刺激强度刺激频率对骨骼肌收缩的影响一实验报告

刺激强度刺激频率对骨骼肌收缩的影响一实验报告
刺激强度刺激频率对骨骼肌收缩的影响一实验报告

刺激强度刺激频率对骨骼肌收缩的影响一实验

报告

Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

实验报告

实验人员:孙芳班次:7年制2班组别:2 日期:2014/9/24 指导老师:沈建新

小组成员:XXX,YYY,ZZ

试验号和题目:一、刺激强度、刺激频率对骨骼肌收缩的影响

实验目的:1、了解并熟悉计算机生物机能实验系统的组成和基本使用方法

2、制备具有生理活性的坐骨神经-腓肠肌标本

3、观察记录刺激强度、刺激频率对骨骼肌收缩的影响

实验对象:蛙

实验药品与器材:任氏液;生物信号采集系统,蛙类手术器械,蛙捣毁针,保护电

极,张力换能器,万能支架、连接导线等。

实验方法:

1、坐骨神经-腓肠肌标本的制备:1) 洗干净实验动物 2) 双毁髓::找到

枕骨大孔处将刺蛙针刺入1-2mm,分别捣损脑组织和脊髓。3)剥制后

肢,分离一侧后肢 4) 分离坐骨神经,穿线备用 5) 游离腓肠肌,肌腱

结扎备用 6) 标本检验。

2、连接实验装置:将换能器的输出线接至BL-420F生理记录装置的1通

道,保护电极接至电脉冲输出通道。然后把制备好的坐骨神经-腓肠肌标

本棉线的另一端接在张力换能器上,将坐骨神经通过保护电极接至电脉

冲刺激输出通道,而腓肠肌肌腱端的棉线与张力换能器簧片相连,保持

适度松紧并与桌面垂直。

3、2、实验记录:开机后进入实验先用单刺激,找出阈强度、最适刺激强

度;然后固定最适刺激强度,用连续单刺激,找出出现完全强直收缩时

的最小刺激频率。

实验结果:

1、刺激强度与肌肉的收缩关系实验

图1 刺激强度与骨骼肌收缩的关系(蛙坐骨神经-腓肠肌标本)

A.肌肉收缩强度(右侧为标尺);

B.刺激标记(单位为V )

图片中,在低于的电压刺激时,肌肉不发生收缩,说明在较低的电位刺激时,并不能引起肌肉发生收缩反应。而随着刺激强度的增大,用电压刺激的时候,蛙的腓肠肌收缩一次,表明神经接受刺激,兴奋沿神经传导至腓肠肌,引起腓肠肌肌膜电位发生变化,同时兴奋收缩,这说明蛙坐骨神经-腓肠肌标本的阈电位为之间接近。随着刺激强度的不断增加,有较多的神经纤维兴奋,肌肉的收缩反应也相应逐步增大。当用以上的电压刺激时,肌肉的收缩强度不再随着电压的变大而变大,表明蛙坐骨神经-腓肠肌标本的最适刺激强度为接近(之间)。

2、刺激频率与肌肉收缩的关系实验

A

B

20.0g

A

B

图2、刺激频率与肌肉收缩的关系实(现代实验)

A.肌肉收缩强度(右侧为标尺);

B.刺激标记(单位:Hz,V)

在用强度为的电压改变频率刺激神经时,肌肉的收缩频率随着刺激电流频率的变大而发生变化。首先,在1Hz的电流刺激神经干时,肌肉出现单收缩,其大小形状相同;随着频率的逐渐变大,当刺激频率为3Hz时肌肉发生不完全强直收缩,标本呈现快速连续颤动,张力曲线成锯齿状;刺激频率越来越大,重叠区域越来越大,最后在频率到达15Hz时,发生完全强直收缩,肌肉呈现一持久强力收缩,张力曲线平滑并高于单收缩与不完全强直收缩。

结果分析讨论

1、从刺激到产生收缩的过程:

腓肠肌的收缩是由支配它的坐骨神经兴奋引起的,坐骨神经末梢和腓肠肌靠近处形成神经-肌肉接头。坐骨神经干受到刺激后,神经细胞膜

上离子通道开放,引起膜内外电位发生变化,膜去极化达到阈电位水平

后产生动作电位(单个阈下刺激是不能产生动作电位的)。动作电位产

生后会沿着细胞纤维传至神经末梢,轴突末梢膜去极化,引发该处特有

的电压门控性钙离子通道开放,细胞间隙中的钙离子顺化学梯度进入轴

突末梢,触发其内囊泡的移动、融合和排放递质。递质与终板膜上相应

受体结合使终板膜上的离子通道开放形成终板电位,当终板膜处的肌细

胞膜的静息电位因去极化达阈电位水平时产生动作电位传到整个肌细胞

将引起肌肉兴奋,肌肉通过粗细肌丝的滑行完成兴奋收缩耦联过程,出

现一次机械收缩。

2、刺激强度与频率和肌肉收缩的关系:

单根神经纤维或肌纤维对刺激的反应是“全或无”式的。但在神经纤维肌肉标本中,则表现为当刺激强度很小时(阈下刺激),不能引起神

经纤维动作电位的产生和肌肉的收缩;当刺激强度在一定范围内变动

时,肌肉收缩的幅度与之成正比。因为一条坐骨神经干是由许多兴奋性

不同粗细不等的神经纤维所组成的。弱刺激只能使其中少量兴奋性高的

神经纤维先兴奋,并引起它所支配的少量肌纤维收缩。随着刺激强度逐

渐增大,发生兴奋的神经纤维数目逐渐增多,其所引起收缩的肌纤维数

目亦增多,结果肌肉收缩幅度随刺激强度的增加而增强。当刺激达到某

一强度时,神经干中全部神经纤维兴奋,它们所支配的全部肌纤维也都

发生兴奋和收缩,从而引起肌肉的最大收缩。此后,若再继续增强刺激

强度,肌肉收缩反应不再继续增大。可见在一定范围内,骨骼肌收缩力

的大小决定于刺激的强度。

3、刺激频率与肌肉收缩的关系:

蛙腓肠肌在收缩时,肌细胞会相继出现绝对不应期、相对不应期、超常期和低常期,若在相对不应期或者超常期早期给予细胞另外一个刺

激,肌细胞的第一次兴奋正处于舒张期,而新的刺激会使得肌肉发生收

缩,这样肌肉会出现持续收缩的状态,称之为不完全强直收缩;但若在

肌细胞兴奋地低常期或者超常期后期给予一个新的刺激,肌细胞此时正

处于收缩状态,新的刺激也会使得细胞收缩,两次收缩效果相叠加,肌

肉处于持续最大收缩状态,此称之为完全强直收缩。不同频率的电脉冲

刺激神经时,肌肉会产生不同的收缩反应。若刺激频率较低,每次刺激

的时间间隔超过肌肉单次收缩的持续时间,则肌肉的反应表现为一连串

的单收缩;若刺激频率逐渐增加,刺激间隔逐渐缩短,肌肉收缩的反应

可以融合,开始表现为不完全强直收缩,以后成为完全强直收缩。

4、为什么刺激频率增高肌肉收缩的幅度也增大

随着刺激频率的增高,各次刺激引起的收缩过程发生融合而叠加起来,

这时肌肉强直收缩产生的张力大于单收缩,这可能与连续刺激肌肉时,

从肌质网重复释放的Ca2+浓度,使横桥得以有较长的时间持续活动有

注意事项 1.经常用任氏液浸润标本,保持生理活性。

2. 分离肌肉时应按层次剪切。分离神经时,必须将周围的结缔组织剥离

干净。切勿让蟾蜍的皮肤分泌物和血液等沾污神经和肌肉,也不能用

水冲洗,否则会影响神经肌肉的功能。

3.每次刺激后须让肌肉休息30s以上,连续刺激不超过5秒,以免标本疲劳。如果肌肉在未给刺激时即出现挛缩,需检查电器接地是否良

好。

4.找准最适刺激强度,以防刺激过强而损伤神经.

5.换能器与标本连线的张力保持不变。

实验2不同刺激频率对骨骼肌收缩形式的影响解读

实验2 蟾蜍坐骨神经–腓肠肌标本制备、不同频率刺激对肌肉 收缩的影响 杨渊 (浙江中医药大学2009临床医学1班20091090129) 【摘要】目的1、通过观察刺激强度与肌肉收缩的关系,明确阈刺激、阈上刺激、最大刺激的概念;2、观察不同刺激频率对骨骼肌收缩形式的影响。方法使用生物信号采集处理系统,通过设定不同频率参数对激蟾蜍坐骨神经进行刺激,记录分析数据结果。结果单收缩的刺激频率为2.0Hz,不完全强直收缩的刺激频率为4.52Hz、完全强直收缩的最小刺激频率为23.6Hz 。结论刺激强度到达阈刺激时腓肠肌开始收缩,在最大刺激收缩力前随刺激强度增大而增大,到达最大刺激强度后,收缩力不发生明显改变;在最大刺激强度条件下,某较小频率使腓肠肌发生单收缩,频率增大,单收缩变为不完全强直收缩,频率继续增大,不完全强直收缩变为完全强制收缩。 【关键词】刺激;频率;腓肠肌;单收缩;不完全僵直收缩;完全僵直收缩 肌肉、神经和腺体组织称为可兴奋组织,它们有较大的兴奋性。不同组织、细胞的兴奋表现各不相同,神经组织的兴奋表现为动作电位,肌肉组织的兴奋主要表现为收缩活动。因此,观察肌肉是否收缩可以判断它是否产生了兴奋。一个刺激是否能使组织发生兴奋,不仅与刺激形式有关,还与刺激时间、刺激强度、强度-时间变化率三要素有关。此实验通过观察所用电刺激强度与腓肠肌收缩曲线的关系,从而明确阈下刺激,阈上刺激,最适刺激,单收缩,复合收缩等概念以及更好的分析不同刺激频率对骨骼肌收缩形式的影响。 【材料与方法】 1.1实验动物 健康蟾蜍一只 1.2实验器材和药品 蛙类手术器械一套(粗剪刀一把、组织剪一把、眼科剪一把、镊子一把、探针一根、玻璃分针2把、蛙钉4个、培养皿1个,蛙板一个、滴管一个、棉线若干),张力换能器,肌槽,刺激电极,铁架台,生物信号采集处理系统,微机,任氏剂。 2.1实验步骤 2.1.1蛙类坐骨神经—腓肠肌标本的制备 2.1.1.1捣毁蟾蜍脑脊髓:取蟾蜍一只,用自来水冲洗干净。左手握蛙,用食指下压头部前端,拇指按压背部,使头前俯。中指与无名指夹其前肢,无名指与小指夹其后肢,使整个躯干做最大屈曲。把探针自枕骨大孔处垂直刺入,到达椎管,即将探针改变方向刺入颅腔,向各侧不断搅动,彻底捣毁脑组织;再将探针原路

离散系统频率响应和零极点分布实验报告

实验报告 课程名称数字信号处理实验 实验名称离散系统频率响应和零极点分布 学生姓名 学生学号 学生班级 实验日期 实验目的:通过matlab仿真简单的离散时间系统,研究其的时频域特性,加深对离散系统的频率响应分析和零、极点分布的概念理解。 实验原理:离散系统的时域方程为

∑∑==-=-M k k N k k k n x p k n y d ) ()( 其变换域分析方法如下: 频域 ) ()()(][][][][][ωωωj j j m e H e X e Y m n h m x n h n x n y =?-= *=∑∞ -∞ = 系统的频率响应为 ω ωω ωωωω jN N j jM M j j j j e d e d d e p e p p e D e p e H ----++++++==......)()()(1010 Z 域 ) ()()(][][][][][z H z X z Y m n h m x n h n x n y m =?-= *=∑∞ -∞ = 系统的转移函数为 N N M M z d z d d z p z p p z D z p z H ----++++++==......)()()(110110 分解因式 ∏-∏-=∑∑= =-=-=-=-N i i M i i N i i k M i i k z z K z d z p z H 11 11 )1()1()(λξ ,其中 i ξ和i λ称为零、极 点。 在MATLAB 中,可以用函数[z ,p ,K]=tf2zp (num ,den )求得有理分式形式的系统转移函数的零、极点,用函数zplane (z ,p )绘出零、极点分布图;也可以用函数zplane (num ,den )直接绘出有理分式形式的系统转移函数的零、极点分布图。 另外,在MATLAB 中,可以用函数 [r ,p ,k]=residuez (num ,den )完成部分分式展开计算;可以用函数sos=zp2sos (z ,p ,K )完成将高阶系统分解为2阶系统的串联。 实验内容:一个LTI 离散时间系统的输入输出差分方程为 y(n)-1.6y(n-1)+1.28y(n-2) =0.5x(n)+0.1x(n-1) 实验要求:(1)编程求出此系统的单位冲激响应序列,并画出其波形。 (2)若输入序列x(n)=δ(n)+2δ(n-1)+3δ(n-2)+4δ(n-3)+5δ (n-4),編程求此系統輸出序列y(n),并画出其波形。 (3)编程得到系统频响的幅度响应和相位响应,并画图。 (4)编程得到系统的零极点分布图,分析系统的因果性和稳定性。 实验过程: (1)编程求此系统的单位冲激响应序列,并画出其波形 程序

电刺激与骨骼肌收缩反应的关系实验报告

人体机能学实验报告 姓名 张立鑫60专业 临床二系 年级2010级班次4班 赵文韬70日期2011年8月31日 郑维金73 钟原75 【实验名称】 电刺激月骨骼肌收缩反应的关系 【实验目的】 1 .掌握蟾蜍坐骨神经-腓肠肌标本的制备。 2. 通过电刺激蟾蜍的腓肠肌标本,观察电刺激强度与肌肉收缩反应的关系 3. 观察电刺激频率的变化对骨骼肌收缩形式的影响。 【实验对象】 蟾蜍 【实验药品和器材】 任氏液、蛙类手术器械、张力换能器、刺激电极、生物信号记录分析系统、 铁支架、肌槽等。 【实验步骤及方法】(详见书.) 1 .坐骨神经-腓肠肌标本制备。 2 .固定标本。 3 .仪器连接。 4 . BL-410的操作。 【实验结果】 刺激强度与肌肉收缩之间的关系阈刺激 最 犬 刺 激

【讨论与分析】 一、实验过程中的兴奋阈值是否会改变为什么 组员看法: 1.不会改变。组织里的各个细胞都是定的,都有各自的阈值,当刺激强度使得 组织里的每个细胞都产生兴奋时的最小刺激强度就是组织的阈值,所以组织 的阈值就是这个最小刺激强度值,所以是不会变的。 2.在实验过程中当标本没有失活时标本的兴奋阈值不会改变,兴奋阈值 是标本本身的钠离子通道活性决定的,在标本保持活性时,它的钠离子通 道活性是不会改变的。所以我认为当标本保持活性时,标本的兴奋阈值是不 会改变的。 3.会改变。因为细胞没发生一次兴奋后,会有一个绝对不应期,在此期 间无论多强的刺激也不能使细胞再次兴奋,即兴奋阈值无限大,故实验过 程中兴奋阈值发生改变。 二、为什么在一定范围内肌肉收缩的幅度会随刺激强度增大而增大 蟾蜍腓肠肌是由很多肌纤维组成的,它们的兴奋性高低不一,在一定范围内,较弱的刺激仅引起部分兴奋性高的肌纤维发生收缩,肌肉收缩幅度较 小,而较强的刺激则引起更多的肌纤维发生收缩,肌肉收缩幅度较大。故在 不超过肌肉最大收缩幅度的范围内,肌肉收缩的幅度会随刺激强度增大而增 大。 三、肌肉收缩张力曲线融合时,神经干和骨骼肌细胞的动作电位是否融合为什么 肌肉收缩张力曲线融合,说明这是一个强直收缩,强直收缩只能说明此时出现动作电位的频率很高,但是动作电位是不可能融合的,只能是在一个很 小的区域一个动作电位结束后产生另一个动作电位,并且神经传导都有一个 绝对不应期,这更能说明动作点位不能融合。 四、实验过程中注意要点讨论。

刺激强度、频率对骨骼肌收缩的影响实验报告

一实验目的 1、观察不同刺激强度和刺激频率对骨骼肌收缩的影响。 2、了解阈刺激、阈上刺激、最大阈刺激的概念和意义。 3、了解单收缩、不完全强直收缩,完全强直收缩的概念和意义。 二实验原理 由许多肌纤维组成的腓肠肌在受到不同强度的刺激时引起不同反应。刺激强度过小时发生阈下刺激(subthreshold stimulus),引起肌肉发生收缩反应的最小刺激强度为阈刺激(threshold stimulus)。使肌肉发生最大收缩反应的最小刺激强度为最适刺激强度。 肌肉组织对阈上刺激发生的单收缩的过程分为:潜伏期、收缩期、和舒张期。 同一强度的阈上刺激相继作用于神经-肌肉标本,根据刺激间隔与单收缩时程的关系会产生不同的现象;当同一强度的阈上刺激连续作用于标本时,根据后一收缩与前一收缩发生的时期关系可出现:强直收缩、不完全强直收缩和完全强直收缩。 三实验器材 蟾蜍,粗剪刀,玻璃分针,探针,木锤,镊子,培养皿,任氏液,娃板,保护电极,肌槽,张力转换器(100g),锌铜弓,微机生物信号处理系统。 四实验步骤 制作标本(观看视频):毁脑脊髓、下肢标本制备、腓肠肌标本制备、连接仪器。(一)1打开计算机软件中的模拟实验。 2打开电源,对蟾蜍腓肠肌进行单刺激,频率为1HZ,电压由逐渐增大到,记录下每次增大电压后的收缩力。每个电压下刺激3次,记录数据。 3将图表截下来并画出数据表格进行分析。 (二)1打开计算机软件中的模拟实验。 2打开电源,对腓肠肌进行连续刺激,即使腓肠肌进行完全强直收缩。电压不变,频率由1HZ逐渐增加到12HZ,记录下每次增大频率之后的收缩力。 3将图表截下来并画出数据表格进行分析。 五结果

视觉分辨率及空间频率响应测试实验报告

视觉分辨率及空间频率响应(SFR)测试实验报告 班级:学号:姓名: 一、实验目的: 1、理解数码相机视觉分辨率的定义及其度量单位。 2、了解数码相机分辨率测试标准ISO12233以及GB/T 19953-2005《数码相机分辨率的测量》,熟悉测试标板构成,掌握其使用方法。 3、掌握数码相机视觉分辨率测试方法,能够通过目视判别数码相机的分辨率特性。 4、了解数码相机空间频率响应(SFR)的测试原理,理解空间频率响应(SFR)曲线的含义。 5、掌握数码相机空间频率响应(SFR)的测试方法,能够通过SFR曲线判别数码相机的分辨率特性。 二、实验要求: 1、使用数码相机拍摄ISO12233标准分辨率靶板,要求连续拍摄三幅图。 2、目视判别数码相机的视觉分辨率,需分别判别水平、垂直、和斜45度方向的视觉分辨率(注意:若拍摄的靶板有效区域高度仅占据相机幅面高度的一部分,需将目视判别结果乘以修正系数以得到真实的测量结果。修正系数=以像素为单位的相机幅面高度/以像素为单位的靶板有效区域高度)。 3、使用Imatest软件测量数码相机空间频率响应(SFR)曲线,需分别测量水平及垂直方向的SFR,并取MTF50、MTF20作为测量结果,与视觉分辨率测试结果进行比较。 4、独立完成实验报告,需明确相机型号、相机基本设置、并包含所拍摄图案以及判别结果和相应说明。 三、实验过程 在光学测量实验室使用手机(iPhone6s)连续拍摄三张ISO12233标准分辨率靶板。拍摄过程中使手机上下屏幕边缘尽量与靶板上下边缘对齐,以减小修正系数。其中使用的相机参数如下:

拍摄的照片如下: 照片一(修正系数为)

肌肉收缩实验报告

骨骼肌收缩实验 一.实验目的 1.肌肉标本收缩现象的描记及单收缩的分析,获得该肌肉收缩的阈值。 2.了解刺激强度对骨骼肌收缩的影响。 3.学习掌握刺激器和张力换能器的使用。 4.加强对神经和肌肉了解,熟练解剖。、 二.实验原理 1.肌肉标本收缩现象的描记 利用刺激器可诱发蛙的离体神经肌肉标本发生兴奋收缩现象,可利用适当的参数和图形,客观、详细、准确地描述收缩的生理过程与现象。 骨骼肌受到一次短促的阈上刺激时,先是产生一次动作电位,紧接着出现一次机械收缩,称为单收缩。收缩的全过程可分为潜伏期、收缩期和舒张期。在一次单收缩中,肌峰电位的时程(相当于绝对不应期)仅1~2毫秒,而收缩过程可达几十甚至上百毫秒(蛙的腓肠肌可达100毫秒以上)。 2. 张力换能器 换能器是一种能将机械能、化学能、光能等非电量形式的能量转换为电能的器件或装置,并线性相关。利用物理性质和物理效应制成的物理换能器种类繁多,原理各异。张力换能器是一种能把非电量的 生理参数如力、位移等转换为电阻变化的间接型传感器,属于电阻应变式传感器。通常由弹性元件、电阻应变片和其他附件组成。弹性元件采用金属弹性悬梁,可根据机械力的大小选用不同厚度的弹性金属。弹性悬梁的厚度不同,张力换能器的量程亦不同。两组应变片r1、r4及r2、r3分别贴于梁的两面。两组应变片中间接一只调零电位器,并用5~6v直流电源供电,组成差动式的惠斯登桥式电路(非平衡式电桥)输出电压值与应变片所受力的大小成正比,即力的变化转换成电桥输出电压的变化。此电信号经过记录仪器的放大处理,就能描记出肌肉收缩变化的过程。 实验时,根据测量方向将换能器用"双凹夹"固定在合适的支架上。但由于双凹夹在支架上移位不方便,很难在小范围内做出精细的移位;移位不当,可能引起标本的损伤和换能器的损坏。故现多采用"一维微调固定器",由上下位置调节钮控制,可在小范围内(上下)精细的移位。这不仅方便了实验操作,也有利于前负荷的控制。测量的方向,即力与位移的方向,要与张力换能器弹性悬梁的前端上下移动的方向保持一致。使能量转换和线性关系良好,符合张力换能器设计与使用上的要求。一般张力换能器的调零电位器设计为暗调节,为了方便使用,其暗调节孔朝上,故张力换能器有暗调节孔的一面为上。 3. 影响骨骼肌收缩效能的因素 肌细胞最本质的功能是将化学能转变为机械功,产生张力和缩短。肌肉收缩效能表现为收缩时产生的张力和/或缩短程度以及产生张力或缩短的速度。横纹肌的收缩效能由收缩前或收缩时承受的负 荷、自身的收缩能力和总和效应等因素决定的。(所谓总和指骨骼肌收缩的叠加效应)通过收缩的总和,骨骼肌可快速调节其收缩强度,而心肌则不会发生总和。由于在体的骨骼肌的收缩是受神经控制的,故收缩的总和是在中枢神经系统的调节下完成的。它有两种形式,即运动单位数量的总和与频率效应的总和。 4. 刺激强度与骨骼肌收缩反应 利用电脉冲刺激离体的神经肌肉标本,可观察到收缩总和的现象。实验证明刺激增加,参与收缩的运动单位增加,收缩的强度亦增加。刺激支配腓肠肌的坐骨神经或直接刺激腓肠肌时,不同的刺激强度会引起肌肉的不同反应。当全部肌纤维同时收缩时,则出现最大的收

不同频率的刺激对肌肉收缩的影响

实验一:不同频率的刺激对肌肉收缩的影响 浙江中医药大学第三临床医学院 关键词:刺激;强度;频率;腓肠肌 一.实验目的: 本实验在保持足够的刺激时间(脉冲波宽)和刺激强度(脉冲振幅)不变的条件下,通过不同频率电脉冲刺激蟾蜍离体坐骨神经,观察腓肠肌收缩活动的改变。 二.实验材料: (1)实验对象:蟾蜍 (2)实验工具:蛙板、锌铜弓,探针,粗剪刀、尖镊子、玻璃分针、瓷碗、培养皿 (3)实验试剂:任氏液 (4)实验仪器:铁支架、微调固定器、刺激输出线、肌动槽、张力换能器、RM6240微机生物信号采集系统。 三.实验方法: (1)离体蟾蜍坐骨神经腓肠肌标本制备 蟾蜍毁脑脊髓,去上肢和内脏,下肢剥皮浸于任氏液中。蟾蜍下肢背面向上置于蛙板上;用剪刀从脊柱正中剪开,向下从耻骨联合剪开分成两个下肢标本,用玻璃分针分离脊柱傍的神经丛,用线在近脊柱处结扎,剪断神经,从大腿至腘窝分离坐骨神经,将神经干提起剪断分支。去除股骨上的肌肉,距膝关节1cm剪断股骨,分离腓肠肌跟腱穿线结扎,剪断跟腱,游离腓肠肌,在膝关节剪去小腿其余办法,将坐骨神经-腓肠肌标本标本置任氏液中备用。 (2)实验系统连接和参数设置: 1)仪器连接和参数换能器接第1通道。1通道时间常数直流、滤波频率30Hz、灵敏度7.5g、,采样频率:800Hz,扫描速度:2.5s/div。 2)坐骨神经腓肠肌的股骨插入固定孔固定,神经干标本盒的电极上,神经与电极接触良好,调节刺激电压,记录肌肉收缩曲线。 3) 实验菜单中选择“刺激频率对骨骼肌收缩的影响” 4)选择菜单中选择“强度/频率显示刺激参数” (3)调整刺激器的数据。选择方式为正电压刺激,模式为频率递增刺激,波宽5ms.延时20ms,频率增量2 Hz,组间延时2s.,强度0.3V,记录,打标,开始刺激。 (4)实验观察:刺激频率按1HZ,2HZ,3HZ,4HZ,5HZ…30HZ,逐渐增加,连续记录不同频率时的肌肉收缩曲线,观察肌肉收缩形态和张力的改变 _ 四..注意事项 1.肌肉在未给刺激时即出现挛缩,是漏电等原因引起的,需检查接地是否良好。 2.做肌肉最大收缩时,刺激强度不宜太大,否则会损伤神经。 3.离体坐骨神经腓肠肌标本制备好需在任氏液中先浸泡一定时间。 4.在肌肉收缩后,应让肌肉休息一定时间再作下一次刺激,特别是高频连续刺激时。 5.实验过程中保持换能器与标本连线的张力保持不变。

信号与系统实验报告1

学生实验报告 (理工类) 课程名称:信号与线性系统专业班级:M11通信工程 学生学号:1121413017 学生姓名:王金龙 所属院部:龙蟠学院指导教师:杨娟

20 11 ——20 12 学年第 1 学期 金陵科技学院教务处制 实验报告书写要求 实验报告原则上要求学生手写,要求书写工整。若因课程特点需打印的,要遵照以下字体、字号、间距等的具体要求。纸张一律采用A4的纸张。 实验报告书写说明 实验报告中一至四项内容为必填项,包括实验目的和要求;实验仪器和设备;实验内容与过程;实验结果与分析。各院部可根据学科特点和实验具体要求增加项目。 填写注意事项 (1)细致观察,及时、准确、如实记录。 (2)准确说明,层次清晰。 (3)尽量采用专用术语来说明事物。 (4)外文、符号、公式要准确,应使用统一规定的名词和符号。 (5)应独立完成实验报告的书写,严禁抄袭、复印,一经发现,以零分论处。 实验报告批改说明 实验报告的批改要及时、认真、仔细,一律用红色笔批改。实验报告的批改成绩采用百分制,具体评分标准由各院部自行制定。 实验报告装订要求

实验批改完毕后,任课老师将每门课程的每个实验项目的实验报告以自然班为单位、按学号升序排列,装订成册,并附上一份该门课程的实验大纲。

实验项目名称:常用连续信号的表示 实验学时: 2学时 同组学生姓名: 无 实验地点: A207 实验日期: 11.12.6 实验成绩: 批改教师: 杨娟 批改时间: 一、实验目的和要求 熟悉MATLAB 软件;利用MATLAB 软件,绘制出常用的连续时间信号。 二、实验仪器和设备 586以上计算机,装有MATLAB7.0软件 三、实验过程 1. 绘制正弦信号)t Asin t (f 0?ω+=(),其中A=1,πω2=,6/π?=; 2. 绘制指数信号at Ae t (f =),其中A=1,0.4a -=; 3. 绘制矩形脉冲信号,脉冲宽度为2; 4. 绘制三角波脉冲信号,脉冲宽度为4;斜度为0.5; 5. 对上题三角波脉冲信号进行尺度变换,分别得出)2t (f ,)2t 2(f -; 6. 绘制抽样函数Sa (t ),t 取值在-3π到+3π之间; 7. 绘制周期矩形脉冲信号,参数自定; 8. 绘制周期三角脉冲信号,参数自定。 四、实验结果与分析 1.制正弦信号)t Asin t (f 0?ω+=(),其中A=1,πω2=,6/π?= 实验代码: A=1;

宰后肉变化

肌肉宰后会发生一系列变化,使muscle→meat 热鲜肉→肉的尸僵→解僵成熟→自体酶解→腐败变质 动物刚屠宰后,肉温还没有散失,柔软具有较小弹性,这种处于生鲜状态的肉称作热鲜肉。肌肉宰后:尸僵→成熟→腐败 一、肌肉收缩的基本单位 肌肉→肌纤维(肌细胞)→肌原纤维→肌节 二、肌肉收缩的机制 生活的肌肉处于静止状态时,由于Mg和ATP形成复合体的存在,防碍了肌动蛋白与肌球 蛋白粗丝突起端的结合。肌原纤维周围糖原的无氧酵解和线粒体内进行的三羧酸循环,使ATP不断产生,以供应肌肉收缩之用。肌球蛋白头是一种ATP酶,这种酶的激活需要Ca2+的激活。神经冲动→肌内膜→肌质网释放Ca2+→ Ca2+浓度升高→使肌动蛋白暴露与肌球 蛋白结合位点→使ATP酶活化→ATP分解产生能量→肌动蛋白与肌球蛋白结合→收缩 三、肌肉僵直形成的原因 ①ATP减少:动物死之后,呼吸停止了,在缺氧情况下经糖酵解产生乳酸,产生的ATP量显著降低。然而体内ATP的消耗,由于肌浆中ATP酶的作用却在继续进行,因此动物死后,ATP的含量迅速下降。同时,由于糖酵解的进行,产生大量乳酸,使肉的pH迅速降低。 ②ATP的减少及pH值的下降,使肌质网功能失常,发生崩解,肌质网失去钙泵的作用, 内部保存的钙离子被放出,致使Ca2+浓度增高,促使粗丝中的肌球蛋白ATP酶活化,更加快了ATP的减少,结果肌动蛋白和肌球蛋白结合形成肌动球蛋白,引起肌肉收缩表现出肉 尸僵硬。 ③反应不可逆:这种情况下由于无神经调节作用,ATP不断减少,钙泵功能丧失,Ca2+浓 度无法调节,所以反应是不可逆的,则引起永久性的收缩。 四、肌肉宰后有三种短缩或收缩形式, –热收缩(heat shortening) –冷收缩(cold shortening) –解冻僵直收缩(thaw shortening) 冷收缩 当牛肉、羊肉和火鸡肉在pH值下降到5.9~6.2之前,也就是僵直状态完成之前,温度降 低到10℃以下,这些肌肉收缩,并在随后的烹调中变硬,这个现象称为冷收缩。 该现象红肌肉比白肌肉出现得更多一些,尤以牛肉明显。 特点:比正常的热收缩更剧烈的收缩,可逆性小,肉嫩度差。 解冻僵直收缩 肌肉在僵直未完成前进行冻结,仍含有较高的ATP,在解冻时由于ATP发生强烈而迅速的 分解而产生的僵直现象,称为解冻僵直。解冻时肌肉产生强烈的收缩,收缩的强度较正常 的僵直剧烈的多,并有大量的肉汁流出。因此要在形成最大僵直之后再进行冷冻,以避免 这种现象的发生。

生理实验报告蟾蜍骨骼肌生理

人体解剖及动物生理学实验报告 实验名称蟾蜍骨骼肌生理 学号 系别 组别 同组 实验室温度 实验日期2015年5月7日

一、实验题目 蟾蜍骨骼肌生理 A蟾蜍腓肠肌刺激强度与骨骼肌收缩反应的关系 B蟾蜍骨骼肌单个肌肉收缩分析(潜伏期、收缩期和舒期的确定) C蟾蜍腓肠肌刺激频度与骨骼肌收缩的关系 二、实验目的 确定蟾蜍骨骼肌收缩的 (1)阈水平和最大收缩以及刺激强度与肌肉收缩之间的关系曲线 (2)收缩的三个时期:潜伏期、缩短期、舒期 (3)刺激频度与肌肉收缩的关系 三、实验方法 1、蟾蜍坐骨神经-骨骼肌标本的制作及电路连接 1)双毁髓处死蟾蜍后,剥去皮肤,暴露腰骶丛神经,游离大腿肌肉之间的做个神 经及小腿的腓肠肌,注意不要将胫神经与腓神经分离。神经端结扎后,剪去无 关分支后游离至膝关节处;肌肉端结扎在肌腱上,将腓神经也一起结扎,结扎 线留长。保留膝关节,剪去腿骨,将标本离体。注意保持神经肌肉湿润。 2)用大头钉将标本的膝关节固定于标本盒R2和R3两记录电极之间的石蜡凹槽, 保证神经、肌肉与电极充分接触。神经中枢端接触刺激电极S1和S2,肌肉接 触记录电极R3和R4,之间接触接地电极。 3)肌肉的结扎线从标本盒中穿出,连接力换能器。注意连线尽量短,以减小阻力。 在实验过程中,注意标本的休息:将神经搭在肌肉上,用浸湿了任氏液的棉花 覆盖神经肌肉,保持湿润。但标本盒避免有过多的液体,防止短路。 4)换能器插头接RM6240通道1。刺激输出线两夹子分别连接标本盒的刺激电极 S1和S2,插头接刺激输出插口。如果需要记录肌肉的动作电位,则在肌肉所搭 置的记录电极上连接输入导线,注意接地,插头接通道2。 2、蟾蜍骨骼肌生理各项数据测定 A蟾蜍腓肠肌刺激强度和骨骼肌收缩反应的关系

不同强度的频率和刺激对肌肉收缩的影响

不同强度的频率和刺激对肌肉收缩的影响 [摘要]目的:分析探讨刺激强度和刺激频率与骨骼肌收缩力的关系。学习微机生物信号采集处理系统的使用。方法:在保持刺激时间恒定的条件下,逐步增加或减少对蟾蜍坐骨神经的刺激强度(脉冲振幅)和改变电脉冲刺激频率,观察记录腓肠肌收缩张力。结果:最大刺激收缩与阈刺激收缩时张力有显著性差异。单收缩与完全强直收缩时收缩张力、完全强直收缩与不完全强直收缩时张力都有显著性差异。结论:不同的刺激强度和频率对蟾蜍坐骨神经腓肠肌有不同的影响。 [ Abstract ] Goal: The analysis discussion intensity of stimulation and stimulates the frequency and the skeletal muscle shrinkage force relations. Study microcomputer biology signal gathering processing system use. Method: Stimulates under the time constant condition in the maintenance, increases or the reduction gradually (pulse amplitude) and the change electricity pulse stimulates the frequency to the toad sciatic nerve intensity of stimulation, observes the record gastrocnemius myo- contraction tensity. Finally: Stimulates the contraction and the threshold stimulates when the contraction the tensity to have the significance difference most greatly. List contraction with completely strong straight contraction when contracts the tensity, the completely strong straight contraction with the incompletely strong straight contraction when the tensity all has the significance difference. Conclusion: The different intensity of stimulation and the frequency myo- have the different influence to the toad sciatic nerve gastrocnemius. [关键词]阈强度单收缩不完全强直性收缩完全强直性收缩电脉冲刺激 1、材料与器材 1.1实验动物:蟾蜍 1.2实验药品:任氏液 1.3实验仪器设备:PcLab信号采集处理器,计算机,肌肉张力换能器,蛙板,玻璃分针,探针,剪刀,镊子,大头针,铁支架。 2、方法 2. 1 制备蟾蜍坐骨神经腓肠肌标本 2.1.1 毁蟾蜍脑、脊髓,剥去一侧下肢皮肤,固定标本; 2.1.2 分离坐骨神经,穿线备用; 2..1.3 将连接腓肠肌腱的线与张力换能器相连,注意铭牌向上,连线与桌面垂直,调节前负荷至2~5g; 2.1.4 将坐骨神经放在刺激电极上,保证 接触良好。 2.2 连接PcLab信号采集处理系统 参数设置:通道模式为张力,采样 频率400Hz~1kHz,主周期1s,波宽 0.3ms,延时1ms。 2.3 刺激电压对肌肉收缩张力的影响: 单个方波,波宽0.1ms,初始刺激电压 0.1V,步长0.02V,刺激坐骨神经,记 录肌肉收缩张力,刺激电压增至肌肉收 缩张力不再增加时止。 2.4 刺激频率对骨骼肌收缩张力的影响:最大刺激电压,波宽0.1ms,初始刺激刺激频率1Hz,

数字信号处理实验报告 -频率响应与系统稳定性

专业:电子信息工程班级:N11级-1F 姓名: 学号:

实验项目:系统响应及系统稳定性 实验台号:同组者: 1、实验目的 (1)掌握求系统响应的方法 (2)掌握时域离散系统的时域特性 (3)分析、观察及判断系统的稳定性 2、实验原理与方法 描述系统特性有多种方式,时域描述有差分方程和单位脉冲响应,频域描述有系统函数和频率响应。已知输入信号可以由差分方程、单位脉冲响应、系统函数或频率响应来求系统的输出信号。 (1)求系统响应:本实验仅在时域求系统响应。在计算机上,已知差分方程可调用filter函数求系统响应;已知单位脉冲响应可调用conv函数计算系统响应。 (2)系统的时域特性:系统时域特性是指系统的线性、时不变性、因果性和稳定性。本实验重点分析系统的稳定性,包括观察系统的暂态响应和稳态响应。 (3)系统的稳定性判断:系统的稳定性是指对任意有外接信号输入,系统都能得到有界的系统响应。或者系统的单位脉冲响应满足绝对可和条件。实际中,检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳 定的。

(4)系统的稳态响应 系统的稳态输出是指当∞→n 时,系统的输出。如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n 的加大,幅度趋于稳定,达到稳态输出。注意在以下实验中均假设系统的初始状态为零。 3.实验内容及步骤 (1)已知差分方程求系统响应 设输入信号 )()(81n R n x =,) ()(2n u n x =。已知低通滤波器的差分方程为 )1(9.0)1(05.0)(05.0)(-+-+=n y n x n x n y 。 试求系统的单位冲响应,及系统对)()(81n R n x =和)()(2n u n x =的输出信号,画出输出波形。 051015 20253035404550 n h n 系统的单位脉冲响应 5 10 15 20 253035 40 45 50 n y 1n 系统对R8(n)的响应 05101520 253035404550 n y 2n 系统对u(n)的响应 实验图(1) (2)已知单位脉冲响应求系统响应 设输入信号 )()(8n R n x =,已知系统的单位脉冲响应分别为)()(101n R n h =, )3()2(5.2)1(5.2)()(2-+-+-+=n n n n n h δδδδ,试用线性卷积法分别求出 各系统的输出响应,并画出波形。

肌肉收缩实验报告图文稿

肌肉收缩实验报告集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

骨骼肌收缩实验 一.实验目的 1.肌肉标本收缩现象的描记及单收缩的分析,获得该肌肉收缩的阈值。 2.了解刺激强度对骨骼肌收缩的影响。 3.学习掌握刺激器和张力换能器的使用。 4.加强对神经和肌肉了解,熟练解剖。、 二.实验原理 1.肌肉标本收缩现象的描记 利用刺激器可诱发蛙的离体神经肌肉标本发生兴奋收缩现象,可利用适当的参数和图形,客观、详细、准确地描述收缩的生理过程与现象。 骨骼肌受到一次短促的阈上刺激时,先是产生一次动作电位,紧接着出现一次机械收缩,称为单收缩。收缩的全过程可分为潜伏期、收缩期和舒张期。在一次单收缩中,肌峰电位的时程(相当于绝对不应期)仅1~2毫秒,而收缩过程可达几十甚至上百毫秒(蛙的腓肠肌可达100毫秒以上)。 2. 张力换能器 换能器是一种能将机械能、化学能、光能等非电量形式的能量转换为电能的器件或装置,并线性相关。利用物理性质和物理效应制成的物理换能器种类繁多,原理各异。张力换能器是一种能把非电量的 生理参数如力、位移等转换为电阻变化的间接型传感器,属于电阻应变式传感器。通常由弹性元件、电阻应变片和其他附件组成。弹性元件采用金属弹性悬梁,可根据机械力的大小选用不同厚度的弹性金属。弹性悬梁的厚度不同,张力换能器的量程亦不同。两组应变片r1、r4及r2、r3分别贴于梁的两面。两组应变片中间接一只调零电位器,并用5~6v直流电源供电,组成差动式的惠斯登桥式电路(非平衡式电桥)输出电压值与应变片所受力的大小成正比,即力的变化转换成电桥输出电压的变化。此电信号经过记录仪器的放大处理,就能描记出肌肉收缩变化的过程。 实验时,根据测量方向将换能器用“双凹夹”固定在合适的支架上。但由于双凹夹在支架上移位不方便,很难在小范围内做出精细的移位;移位不当,可能引起标本的损伤和换能器的损坏。故现多采用“一维微调固定器”,由上下位置调节钮控制,可在小范围内(上下)精细的移位。这不仅方便了实验操作,也有利于前负荷的控制。测量的方向,即力与位移的方向,要与张力换能器弹性悬梁的前端上下移动的方向保持一致。使能量转换和线性关系良好,符合张力换能器设计与使用上的要求。一般张力换能器的调零电位器设计为暗调节,为了方便使用,其暗调节孔朝上,故张力换能器有暗调节孔的一面为上。 3. 影响骨骼肌收缩效能的因素

不同强度和频率的刺激对肌肉收缩的影响

不同强度和频率的刺激对肌肉收缩的影响 浙江中医药大学第二临床医学院 一.实验目的 (1)观察在刺激时间、强度变化率恒定的条件下,不同强度和频率的电刺激对肌肉收缩的影响。 (2)学习微机生物信号采集处理系统和换能器的使用。 二.材料 蟾蜍;任氏液;微调固定器,张力换能器,微机生物信号采集处理系统。 三.方法 3.1实验系统连接和参数设置:张力换能器的输出端与生物信号采集处理系统的输入第1通道相连,刺激输出接标本盒刺激电极。启动RM6240系统软件,在系统软件窗口设置仪器参数。点击“实验”菜单,选择“刺激强度(或频率)对骨骼肌收缩的影响”项。参数:通道模式为张力,采样频率400H z~1kHz,扫描速度1s/div,灵敏度10~30g,时间常数为直流,滤波频率1 00Hz。在“选择”下拉菜单中选择“强度/频率”项,显示刺激参数。 3.2离体蟾蜍腓肠肌实验法:将离体坐骨神经腓肠肌标本的股骨插入标本盒的固定孔中,旋转固定螺钉固定标本,腓肠肌的跟腱结扎线系于张力换能器的悬臂梁上,此连线应与桌面垂直。坐骨神经放在刺激电极上,保持神经与电极接触良好。调节一维微调器,将前负荷调至2~5g。 2.4实验观察 2.4.1刺激强度对骨骼肌收缩的影响 (1)刺激方式:单次,刺激波宽:0.1ms。 (2)开始记录,按“刺激”按钮,刺激强度从0.1V逐渐增大,强度增量0.01~ 0.05V,连续记录肌肉收缩曲线。刺激强度增加至肌肉出现最大收缩反应(肌肉收缩曲线不再增高)。 (3)测量每一次刺激强度所对应的肌肉收缩张力,确定阈强度和最大刺激强度。测量最大刺激时,肌肉的收缩期和舒张期时间。 2.4.2刺激频率对骨骼肌收缩的影响

实验三 二阶系统频率响应

实验三 二阶系统频率响应 一、实验目的 (1)学习系统频率特性响应的实验测试方法。 (2)了解二阶闭环系统中的对数幅频特性和相频特性的计算。 (3)掌握根据频率响应实验结果绘制波特图的方法。 (4)掌握欠阻尼二阶闭环系统中的自然频率、阻尼比对谐振频率、谐振峰值和带宽的影响及对应的计算。 二、实验设备 (1)XMN-2型学习机; (2)CAE-USE 辅助实验系统 (3)万用表 (4)计算机 三、实验内容 本实验用于观察和分析二阶系统瞬态响应的稳定性。 二阶闭环系统模拟电路如图3-1所示,它由两个积分环节(OP1和OP2)及其反馈回路构成。 图3-1 二阶闭环系统模拟电路图 OP1和OP2为两个积分环节,传递函数为s T s G i 1 )(-=(时间常数RC T i =)。二阶闭环系统等效结构图如图3-2所示。 图3-2 二阶闭环系统等效结构图 该二阶系统的自然振荡角频率为RC T n 11==ω,阻尼为i f R R K 22= =ζ。 四、实验步骤 (1)调整Rf=40K ,使K=0.4(即ζ=0.2);取R=1M ,C=1μ,使T=1秒(ωn=1/1)。 (2)输入信号位)sin(t X ω=,改变角频率使ω分别为 0.2,0.6,0.8,0.9,1.0,1.2,1.6,2.0,3.0rad/s 。稳态时,记录下输出响应)sin(φω+=t Y y 五、数据采集及处理 输出信号幅值Y 输出信号初相φ L(ω) φ(ω) ω(rad/s) T 0.2 0.6 0.8 0.9 1.0 1.2

1.6 2.0 3.0 六、实验报告 1、绘制系统结构图,并求出系统传递函数,写出其频率特性表达式。 2、用坐标纸画出二阶闭环系统的对数幅频、相频曲线(波特图)。 3、其波特图上分别标示出谐振峰值(Mr)、谐振频率(ωr)和带宽频率(ωb)。 4、观察和分析曲线中的谐振频率(ωr)、谐振峰值(Mr)和带宽(ωb),并与理论计算值作对比。

骨骼肌的强直收缩实验报告记录

骨骼肌的强直收缩实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

刺激参数对 骨骼肌 收缩的影响实验 专业:生物科学 班级:周三下午班 学号:13941202 姓名:张优 刺激参数对骨骼肌收缩的影响实验

一.实验内容 1.刺激频率对骨骼肌收缩的影响。 2.肌肉兴奋-收缩时相关系(包括单刺激和频率递增刺激两种模式下肌肉兴奋与收缩时相关系)。 二.实验原理 1.刺激频率与骨骼肌收缩反应:运动神经元发放冲动的频率会影响骨骼肌的收缩形式和收缩强度。由于肌锋电位时程仅1~2ms,而收缩过程可达几十甚至几百ms,因而骨骼肌有可能在机械收缩过程中接受新的刺激并发生新的兴奋和收缩。新的收缩过程可以与上次尚未结束的收缩过程发生总和。 2.当骨骼肌受到频率较高的连续刺激时,可出现以这种总和过程为基础的强直收缩。如果刺激频率相对较低,总和过程发生于前一次收缩过程的舒张期,会出现不完全强直收缩;如提高刺激频率,使总和过程发生在前一次收缩过程的收缩期,就会出现完全性强直收缩。通常所说的强直收缩是指完全性强直收缩。 3.骨骼肌电兴奋与收缩的时相关系原理:骨骼肌兴奋在前,收缩在后。即在神经冲动的作用下,骨骼肌首先产生动作电位,然后发生收缩。在一次单收缩中,动作电位时程仅数毫秒,而收缩过程可达几十甚至几百毫秒。收缩的时程比兴奋的时程大很多。 三.实验装置 1.材料:青蛙一只 2.试剂:任氏液

3.器材:张力换能器(双凹夹和肌动器)、支架、玻璃针、镊子、手术剪、普通剪刀、神经剪刀、绳子、蜡盘、培养皿、胶头滴管、铜锌弓、生理信号采集系统、电脑、电极线、引导肌电电极。 刺激频率对骨骼肌收缩的影响实验装置图肌肉兴奋-收缩时相关系实验装置图 四.实验操作 (一)剥制坐骨神经-腓肠肌标本 1.处死青蛙:将探针在枕骨大孔处垂直插入,先是左右摆动探针以横断脑和脊髓的联系,再将探针向前方插入颅腔,旋转并摆动探针以捣毁青蛙的脑组织。将探针转向后方并插入脊椎管内。 2.除去青蛙上肢:将动物腹位放在蜡盘上。在两前肢的下方将皮肤做环周切开。用带齿镊或手撕去前肢以下的全部皮肤。剪开腹壁,在尾杆骨上方2~3节脊椎处,拦腰剪断脊柱和上半段蛙体。弃掉蛙体上半段后的标本置于盛有任氏液的培养皿中。 3.分离神经和腓肠肌:取一腿放于蛙板上,将标本背侧向上放置。顺神经走向剪去沿途的小分支,将神经从半膜肌和股二头肌的肌缝中分离出来。再使标本腹面向上,沿神经向腰部的走向,用玻璃针小心

实验二:频率响应测试

成绩 北京航空航天大学 自动控制原理实验报告 院(系)名称自动化科学与电气工程学院 专业名称自动化 学生学号13191006________ 学生________ 万赫__________ 指导老师_____ 王艳东 自动控制与测试教学实验中心

实验二频率响应测试 实验时间2015.11.13 实验编号30 同组同学无 一、实验目的 1、掌握频率特性的测试原理及方法 2、学习根据所测定出的系统的频率特性,确定系统传递函数的方法 目的。 二、实验容 1. 测定给定环节的频率特性。 2. 系统模拟电路图如下图: 系统结构图如下图:

系统的传递函数: 取R=100KΩ,则G(s)=错误!未找到引用源。 取R=200KΩ,则G(s)=错误!未找到引用源。 取R=500KΩ,则G(s)=错误!未找到引用源。 若正弦输入信号为Ui(t)=A1Sin(ωt),则当输出达到稳态时,其输出信号为 Uo(t)=A2Sin(ωt+ψ)。改变输入信号频率f=错误!未找到引用源。值,便可测得二组A1/A2和ψ随f(或ω)变化的数值,这个变化规律就是系统的幅频特性和相频特性。 三、实验原理 1. 幅频特性即测量输入与输出信号幅值A1及A2,然后计算其比值A2/A1。 2. 实验采用“沙育图形”法进行相频特性的测试。 设有两个正弦信号: X(ωt)=XmSin(ωt) ,Y(ωt)=YmSin(ωt+ψ) 若以X(t)为横轴,Y(t)为纵轴,而以ω作为参变量,则随着ωt的变化,X(t)和Y(t)所确定的点的轨迹,将在X-Y平面上描绘出一条封闭的曲线。这个图形就是物理学上成称

刺激强度、频率对骨骼肌收缩的影响实验报告

实验一刺激强度、频率对骨骼肌收缩的影响实验报告一实验目的 1、观察不同刺激强度和刺激频率对骨骼肌收缩的影响。 2、了解阈刺激、阈上刺激、最大阈刺激的概念和意义。 3、了解单收缩、不完全强直收缩,完全强直收缩的概念和意义。 二实验原理 由许多肌纤维组成的腓肠肌在受到不同强度的刺激时引起不同反应。刺激强度过小时发生阈下刺激(subthreshold stimulus),引起肌肉发生收缩反应的最小刺激强度为阈刺激(threshold stimulus)。使肌肉发生最大收缩反应的最小刺激强度为最适刺激强度。 肌肉组织对阈上刺激发生的单收缩的过程分为:潜伏期、收缩期、和舒张期。 同一强度的阈上刺激相继作用于神经-肌肉标本,根据刺激间隔与单收缩时程的关系会产生不同的现象;当同一强度的阈上刺激连续作用于标本时,根据后一收缩与前一收缩发生的时期关系可出现:强直收缩、不完全强直收缩和完全强直收缩。 三实验器材 蟾蜍,粗剪刀,玻璃分针,探针,木锤,镊子,培养皿,任氏液,娃板,保护电极,肌槽,张力转换器(100g),锌铜弓,微机生物信号处理系统。 四实验步骤 制作标本(观看视频):毁脑脊髓、下肢标本制备、腓肠肌标本制备、连接仪器。 (一)1打开计算机软件中的模拟实验。 2打开电源,对蟾蜍腓肠肌进行单刺激,频率为1HZ,电压由逐渐增大到,记录 下每次增大电压后的收缩力。每个电压下刺激3次,记录数据。 3将图表截下来并画出数据表格进行分析。 (二)1打开计算机软件中的模拟实验。 2打开电源,对腓肠肌进行连续刺激,即使腓肠肌进行完全强直收缩。电压不变,频率由1HZ逐渐增加到12HZ,记录下每次增大频率之后的收缩力。 3将图表截下来并画出数据表格进行分析。 五结果 图1蟾蜍腓肠肌连续刺激时刺激频率和收缩力的关系 表1 蟾蜍腓肠肌单刺激时刺激强度和收缩力的关系 固定频率1HZ

刺激强度 刺激频率对骨骼肌收缩的影响一实验报告

实验报告实验人员:孙芳班次:7年制2班组别:2 日期:2014/9/24 指导老师:沈建新 小组成员:XXX,YYY,ZZ 试验号和题目:一、刺激强度、刺激频率对骨骼肌收缩的影响 实验目的:1、了解并熟悉计算机生物机能实验系统的组成和基本使用方法 2、制备具有生理活性的坐骨神经-腓肠肌标本 3、观察记录刺激强度、刺激频率对骨骼肌收缩的影响 实验对象:蛙 实验药品与器材:任氏液;生物信号采集系统,蛙类手术器械,蛙捣毁针,保护电极,张力换能器,万能支架、连接导线等。 实验方法: 1、坐骨神经-腓肠肌标本的制备:1) 洗干净实验动物 2) 双毁 髓::找到枕骨大孔处将刺蛙针刺入1-2mm,分别捣损脑组织和脊 髓。3)剥制后肢,分离一侧后肢 4) 分离坐骨神经,穿线备用 5) 游离腓肠肌,肌腱结扎备用 6) 标本检验。 2、连接实验装置:将换能器的输出线接至BL-420F生理记录装 置的1通道,保护电极接至电脉冲输出通道。然后把制备好的坐 骨神经-腓肠肌标本棉线的另一端接在张力换能器上,将坐骨神 经通过保护电极接至电脉冲刺激输出通道,而腓肠肌肌腱端的棉 线与张力换能器簧片相连,保持适度松紧并与桌面垂直。 3、2、实验记录:开机后进入实验先用单刺激,找出阈强度、

最适刺激强度;然后固定最适刺激强度,用连续单刺激,找出出现完全强直收缩时的最小刺激频率。 实验结果: 1、 刺激强度与肌肉的收缩关系实验 图1 刺激强度与骨骼肌收缩的关系(蛙坐骨神经-腓肠肌标本) A.肌肉收缩强度(右侧为标尺); B.刺激标记(单位为V ) 图片中,在低于0.090V 的电压刺激时,肌肉不发生收缩,说明在较低的电位刺激时,并不能引起肌肉发生收缩反应。而随着刺激强度的增大, 4.0s 8.0g A B

相关文档
最新文档