言,孤立奇点的个数往往不是很多的,但是这些不多的孤立奇点往往就决定着这个函数的性质了,因此,什么是孤立奇点,孤立奇点有哪些类型,怎么判定并快速的判定函数的孤立奇点的类型,对研究函数的孤立奇点去心邻域内的性质,复积分的计算等至关重要.但是函数的孤立奇点的类型往往很难判定,特别对复合函数等.这样就使得我们去探索新的方便的判定孤立奇点类型的方法.目前,已经有很多人对判定孤立奇点类型的问题做过研究了,也作出了很多成就.本文在此基础上,归纳诸多方法,旨在为判定孤立奇点类型提供参考.根据在孤立奇点某邻域的洛朗展开式判定孤立起点的类型,但是有些函数的洛朗展开式很难求出来,我们还可以根据函数在孤立奇点的极限值判定孤立奇点的类型.但是有些函数的倒函数很容易判定出倒函数的零点阶数,对于这样的函数我们可以根据极点和零点的关系判定孤立奇点的类型.本文论述的方法只是提供参考,在实际应用中应该根据孤立奇点类型的特点运用相应的方法,使得对孤立奇点的判定更加方便. 2.孤立奇点的类型及判断方法 2.1孤立奇点的定义 定义1 如果函数)(z f 在点a 的某一去心领域R a z a K <-<-||0:}{(即除去圆心a 的某圆)内解析,点a 是)(z f 的奇点,则称a 为)(z f 的一个孤立奇点.孤立奇点分有限孤立奇点和无穷孤立奇点. 2.2 孤立奇点的类型和判断 以解析函数的洛朗展式为工具,我们能够在孤立奇点的去心领域内充分研究一个解析函数的性质.如a 为函数)(z f 的孤立奇点,则)(z f 的某去心领域{}K a -内可以展成洛朗级数 )(z f = ∑ ∞ -∞ =-n n n a z c ) (. 我们称非负幂部分∑∞ =-0 )(n n n a z c 为)(z f 在点a 的正则部分,而称负幂∑∞ =---1 )(n n n a z c 为)(z f 在点a 的主要部分.实际上非负幂部分表示在点a 的领域:||K z a R -<内的解析函数,故函数)(z f 在点a 的奇异性质完全体现在洛朗级数的负幂部分上. 定义2如果)(z f 在点a 的主要部分为零,则称a 为)(z f 的可去奇点; 如果)(z f 在点a 的主要部分为有限多项,设为

广东省广州市南武中学高中数学必修一导学案121函数的概念(2)

一、三维目标: 知识与技能:进一步体会函数概念;了解构成函数的要素;能够正确使用“区间”的符号表 示某些集合。 过程与方法:了解构成函数的三要素,会求一些简单函数的定义域和值域。掌握判别两个函 数是否相等的方法。 情感态度与价值观:激发学习兴趣,培养审美情趣。 二、学习重、难点: 重点:用区间符号正确表示数的集合,求简单函数定义域和值域及函数相等的判断。 难点:求函数定义域和值域。 三、学法指导:阅读教材, 熟练使用“区间”的符号表示函数的定义域和值域。 四、知识链接: 1. 写出函数的定义: 注: (1)对应法则f(x)是一个函数符号,表示为“y 是x 的函数”,绝对不能理解为“y 等于f 与x 的乘积”,在不同的函数中,f 的具体含义不一样;y=f(x)不一定是解析式,在不少问题中,对应法则f 可能不便使用或不能使用解析式,这时就必须采用其它方式,如数表和图象,在研究函数时,除用符号f(x)表示外,还常用g(x)、F(x)、G(x)等符号来表示;f(a)是常量,f(x)是变量,f(a)是函数f(x)中当自变量x=a 时的函数值。 (2)定义域是自变量x 的取值范围; (3)值域是全体函数值所组成的集合,在大多数情况下,一旦定义域和对应法则确定,函数的值域也随之确定。 2.集合的表示方法有: 。 五、学习过程: A 问题1. 区间的概念 在数轴上,这些区间都可以用一条以a 和b 为端点的线段来表示,在图中,用 表示包括在区间内的端点,用 表示不包括在区间内的端点; 实数集R 也可以用区间表示为 ,“∞”读作“ ”,“-∞”读作“ ”,“+∞”读作“ ”,还可以把满足x ≥a, x>a, x ≤b, x

相关文档
最新文档