傅里叶变换的性质以及光学中一些函数的F.T.变换式

Ch2:二维线性系统分析 一:二维傅立叶分析
傅立叶变换 傅立叶变换的性质和定理 可分离的函数 圆对称函数 Fourier-Bessel变换 一些常用的函数(光学模型(元件))的数学 公式表达和傅立叶变换式

Joseph Fourier
约瑟夫·傅立叶 (1768~1830) 法国数学家

Lord Kelvin on Fourier’s theorem
Fourier’s theorem is not only one of the most beautiful results of modern analysis, but it may be said to furnish an indispensable instrument in the treatment of nearly every recondite question in modern physics. Lord Kelvin

The Fourier Transform and its Inverse
F (ω) =
?∞



f (t ) exp(?iω t ) dt
1 f (t) = 2π
?∞

F(ω) exp(iω t) dω

Fourier decomposing functions
we write a square wave as a sum of sine waves.
1 0.8 0.6 0.4 0.2
0级频透
1 2 3 4
1
0.8
0.6
0.4
0,±1
1 2 3 4
0.2
1
0.8
0.6
0.4
0.2
0,±1, ±2
1 2 3 4
0.6
0.4
0.2
1 -0.2
2
3
4
-0.4
±1, ±2
-0.6

we’ve said about Fourier transforms between the t and ω domains also applies to the x and k domains.
time→ space
If f(x) is a function of position,
F (k ) = ∫

?∞
f ( x) exp(?ikx) dx
F {f(x)} =F(k)
We refer to k as the “spatial frequency.”
% 现代光学中:波前指的就是与接受平面打交道的光场 U ( x, y ) 现代光学
1D →2D

1.1: 二维Fourier 变换
定义: 正Fourier变换

F{g} = ∫ ∫ g ( x, y ) exp[?i 2π ( f x x + f y y )]dxdy = G ( f x , f y )
?∞
反Fourier变换
F {G} = ∫ ∫ G ( f x , f y ) exp[i 2π ( f x x + f y y )]df x df y = g ( x, y )
?1 ?∞


二维Fourier 变换存在条件:
g(x,y)必须在整个无限xy平面绝对可积 在任一有限矩形区域里, g必须只有有限个间断点和有 限个极大和极小点 g(x,y)必须没有无穷大间断点
点光源、点像
?
δ (x, y) ?

The delta function(脉冲函数)
?∞ if t = 0 δ (t ) ≡ ? ? 0 if t ≠ 0
δ(t)
t
It’s best to think of the delta function as the limit of a series of peaked continuous functions.
δ ( t ) = lim N e
N → ∞
? N 2π t 2
, lim N r e c t ( N t ) ,
N → ∞
s i n (π N t ) lim N s in c ( N t ) = lim N N → ∞ N → ∞ π Nt

光学中的点源
δ (x, y) = lim N e
N →∞ 2 N →∞
2 ? N 2π ( x2 + y2 )
, lim N rect(Nx)rect(Ny),
N →∞
2
lim N sin c(Nx)sin c(Ny), lim J1(2π N x + y )
2 2
N
2
N →∞
π
circ(N x + y ),
2 2
N →∞
lim N
x +y
2
2

广义Fourier 变换:
函数不严格满足存在条件,但是函数可定义另一函数 所组成的序列的极限,序列中的函数有F.T.;对组成序 列的每一个函数进行变换,就产生一个相应的变换序 列,该新序列的极限即为原函数的广义F.T.
g ( x, y ) = lim f N ( x, y ) ?{ f N ( x, y )} = FN ( f x , f y )
N →∞ N →∞
lim FN ( f x , f y ) = ?{ g ( x, y )} = G ( f x , f y )

?{δ ( x, y )}
lim ?{ N exp(?N π (x + y ))} = limexp(?
2 2 2 2 N→∞
π ( f x2 + f y 2 )
2
N→∞
N fy ? ? 1 fx 1 2 lim ?{ N rect(Nx)rect(Ny)} = lim ?N ? sin c( )N ? sin c( )? =1 N→∞ N→∞ N N N ? ? N fy ? ? 1 fx 1 lim ?{ N sin c(Nx)sin c(Ny)} = lim ?N ? rect( )N ? rect( )? =1 N→∞ N→∞ N N N ? ? N
2
) =1

δ?function Properties 1. 筛选性(定义性质)
∞ ?∞
∫ g ( x)δ ( x ? x ) dx = g ( x )
0 0
δ ( x ? x0 ) = 0, x ≠ x0
2. 尺度缩放性质
δ (ax) =
3. 偶函数
x 1 1 δ ( x), δ (ax ? x0 ) = δ ( x ? 0 ) a a a
δ ( x ) = δ ( ? x ) , δ ( ? x + x 0 ) = δ ( x ? x0 )

3. 乘积性质
g ( x)δ ( x ? x0 ) = g ( x0 )δ ( x ? x0 ); xδ ( x ? x0 ) = x0δ ( x ? x0 )
4. 积分性质

?∞
∫ Aδ ( x ? x ) dx = A
0

?∞
∫ δ ( x ? x ) dx = 1
0
5. 卷积性质
g ( x) ? δ ( x ? x0 ) = g ( x ? x0 )

卷积定义

f ( x) ? h( x) =
?∞
∫ f (a)h(x ? a)da
反转,平移,相乘,积分

卷积在光学中的应用
卷积表示一输出,在光学上就表示成像系统的像分 布 ;对于线性空间不变光学系统,其输出的信息可 表示为输入信息g与系统脉冲响应函数h(系统对点 源的响应)的卷积 的响应

x0处点源:I 0 Δξ 对应的像强度分布P( xi ? x0 )
输出像:I i ( xi ) = I 0 Δξ P ( xi ) + I 0 Δξ P( xi ? ξ 1 ) +K
Δξ → 0:I i ( xi ) = ∫ I 0 (ξ ) P( xi ? ξ )d ξ
二维:g(x, y)表示物(输入信息); h(x,y)表示系统对点源的响应(点扩散函数、脉冲响应函数)
输出=g( x, y ) ? h(x,y)

卷积的性质
1. 符合交换律
g ( x,y ) ? h( x, y ) = h( x, y ) ? g ( x,y )
2.函数平移不变性
f ( x, y ) ? h ( x, y ) = g ( x, y ) ? f ( x ? x0 , y ? y0 ) ? h( x, y ) = g ( x ? x0 , y ? y0 )

3. 线性运算
(af + bh) ? g = af ? g + bh ? g
4.δ函数的卷积
f ( x, y )* δ ( x, y ) = f ( x, y )
δ 函数与任何函数卷积仅重新产生该函数严格再生 5. 光滑作用
脉冲响应函数h是 对光学系统性能的 定量评价。若h为 δ函数(理想线性 系统:无像差、无 点扩散)。h越宽 成像质量越差

相关运算
g ? h = ∫∫ g (ξ ,η )h ( x + ξ , y + η ) d ξ dη
?
= ∫∫ g (ξ ′ ? x ,η ′ ? y )h (ξ ′,η ′) d ξ ′dη ′
?
≠ h? g
平移、共轭、相乘、积分 h = g自相关 若实函数,自相关的几何意义就是重叠面积

常用函数傅里叶变换

附录A拉普拉斯变换及反变换 419

2 420

3.用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设F(S)是S的有理真分式 Ff ) _ B(S) b m S m?b m」S m-…?bιS ?b o A(S) a n s n+a n∕S n'+ …+a1s + a0 式中系数a o,a i,...,a n」,a n,b°,b1,…b m」,b m都是实常数;m,n是正整数。按代数定理可 将F(S)展开为部分分式。分以下两种情况讨论。 ①A(S)=G无重根 这时,F(S)可展开为n个简单的部分分式之和的形式。 C l C2 S-S S-S n n C C i 4 S -' S i (F-1) 式中,S1,S2,…,S n是特征方程A(S) = G的根。C i为待定常数,称为按下式计算:F(S)在S i处的留数,可 式中, 式中, C i= Iim (s _ S i)F(S) S T i C _ B(S) C i A(S) A(S)为A(S)对S的一阶导数。根据拉氏变换的性质,从式( -n C l L*(S)1=L?J∣Σ旦 S — $ 一 f(t)二 C i n -S i t = C i e i i吕 (F-2) (F-3) F-1)可求得原函数 (F-4) A(S)= G有重根 设A(S)=G有r重根S1 , F(S)可写为 B(S) F S-(S-S 1) r(S-S r J (S-S n) C i C r + C r4 + …+C1 + C r 出十… (S-S1)r(S-S1)r4 (S-Sj S-S r?1 -- C i ?.? . C n S — S S-S n S i为F(S)的r重根,S r十,…,S n为F(S)的n-r个单根; 421

希尔伯特变换与傅立叶变换

在数学与信号处理的领域中,一个实数值函数的希尔伯特转换(Hilbert transform)——在此标示为——是将信号与做卷积,以得到。因此,希尔伯特转换结果可以被解读为输入是的线性非时变系统(linear time invariant system)的输出,而此一系统的脉冲响应为。这是一项有用的数学, 用在描述一个以实数值载波做调制的信号之复数包络(complex envelope),出现在通讯理论(应用方面的详述请见下文。) 希尔伯特转换是以著名数学家大卫·希尔伯特(David Hilbert)来命名。 希尔伯特转换定义如下: 其中 并考虑此积分为柯西主值(Cauchy principal value),其避免掉在以及 等处的奇点。 另外要指出的是: 若,则可被定义,且属于;其中。频率响应 希尔伯特转换之频率响应由傅立叶变换给出: , 其中 ?是傅立叶变换, ?i (有时写作j )是虚数单位, ?是角频率,以及

? 即为符号函数。 既然: , 希尔伯特转换会将负频率成分偏移+90°,而正频率成分偏移?90°。 反(逆)希尔伯特转换 我们也注意到:。因此将上面方程式乘上,可得到: 从中,可以看出反(逆)希尔伯特转换 傅里叶变换(Fourier变换)是一种线性的积分变换。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。 傅里叶变换在物理学、声学、光学、结构动力学、量子力学、数论、组合数学、概率论、统计学、信号处理、密码学、海洋学、通讯、金融等领域都有着广泛的应用。例如在信号处理中,傅里叶变换的典型用途是将信号分解成振幅分量和频率分量。 ?傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的[1]。 ?傅里叶变换属于谐波分析。 ?傅里叶变换的逆变换容易求出,而且形式与正变换非常类似。 ?正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解。在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取。

常用函数傅里叶变换

信号与系统的基本思想:把复杂的信号用简单的信号表示,再进行研究。 怎么样来分解信号?任何信号可以用Delta 函数的移位加权和表示。只有系统是线性时不变系统,才可以用单位冲激函数处理,主要讨论各个单位冲激函数移位加权的响应的叠加能得到总的响应。 线性系统(齐次性,叠加定理) 时不变系统 对一个系统输入单位冲激函数,得到的响应为h(t).表征线性时不变系统的非常重要的东西,只要知道了系统对单位冲击函数的响应,就知道了它对任何信号的响应,因为任何信号都可以表示为单位冲激函数的移位加权和。 例如:d(t)__h(t) 那么a*d(t-t0)__a*h(t-t0) -()= ()(t-)d f t f τδττ∝∝? 的响应为-y()=()(-)t f h t d τττ∝ ∝ ? 记为y(t)=f(t)*h(t),称为f(t)和h(t)的卷积 总结为两点:对于现行时不变系统,任何信号可以用单位冲激信号的移位加权和表示,任何信号的响应可以用输入函数和单位冲激函数响应的卷积来表示 连续时间信号和系统的频域分析 时域分析的重点是把信号分解为单位冲激函数的移位加权和,只讨论系统对单位冲激函数的响应。而频域的分析是把信号分解为各种不同频率的正弦函数的加权和,只讨论系统对sinwt 的响应。都是把信号分解为大量单一信号的组合。

周期函数可以展开为傅里叶级数,将矩形脉冲展开成傅里叶级数,得到傅里叶级数的系数 n A sin F = T x x τ 其中0=2 nw x τ。 取样函数sin ()=x S a x 。产生一种震荡,0点的值最大,然后渐渐衰减直至0 第一:对于傅里叶级数的系数,n 是离散的,所以频谱也是离散状的每条谱线都出现在基波频率的整数倍上,其包络是取样函数。 第二:谱线的间距是0w .。零点是0=2nw x τ,02w =T π是谱的基波频率。如果τ不变,T 增大,那么0w 减小,当T 非常大的时候,0w 非常小,谱线近似连续,越来越密,幅度越来越小。 傅里叶变换:非周期函数 正变换:--F jw)= ()iwt f t e dt ∝ ∝?( 反变换:-1()=()2jnwt f t F jw e dw π ∝∝ ? 常用函数的傅里叶变换(典型非周期信号的频谱)

傅里叶变换的性质

§3–4傅里叶变换的性质 设f(t) ←→F(jω),f1(t) ←→F1(jω),f2(t) ←→F2(jω);α、α1、α2为实数, 则有如下性质: 一、线性:α1 f1(t) + α2 f2(t)←→α1F1(jω) + α2 F2(jω) 二、对称性:F(jt)←→2πf(-ω) 证明: 将上式中的t换为ω,将原有的ω换为t, 或: , 即:F(jt)←→2π f(-ω) P.67例3-3:已知 , 再令 ==> ←→2πG(-ω) 三、尺度变换: (α≠0的实数) 可见信号持续时间与占有频带成反比(此性质易由积分变量代换证得)。 推论(折叠性):f(-t) ←→F(-jω) 四、时移性: (此性质易由傅氏变换的定义证得) 推论(同时具有尺度变换与时移): P.69-70例3-4请大家浏览。

五、频移性:

(此性质易由傅氏变换的定义证得) π.70例3-5请大家浏览。 频移性的重要应用——调制定理: 欧拉公式 ? 例如门信号的调制:

显然,当ω0足够大时,就可使原频谱密度函数被向左、右复制时几乎不失真。 六、时域卷积: f1(t)* f2(t) ←→F1(jω)F2(jω) 证明: 时域卷积的重要应用——求零状态响应的频域法: 时域:yf(t) = f(t)* h(t) ==> 频域:Y f(jω) = F(jω)H(jω) 七、频域卷积:f1(t). f2(t) ←→1/2π[F1(jω)*F2(jω)] 八、时域微分性:df(t)/dt←→ jωF(jω) (其证明请自学P.72-73有关内容) 推论: 条件: 例如:d(t) ←→1 ==>δ'(t) ←→jω 九、时域积分性:

实验3 傅里叶变换及其性质

实验3 傅里叶变换及其性质 1. 实验目的 学会运用MATLAB 求连续时间信号的傅里叶(Fourier )变换;学会运用MATLAB 求连续时间信号的频谱图;学会运用MATLAB 分析连续时间信号的傅里叶变换的性质。 2. 实验原理及实例分析 傅里叶变换的实现 信号()f t 的傅里叶变换定义为: ()[()]()j t F F f t f t e dt ωω∞ --∞==?, 傅里叶反变换定义为:11()[()]()2j t f t F F f e d ωωωωπ ∞--∞==?。 信号的傅里叶变换主要包括MATLAB 符号运算和MATLAB 数值分析两种方 法,下面分别加以探讨。同时,学习连续时间信号的频谱图。 MATLAB 符号运算求解法 MATLAB 符号数学工具箱提供了直接求解傅里叶变换与傅里叶反变换的函 数fourier( )和ifourier( )。Fourier 变换的语句格式分为三种。 (1) F=fourier(f):它是符号函数f 的Fourier 变换,默认返回是关于ω的函数。 (2) F=fourier(f,v):它返回函数F 是关于符号对象v 的函数,而不是默认的ω, 即()()jvt F v f t e dt ∞ --∞=?。 (3) F=fourier(f,u,v):是对关于u 的函数f 进行变换,返回函数F 是关于v 的 函数,即()()jvu F v f t e du ∞ --∞=?。 傅里叶反变换的语句格式也分为三种。 (1) f=ifourier(F):它是符号函数F 的Fourier 反变换,独立变量默认为ω,默 认返回是关于x 的函数。 (2) f=ifourier(F,u):它返回函数f 是u 的函数,而不是默认的x 。 (3) f=ifourier(F,u,v):是对关于v 的函数F 进行反变换,返回关于u 的函数f 。 值得注意的是,函数fourier( )和ifourier( )都是接受由sym 函数所定义的符号 变量或者符号表达式。

傅里叶变换的基本性质.

傅里叶变换的基本性质(一) 傅里叶变换建立了时间函数和频谱函数之间转换关系。在实际信号分析中,经常 需要对信号的时域和频域之间的对应关系及转换规律有一个清楚而深入的理解。 因此有必要讨论傅里叶变换的基本性质,并说明其应用。 一、线性 傅里叶变换是一种线性运算。若-'1 ' 一 1 一八 餐丄I 则 嗽(0 +罰⑷ G 迅(j 由)+ 碍(Jtu ) (3-55) 其中a 和b 均为常数,它的证明只需根据傅里叶变换的定义即可得出。 例3-6利用傅里叶变换的线性性质求单位阶跃信号的频谱函数 ,; 「" 由式(3-55)得 =侔7(/)}=-屛1} + - (sgn( /)}=丄 K 刼罠珂 + 丄用2 二足飢也)+ — 2 2 2 2 JtD J QJ 、对称性 (3-56) 则」 将上式中变量少换为x ,积分结果不变,即 证明因为 fC )二丄「EQ 讣叫田 N J 2^(i) = f F(J 噪叫 a 2^(-1)=「F(j 嫌小咕 J —TO

」一 再将t用夕代之,上述关系依然成立,即 2戒(―型)-[ Jr-CD 最后再将x用t代替,则得—Lm—? ” 所以,fl- —■-'■ ■■* 证毕 若八」是一个偶函数,即-'二丿■,相应有-,:"J,则式(3-56) 尺〔血—2对'(创)C3-57) 成为 可见,傅里叶变换之间存在着对称关系,即信号波形与信号频谱函数的波形有着互相置换的关系,其幅度之比为常数二丁。式中的-兰表示频谱函数坐标轴必须正负对调。例如:/(0 =郭)一S)=l FS)= 1一2才㈣=2斶眄 例3-7若信号;二的傅里叶变换为 < r 72 G3> r <2 试求。 解将中的"换成t,并考虑;-";1为兰的实函数,有 M |r|G 戈 0 |t|>r/2 该信号的傅里叶变换由式(3-54)可知为 頁恥)卜2氓旳(号)

常用傅里叶变换表

时域信号 弧频率表示的 傅里叶变换 注释 1 | 线性 2时域平移 3频域平移, 变换2的频域对应 \ 4 如果值较大,则会收缩 到原点附近,而会扩 散并变得扁平. 当| a | 趋向无 穷时,成为Delta函数。 5 傅里叶变换的二元性性质。通过 交换时域变量和频域变量 得到. 6 / 傅里叶变换的微分性质 7变换6的频域对应

8 表示和的卷积—这 就是卷积定理 - 9 矩形脉冲和归一化的sinc函数 10变换10的频域对应。矩形函数是理想的低通滤波器,sinc函数是这类滤波器对反因果冲击的响应。 11- tri是三角形函数 12变换12的频域对应 13高斯函数exp( ? αt2) 的傅里叶变换是他本身. 只有当Re(α) > 0时,这是可积的。 ¥14 15 16》 a>0

18δ(ω) 代表狄拉克δ函数分布. 这个变换展示了狄拉克δ函数的重要性:该函数是常函数的傅立叶变换 【 19 变换23的频域对应20由变换3和24得到. 21` 由变换1和25得到,应用了欧拉公 式: cos(at) = (e iat + e?iat) / 2. 22由变换1和25得到 23这里, n是一个自然数. δ(n)(ω) 是狄拉克δ函数分布的n阶微分。这个变换是根据变换7和24得到的。将此变换与1结合使用,我们可以变换所有多项式。 / 24此处sgn(ω)为符号函数;注意此变换与变换7和24是一致的. 25变换29的推广. 17变换本身就是一个公式

26【 变换29的频域对应. 27此处u(t)是单位阶跃函数; 此变换根据变换1和31得到. 28u(t)是单位阶跃函数,且a > 0. 34狄拉克梳状函数——有助于解释或理解从连续到离散时间的转变.

傅里叶变换公式

第2章信号分析 本章提要 信号分类 周期信号分析--傅里叶级数非周期信号分析-- 傅里叶变换脉冲函数及其性质 信号:反映研究对象状态和运动特征的物理量信号分析:从信号中提取有用信息的方法和手段 § 2—1 信号的分类 两大类:确定性信号,非确定性信号确定性信号:给定条件下取值是确定的。 进一步分为:周期信号, 非周期信号。

x(t) Acos J% ° m 非确定性信号 (随机信号): 给定条件下 取值是不确定的 按取值情况分类:模拟信号,离散信 号 数字信号:属于离散信号,幅值离散, 并用二进制表示。 信号描述方法 时域描述 如简谐信号 简谐信号及其三个要素 质量—弹簧系 统的力学模型

频域描述 以信号的频率结构来描述信号的方法:将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一 个频率成分,考察信号含有那些频率的谐波,以及各 谐波的幅值和相角。 vpage break〉 § 2-2 周期信号与离散频谱 一、周期信号傅里叶级数的三角函数 形式 周期信号时域表达式 T:周期。注意n的取值:周期信号“无始无终” # 傅里叶级数的三角函数展开式 x(t) a0(a n cosn 0t b n sinn 0t) n 1

(n =1,2, 3 ,…) 傅立叶系数: a 。 1 T T 2 T x(t)dt 2 T 2 2 o tdt a n T T x(t)cos n 2 T 2 2 b n T T x(t)sin n o tdt 2 式中T --周期;0--基频,o =2 /T o 三角函数展开式的另一种形式: 次谐波的幅值 次谐波的频率 信号的均值,直流分量 N 次谐波的相角

傅里叶变换的基本性质 (2)

3-5 傅里叶变换的基本性质 傅里叶变换建立了时间函数和频谱函数之间转换关系。在实际信号分析中,经常需 要对信号的时域和频域之间的对应关系及转换规律有一个清楚而深入的理解。因此有必要讨论傅里叶变换的基本性质,并说明其应用。 一、 线性 傅里叶变换是一种线性运算。若 则 其中a 和b 均为常数,它的证明只需根据傅里叶变换的定义即可得出。 例3-6 利用傅里叶变换的线性性质求单位阶跃信号的频谱函数)(ωj F 。 解 因 由式(3-55)得 二、对称性 若 证明 因为 有 将上式中变量ω换为x ,积分结果不变,即 再将t 用ω代之,上述关系依然成立,即 最后再将x 用t 代替,则得 所以 证毕 若)(t f 是一个偶函数,即)()(t f t f =-,相应有)()(ωωf f =-,则式(3-56)成为 可见,傅里叶变换之间存在着对称关系,即信号波形与信号频谱函数的波形有着互相置换的关系,其幅度之比为常数π2。式中的ω-表示频谱函数坐标轴必须正负对调。例如

例3-7 若信号)(t f 的傅里叶变换为 试求)(t f 。 解 将)(ωj F 中的ω换成t ,并考虑)(ωj F 为ω的实函数,有 该信号的傅里叶变换由式(3-54)可知为 根据对称性 故 再将)(ω-f 中的ω-换成t ,则得 )(t f 为抽样函数,其波形和频谱如图3-20所示。 三、折叠性 若 则 四、尺度变换性 观看动画 若 则 证明 因a >0,由 令at x =,则adt dx =,代入前式,可得 函数)(at f 表示)(t f 沿时间轴压缩(或时间尺度扩展) a 倍,而 ) (a j F ω 则表示 )(ωj F 沿频率轴扩展(或频率尺度压缩) a 倍。 该性质反映了信号的持续时间与其占有频带成反比,信号持续时间压缩的倍数恰好等于占有频带的展宽倍数,反之亦然。 例3-8 已知 ,求频谱函数)(ωj F 。 解 前面已讨论了

傅里叶变换和拉普拉斯变换的性质及应用

1.前言 1.1背景 利用变换可简化运算,比如对数变换,极坐标变换等。类似的,变换也存在于工程,技术领域,它就是积分变换。积分变换的使用,可以 使求解微分方程的过程得到简化,比如乘积可以转化为卷积。什么是积 分变换呢?即为利用含参变量积分,把一个属于A函数类的函数转化属 于B函数类的一个函数。傅里叶变换和拉普拉斯变换是两种重要积分变 换。分析信号的一种方法是傅立叶变换,傅里叶变换能够分析信号的成 分,也能够利用成分合成信号。可以当做信号的成分的波形有很多,例 如锯齿波,正弦波,方波等等。傅立叶变换是利用正弦波来作为信号的 成分。Pierre Simon Laplace 拉普拉斯变换最早由法国数学家天文学家 (拉普拉斯)(1749-1827)在他的与概率论相关科学研究中引入,在他 的一些基本的关于拉普拉斯变换的结果写在他的著名作品《概率分析理 论》之中。即使在19世纪初,拉普拉斯变换已经发现,但是关于拉普拉 斯变换的相关研究却一直没什么太大进展,直至一个英国数学家,物理 学家,同时也是一位电气工程师的Oliver Heaviside奥利弗·亥维赛 (1850-1925)在电学相关问题之中引入了算子运算,而且得到了不少 方法与结果,对于解决现实问题很有好处,这才引起了数学家对算子理 论的严格化的兴趣。之后才创立了现代算子理论。算子理论最初的理论 依据就是拉普拉斯变换的相关理论,拉普拉斯变换相关理论的继续发展 也是得益于算理理论的更进一步发展。这篇文章就是针对傅里叶变换和 拉普拉斯变换的相关定义,相关性质,以及相关应用做一下简要讨论, 并且分析傅里叶变换和拉普拉斯变换的区别与联系。 1.2预备知识 定理1.2.1(傅里叶积分定理) 若在(-∞,+∞)上,函数满足一下条件:

二维傅里叶变换变换、性质和频域滤波

实验三二维傅里叶变换变换、性质和频域滤波 一、实验目的 1、了解图像傅里叶变换的物理意义; 2、掌握频域滤波原理; 3、熟悉傅里叶变换的基本性质; 4、熟练掌握FFT的变换方法及应用; 5、通过实验了解二维频谱的分布特点; 二、实验平台 计算机和Matlab语言环境 三、实验内容 1、数字图像二维傅里叶变换及其对数显示 2、频域滤波器处理图像 3、二维傅里叶变换的性质(比例变换性、旋转、可分性) 四、实验步骤 1、二维傅里叶变换的性质 1> 二维傅里叶变换 构造一幅图像,在64×64的黑色背景中产生一个5个白条纹,对其进行傅里叶变换 f = zeros(64,64); for j=1:5 f(:,j*10:j*10+1)=1; end F=fft2(f);Fc=fftshift(F); subplot(1,2,1),imshow(f,[ ]);title('原始图像'); subplot(1,2,2),imshow(abs(Fc),[ ]);title('图像傅里叶变换'); 2> 比例变换性 将图像扩大到原来的2倍后对其进行傅里叶变换,观察图像与原始图像的差异、频谱的差异 fresize=imresize(f,2); fresize=fresize(31:94,31:94);

Fresize=fft2(fresize);Fc1=fftshift(Fresize); subplot(1,2,1),imshow(fresize,[ ]);title('图像扩大2倍'); subplot(1,2,2),imshow(abs(Fc1),[ ]);title('图像扩大2倍后傅里叶'); 3> 旋转 将图像旋转45度后对其进行傅里叶变换,观察图像与原始图像的差异、频谱的差异 frotate=imrotate(f,45);%图像旋转 Frotate=fft2(frotate);Fc2=fftshift(Frotate);%图像旋转后做傅里叶变换subplot(1,2,1),imshow(frotate,[ ]);title('图像旋转'); subplot(1,2,2),imshow(abs(Fc2),[ ]);title('图像旋转后傅里叶'); 4> 可分性 首先沿着图像的每一行计算一维变换,然后沿着中间结果的每一列计算一维变换,以此计算二维傅里叶 for i=1:64 fft_row(i,:)=fft(f(i,:));%沿着图像的每一行计算一维变换 end for j=1:64 fft_col(:,j)=fft(fft_row(:,j));%沿着中间结果的每一列计算一维变换 end Fc3=fftshift(fft_col); figure,imshow(abs(Fc3),[ ]);title('两次fft');

常用函数傅里叶变换

常用函数傅里叶变换 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

附录A 拉普拉斯变换及反变换1.表A-1 拉氏变换的基本性质

2.表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在 i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='=)() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数

常用傅里叶变换表

弧频率表示的时域信号注释傅里叶变换 线性1 时域平移2 频域平移3 , 变换2的频域对应 会收缩值较大,则如果 4 会扩而到原点附近,a趋向 | | . 散并变得扁平当无穷时,成为函数。 Delta 通过傅里叶变换的二元性性质。

5 交换时域变量和频域变量 . 得到 6 傅里叶变换的微分性质 变换7 6的频域对应 表示和的卷积—这 8就卷积定 9 矩形脉冲和归一化的sinc函数 变换10的频域对应。矩形函数是理

想的低通滤波器,sinc函数是这类10 滤波器对反因果冲击的响应。 tri是三角形函数 11 12 变换12的频域对应 2t) ?α的傅里叶变 exp( 高斯函数 换是他本身. 只有当 Re(α) 13 > 0时,这是可积的。 14 15

a>0 16 17 变换本身就是一个公式 δ(ω) 代表狄拉克δ函数分布. 这个变换展示了狄拉克18 δ函数的重要性:该函数是常函数的傅立叶变换 19 变换23的频域对应 20 由变换3和24得到. 由变换1和25得到,应用了欧拉公 21 iat?iat eeat) / 2. 式: cos() = ( +

22 由变换1和25得到 n)(n(ω) . δ这里, 自然数是一个n阶微分。函数分布的是狄拉克δ 这个变换是根据变换23 7和24得到的。将此变换与1结合使用,我们可以变换所有多项式。 此处sgn(ω)为符号函数;注意此变 24 换与变换7和24是一致的. 25 变换29的推广. 26 变换29的频域对应. ut)是单位阶跃函数此处(; 此变换 27

根据变换1和31得到. uta > 0. ,且()是单位阶跃函数28 狄拉克梳状函数——有助于解释或34 理解从连续到离散时间的转变.

傅里叶变换性质证明

2.6傅里叶变换的性质 2.6.1线性 若信号「和J的傅里叶变换分别为「"和F』-, 则对于任意的常数a和b,有 将其推广,若- - - 「出■,则 其中匚为常数,n为正整数。 由傅里叶变换的定义式很容易证明线性性质. 显然傅里叶变换也是一种线性运算,在第一章我们已经知道了,线性有两个含义:均匀性和叠加性。均匀性表明,若信号乘以常数a,则信号的傅里叶变换也乘以相同的常数a,即卩 叠加性表明,几个信号之和的傅里叶变换等于各个信号的傅里叶变换之和 砒心?]的?卜伽)1 2.6.2反褶与共轭性 设f(t) 的傅里叶变换为F面我们来讨论信号反褶、共轭以及既反褶又共轭后,新信号的傅里叶变换

(1)反褶

f(-t)是f(t)的反褶,其傅里叶变换为 綁new九 (2) 共轭 =匸施)时论匸加門(幼 因为曲是实数,所以(dtr=dt 彳 寻共觇提到积分之外根据傅里 叶变换的定义 (3) 既反褶又共轭 町(卯訂:厂(号叫fe 本性质还可利用前两条性质来证明: 设g(t)=f(-t) ,h(t)=g*(t),则 *曾筍%芳遛凸■_苗苫 在上面三条性质的证明中,并没有特别指明f(t)是实函数还是复函数,因此,无论f(t)为实信号还是复信号,其傅里叶变换都满足下面三条性质

FLTH)] = F? 町甘D FLH 心FH) 2.6.3奇偶虚实性 已知f(t)的傅里叶变换为。在一般情况下,是复函数,因此可以把它表示 成模与相 位或者实部与虚部两部分,即 下面根据f(t)的虚实性来讨论F()的虚实性。 (1) f(t) 为实函数 对比式(2-33)与(2-34),由FT 的唯一性可得 尺(耐=][/(f)cosaf 址 (1.1)f(t)是实的偶函数,即f(t)=f(-t) X()的积分项是奇函数,而奇函数在对称区间内的积分为零,故 这时X( )=0,于是 可见,若f(t)是实偶函数,则F()也是实偶函数,即 匚】:’匚° :左边反褶,右边共轭 (1.2)f(t)是实的奇函数,即-f(t)=f(-t) R()的积分项是奇函数,而奇函数在对称区间内的积分为零,故 这时R( )=0,于是 FQ)=卩(询片 眄' =盹)+歼询) 根据定义,上式还可以写成 (2-33) 呎弊)=arc tan [制 (曲)=2[

傅立叶变换

傅里叶变换 ●傅里叶变换 ?傅里叶变换及其反变换 ?傅里叶变换的性质 ?快速傅里叶变换(FFT)

傅里叶变换 ?可以利用频率成分和图像外表之间的对应关系。一些在空间域表述困难的增强任务,在频率域中变得非常普通 ?滤波在频率域更为直观,它可以解释空间域滤波的某些性质 ?可以在频率域指定滤波器,做反变换,然后在空间域使用结果滤波器作为空间域滤波器的指导 ?一旦通过频率域试验选择了空间滤波,通常实施都在空间域进行

● 一维连续傅里叶变换及反变换 ?单变量连续函数f(x)的傅里叶变换F(u)定义为 其中,?给定F(u),通过傅里叶反变换可以得到f(x) ?∞ ∞-=f u F )(1 -=j ?∞ ∞-=x f )(

● 二维连续傅里叶变换及反变换 ?二维连续函数f(x,y)的傅里叶变换F(u,v)定义为 ?给定F(u,v),通过傅里叶反变换可以得到f(x,y) () dy dx e y x f v u F vy ux j ??∞∞-∞∞-+-=π2),(),(() dv du e v u F y x f vy ux j ??∞∞-∞∞-+=π2),(),(傅里叶变换

● 一维离散傅里叶变换(DFT)及反变换?单变量离散函数f(x)(x=0,1,2,..,M-1)的傅里叶变换F(u)定义为 u=0,1,2,…,M-1?给定F(u),通过傅里叶反变换可以得到f(x) x=0,1,2,…,M-1∑-==1 1 )(M x f M u F ∑-==1 0)(M u x f

● 一维离散傅里叶变换及反变换 ?从欧拉公式()(∑-=-=1 2cos(1 M x x f M θcos e j =()∑-=-=1 )2(1)(M x ux j e x f M u F π()(∑-==1 02cos 1 M x x f M π

角函数性和e指数形式的傅里叶变换

三角级数、傅里叶级数 对于所有在以2pi为周期的函数f(x),可以用一组如下的三角函数系将其展开: 1,cosx,sinx,cox2x,sin2x,……,coxnx,sinnx,…… 显然,这组基在[-pi,pi]上是正交的,因此可以在周期区间求积分获得函数f(x)在以三角函数系为基的展开系数,或者说以三角函数系为坐标的投影值a0,an,bn…… 一个一般的函数f(x)可以表示为奇函数和偶函数的叠加,因此它的展开既含有正弦项又含有余弦项,但偶函数的展开仅含有常数项a0和正弦项,相似的,奇函数展开仅含有余弦项。 ? 傅里叶级数的复数形式 根据欧拉公式e^jx=cosx+jsinx,任意正弦、余弦项可以用复指表示,即cosx=(e^jx+e^-jx)/2,sinx=(e^jx-e^-jx)/2j。所以,任何一个周期函数f(x)既可以在三角函数系上表出也可以在复指数系1, e^jx,……,e^jnx上表出,在不同的坐标系之间,存在映射关系。但重要的是,由于积分变换的核函数形式发生改变,其物理意义也将有所变化。由于复数的引入,每一个复指数e^jnx相对于三角函数系都变为一个二维量,其物理含义是一条三维螺旋线。其道理非常简单,一个实参a表示数轴上的一点,而一个复数a+bj表示二维坐标上的一点,所以cosx,sinx分别表示

一条二维曲线,而e^jx=cosx+jsinx是一条空间三维曲线。 ? ? 傅里叶变换 周期信号用傅里叶级数表示,非周期信号可以借助傅里叶变换进行.对实信号做傅立叶变换时,如果按指数e^jωt为核来求,我们将得到双边频谱。以角频率为Ω的余弦信号为例,它有具有位于±Ω两处的,幅度各为,相角为零的频率特性。实际上,COSΩt就是e^jΩt 与e^j-Ωt两条螺旋线的叠加,他们虚部刚好对消,只剩下实部。Ω1与Ω2两个角速度的螺旋线坐标值的叠加并不等于角速度 Ω1+Ω2,因为从角速度到螺旋线的映射不是线性关系。这一现象正体现了频率的正交特性,也是频率分析理论存在的基础. 经过傅立叶变换得到的负频率表示一条反向旋转的螺旋线,而复频率表示一条整体改变90度相位的螺旋线,它们分别与正频率,实频相对应,都表示一个特定的螺旋线,并没有玄妙的含义。 ? 连续频谱 周期信号用傅里叶级数展开所获得频率线状谱的物理意义十分明确,即整个信号由所有谱线存在处频率分量叠加而成.比如信号COSΩt对应Ω与-Ω处两根谱线. ?

常用傅里叶变换模板.doc

时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移,变换2的频域对应 4 如果值较大,则会收缩 到原点附近,而会扩 散并变得扁平.当| a |趋向无穷 时,成为狄拉克δ函数。 5 傅里叶变换的二元性性质。通过交 换时域变量和频域变量得到. 6 傅里叶变换的微分性质

7 变换6的频域对应 8 表示和的卷积—这就是 卷积定理 9 变换8的频域对应。 [编辑]平方可积函数 时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 10 矩形脉冲和归一 化的sinc函数11 变换10的频域对 应。矩形函数是 理想的低通滤波 器,sinc函数是 这类滤波器对反 因果冲击的响 应。

12 tri是三角形函数 13 变换12的频域对应 14 高斯函数exp( ? αt2)的傅里叶变 换是他本身.只 有当Re(α) > 0时,这是可积的。 15 光学领域应用较多 16 17 18 a>0 19 变换本身就是一个公式

20 J0(t)是0阶第 一类贝塞尔函 数。 21 上一个变换的推 广形 式; T n(t)是 第一类切比雪夫 多项式。 22 U n(t)是第二类 切比雪夫多项 式。 [编辑]分布 时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 23 δ(ω)代表狄拉克δ函数分 布.这个变换展示了狄拉 克δ函数的重要性:该函 数是常函数的傅立叶变换24 变换23的频域对应

25 由变换3和24得到. 26 由变换1和25得到,应用了欧拉公式: cos(at) = (e iat + e?iat) / 2. 27 由变换1和25得到 28 这里, n是一个自然数.δ(n)(ω)是狄拉克δ函数分布的n阶微分。这个变换是根据变换7和24得到的。将此变换与1结合使用,我们可以变换所有多項式。 29 此处sgn(ω)为符号函数;注意此变换与变换7和24是一致的. 30 变换29的推广. 31 变换29的频域对应. 32 此处u(t)是单位阶跃函数;此变换根据变换1和31得到.

常用函数傅里叶变换

附录A 拉普拉斯变换及反变换 .

.

. 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

傅里叶变换常用公式

(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。 简介 Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。 傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。 傅里叶变换定义 f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换,

②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的象函数,f(t)叫做 F(ω)的象原函数。F(ω)是f(t)的象。f(t)是F(ω)原象。 ①傅立叶变换 ②傅立叶逆变换 傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成频率谱——显示与频率对应的幅值大小)。傅里叶变换相关 * 傅里叶变换属于谐波分析。 * 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似; * 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; *卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;

傅里叶变换

傅里叶变换 维基百科,自由的百科全书 傅里叶变换(Transformée de Fourier )是一种线性的积分变换。因其基本思想首先由法国学者傅里叶系统地提出,所以以其名字来命名以示纪念。 中文译名 Fourier transform 或Transformée de Fourier 有多个中文译名,常见的有“傅里叶变换”、“傅里叶变换”、“傅氏变换”、“傅氏变换”、等等。为方便起见,本文统一写作“傅里叶变换”。 应用 傅里叶变换在物理学、声学、光学、结构动力学、数论、组合数学、概率论、统计学、信号处理、密码学、海洋学、通讯等领域都有着广泛的应用。例如在信号处理中,傅里叶变换的 目录 1 中文译名 2 应用 3 概要介绍 4 基本性质 4.1 线性性质 4.2 频移性质 4.3 微分关系 4.4 卷积(Convolution )特性 4.5 帕塞瓦尔定理 5 傅里叶变换的不同变种 5.1 连续傅里叶变换 5.2 傅里叶级数 5.3 离散时间傅里叶变换 5.4 离散傅里叶变换 5.5 在阿贝尔群上的统一描述 5.6 时频分析变换 5.7 傅里叶变换家族 6 常用傅里叶变换表 6.1 函数关系 6.2 平方可积函数 6.3 分布 6.4 二元函数 6.5 三元函数 7 参见 8 参考资料 9 注释 傅里叶变换族拉普拉斯变换Z 变换 傅里叶级数傅里叶变换 连续傅里叶变换离散傅里叶级数离散时间傅里叶变换离散傅里叶变换快速傅里叶变换分数傅里叶变换短时距傅里叶变换小波分析 离散小波变换

典型用途是将信号分解成幅值分量和频率分量。 概要介绍 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的[1]。 傅里叶变换属于谐波分析。 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似。 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解。在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取。 卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段。 离散形式的傅里叶变换可以利用数字计算机快速的实现(其算法称为快速傅里叶变换算法(FFT))。 基本性质 线性性质 两函数之和的傅里叶变换等于各自变换之和。数学描述是:若函数和的傅里叶变 换和都存在,α和β为任意常系数,则;傅里叶变换算符可经归一化成为么正算符; 频移性质 若函数存在傅里叶变换,则对任意实数ω 0,函数也存在傅里叶变换,且有 。式中花体是傅里叶变换的作用算子,平体F表示变换的结果 (复函数),e 为自然对数的底,i为虚数单位; 微分关系 若函数当时的极限为0,而其导函数f'(x)的傅里叶变换存在,则有 ,即导函数的傅里叶变换等于原函数的傅里叶变换乘以因子iω。更一 般地,若,且存在,则 ,即k阶导数的傅里叶变换等于原函数的傅里叶变换乘以因子(iω)k。 卷积(Convolution)特性 若函数及都在上绝对可积,则卷积函数的傅里叶变换存在,且。卷积性质的逆形式为 ,即两个函数乘积的傅里叶逆变换等于它们各自的傅里叶逆变换的卷积。 帕塞瓦尔定理

傅里叶变换和工程窗函数

感谢数学手册

傅里叶变换 1. 傅里叶级数 周期函数的傅里叶级数(简称傅氏级数)是由正弦函数和余弦函数项组成的三角函数。 周期为T 的任一周期函数f(t),若满足下列狄里克雷条件: 1) 在一个周期内只有有限个不连续点; 2) 在一个周期内只有有限个极大和极小值点; 3) 积分/2 /2 ()T T f t dt -? 存在, 则f(t)可展开为如下傅氏级数: 011 ()(cos sin ) 2n n n f t a a n t b n t ωω∞ ==++∑ (F-1) 式中系数 n a 和 n b 由下式给出: /2 /22()cos ;(0,1,2,...,)T n T a f t n tdt n T ω-==∞? /2 /2 2()sin ;(0,1,2,...,)T n T b f t n tdt n T ω-==∞? 式中2/T ωπ=称为角频率 周期函数f(t)的傅氏级数还可以写为复数形式(或指数形式): ()jn t n n f t a e ω∞ =-∞ = ∑ (F-2) 式中系数 /2 /2 1()T jn t n T a f t e dt T ω--=? 其中欧拉公式 cos sin j t e t j t ωωω=+ 如果周期函数f(t)具有某种对称性质,如为偶函数、奇函数,或只有偶次谐波,则傅 氏级数中的某些项为0,系数公式可以简化,下表列出了具有几种对称性质的周期函数f(t)

2. 傅里叶积分和傅里叶变换 任一周期函数只要满足狄里克雷条件,便可以展开为傅氏级数,对于非周期函数,因为其周期T 为趋于无穷大,不能直接用傅氏级数展开,而要做某些修改,这样就引出了傅里叶积分。 若f(t)为非周期函数,则可视它为周期T 为趋于无穷大,角频率02/T ωπ=趋于0 的周期函数,这时,在傅氏级数展开式中,各个相邻的谐波频率之差00 (1)n n ωωω?=+-便很小,谐波频率 n ω须用一个变量ω代替【注意,此处ω不同于(F-1)所述的角频率】。 这样,式(F-2)便可改写为: ()j t n f t e ωω α∞ =-∞ = ∑ (F-3) /2 /2 ()2T j t T f t e dt ωωωαπ--?=? 于是便得: /2 /2 /2 /2 1()[()][()]22T T j t j t j t j t n n T T f t f t e dt e f t e dt e ωωωωωω ππ∞ ∞ --=-∞=-∞--?==?∑∑?? 当T —>∞时,ω?—>d ω,求和式变为积分式,上式可写为: 1()[()]2j t j t f t f t e dt e d ωωω π ∞∞ --∞-∞ = ?? (F-4) 若令 ()()j t F f t e dt ωω∞ --∞ = ? (F-5) 1()()2j t f t F e d ωωω π ∞ -∞ = ? (F-6)

相关文档
最新文档