差分放大器仿真

差分放大器仿真
差分放大器仿真

《电子技术计算机绘图基础》

题目:差分放大器仿真

学院:通信与信息工程学院

专业班级:电子信息工程

学号:

学生姓名:

指导教师:

差分放大器的仿真

一、设计描述

1、设计目的和任务

1).熟悉差分放大器的工程估算,掌握差分放大器静态工作点的调整与测试方法。 2).能够掌握差分放大器性能指标的测试方法。 3).能够掌握multisim 和protel 的基本用法,做出Multisim 仿真图、Protel 原理图、PCB 板,从而加深理解差分放大器的性能特点。

4).熟悉常用电子器件的类别、型号、规格、性能及其使用范围,能查阅有关的电子器件图书。 2、原理分析

(1)基本原理

差分放大器是一种特殊的直接耦合放大器,它能有效的抑制零点漂移;它的基本性能是放大差模信号、抑制共模信号;常用共模抑制比来表征差分放大器对共模信号的抑制能力;稳流电阻的增加可以提高共模抑制比;但稳流电阻不能太大,因此采用恒流源取代稳流电阻,从而进一步的提高共模抑制比。 (2)静态工作点的调整

实验电路通过调节电位器R p 使两个三极管的集电极电压相等来调节电路的对称性,完成电路的调零。 (3)静态工作点的测量

静态工作点的测量就是测出三极管各电极对地直流电压V BQ 、V EQ 、V CQ ,从而计算得到V CEQ 和V BEQ 。而测量直流电流时,通常采用间接测量法测量,即通过直流电压来换算得到直流电流。这样即可以避免更动电路,同时操作也简单。

EQ

CQ CEQ V V V -= EQ

BQ BEQ

V V V -= e

EQ EQ

R V I = C

CQ CC CQ

)(R V V I -=

(4)电压放大倍数的测量

差分放大器有差模和共模两种工作模式,因此电压放大倍数有差模电压放大倍数和共模电压放大倍数两种。

在差模工作模式下,差模输出端U od1是反相输出端,U od2是同相输出端,则差模电压放大倍数为:

ud2

ud1ud A A A += ud2

i

od2i

od1ud1

A U U U U A -=-

==

在共模工作模式下,共模输出端U oc1、U oc2均为反相输出端,则共模电压放大倍数为:

uc2

uc1uc A A A -= uc2

i

oc2i

oc1uc1

A U U U U A ==

=

电路的共模抑制比K CMR 为:

ud CM R uc

A K A =

或 ud CM R uc

20lg

dB A K A =

(5)输入电阻的测量

差分放大器差模输入电阻R i 远小于测量仪表的内阻,所以测试采用图1-2所示的测试方法。

在信号源和电路的输入端之间串接一个电阻R ,将微小的输入电流I i 转换成电压进行测量;在输出波形不失真的情况下输入信号U i ,测量出U s 及U i ,则输入电阻为:

R

U U U R

U U U I U R i

S i i S i

i

i i )(-=

-=

=

可以证明,只有在s i s

2

1U U U =

-时测量误差最小;因此

R ≈R i 。

(6)输出电阻的测量

差分放大器差模单端输出的输出电阻R o 的测量采用图1-3所示的测试方法。

开关K 打开时测出U o ,开关K 闭合时测出U oL ,测输出电阻为:

L

oL

oL

o L

oL oL o o R U U U R U U U R -=

-=

只有在o

oL o

2

1U U U =-时测量误差最小R L ≈R o 。

二、Multisim 仿真

1、在Multisim9中创建Multisim Design File 。 2:在窗口中绘制差分放大器仿真电路图。电路图如下:

图1-3 输出电阻测量原理图

图1-2 输入电阻测量原理图

如图所示,图中开关k2所打向的方向为恒管,另一个方向为恒阻。而开关k1现在所示共模情况,所示波形应为同向,而打开后为差模情况,波形应为反向。现在对各种情况进行特例分析,分析如下:(为了方便起见,将示波器的输入1用蓝色线,输入2用红色线)

一、恒阻:

1、开关打开:

模拟图如下:

2、开关闭合:

模拟图如下:

二、恒管:如同上述恒阻波形一样。

三、Protel 原理图

1、在Protel 2004中创建Altium Schematic Document文件,并绘制差分放

大器电路图。图形如下:

四、PCB

在Protel 2004中创建PCB文件,并把绘制好的原理图导入PCB文件,并经过规划电路板、器件布局、自动布线后,PCB板截图效果如下:

PCB板正面3D效果图如下:

五、总结与体会

通过本次设计,我加深了对知识的了解,对差分放大器有了进一步的了解:

1. 了解了查分放大器的基本知识,通过具体的电路图,掌握了简单电路元器

件的装配。

2. 对multisim有了一定的认识,基本了解其中的元件及应用,能够用其进行

电路设计模拟。

3.熟悉了PROTEL 2004从绘制原理到制作PCB整个设计流程。

六、参考书目

阎石《数字电子技术基础》高等教育出版社2008年12月

杨欣《电路设计与仿真-基于Multisim8与Protel2004》清华大学出版社2006年1月

全差分运算放大器设计

全差分运算放大器设计 岳生生(200403020126) 一、设计指标 以上华0.6um CMOS 工艺设计一个全差分运算放大器,设计指标如下: ?直流增益:>80dB ?单位增益带宽:>50MHz ?负载电容:=5pF ?相位裕量:>60度 ?增益裕量:>12dB ?差分压摆率:>200V/us ?共模电压:2.5V (VDD=5V) ?差分输入摆幅:>±4V 二、运放结构选择

运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。如图2所示;(b )折叠共源共栅,folded-cascode 。如图3所示;(c )共源共栅,telescopic 。如图1的前级所示。本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的,DSAT N V 之和小于0.5V ,输出端的所有PMOS 管的,DSAT P V 之和也必须小于0.5V 。对于单级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该 要求,因此我们采用两级运算放大器结构。另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。 三、性能指标分析 1、 差分直流增益 (Adm>80db) 该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益 1 3 5 11 1357 113 51 3 57 5 3 ()m m m o o o o o m m m m o o o o m m g g g g g g G A R r r r r g g r r r r =-=-=-+ 第二级增益 9 2 2 9112 9 9 11 ()m o o o m m o o g g G A R r r g g =-=-=- + 整个运算放大器的增益: 4 1 3 5 9 1 2 1 3 5 7 5 3 9 11 (80)10m m m m overall o o o o m m o o dB g g g g A A A g g g g r r r r = = ≥++ 2、 差分压摆率 (>200V/us ) 转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。 定义转换速率SR :

差分编码器设计和高频小信号放大器的设计

专业课程设计任务书 第一周课题(四选一) 1.1M调幅接收机设计 要求:中心频率f0=1MHz,低频信号频率f m=10kHz。 2.锁相频率合成器设计 要求:锁相环使用C4046芯片,频率范围为10k~100k,步进10k。 3.LC低通滤波器设计 要求:设计一五阶Butterworth低通滤波器,截止频率为1.6MHz,输入、输出阻抗为50Ω 4.差分编码器(码发生器和编码器)设计 要求:码发生器输出一n=4的m序列伪码,码元传输速率10kB 第二周课题(三选一) 5.FSK调制解调系统设计 要求:码元传输速率1kB,载波频率分别为300kHz和600kHz 6.高频小信号放大器设计 要求:中心频率f0=1MHz,通频带30kHz<2Δf0.7<50kHz,电压增益不低于15dB 7.高频LC振荡电路设计制作 要求:(1)设计一个LC正弦波振荡电路 (2)电路采用单电源12V (3)可采用考毕兹,克拉波或西勒振荡器电路稳定输出频率 (4)振荡频率在1-2MHz连续可调 (5)在频率范围内输出峰峰值大于4V且无明显失真

课题一 课程设计报告内容索引 内容页码 1、课程设计题目 (5) 2、主要技术指标(电路功能及其精度等) (5) 3、方案论证及选择 (5) 4、系统组成框图 (8) 5、单元电路设计及说明 (9) 6、总体电路图 (10) 7、元器件列表 (10) 8、总结 (10) 9、参考文献 (11)

一、课程设计题目 差分编码器设计 要求:码发生器输出N=4的序列伪码,码元传输速率10KB 二、主要技术指标 1、码发生器输出n=4的序列伪码 2、码元传输速率为10KB 三、方案论证及选择 方案一 1基本原理: DQPSK(Differential QuadriPhase-Shift Keying,差分四相正交相移健控)是在QPSK(四相正交绝对调相)的基础上作的改进,它克服了QPSK信号载波的相位模糊问题,用相邻码元之间载波相位的相对变化来表示两位二进制数字信息。常用的DQPSK系统的方框图如图1所示,信息源来的信码先通过串/并变换电路分成两路并行二进制信号,再送入差分编码器实现两路二进制(即四进制)的差分编码。由于格雷码有其自身的优点,即判决接收到一个信号码元时,如发生错误,最容易判为它相邻的信号码元,即最多错一比特,所以送入QPSK四相绝对调制器要用格雷码。由于差分编码器是对自然二进制作差分编码,所以要在差分编码器和QPSK调制器之间做一个二-格变换电路,把双比特自然二进制码变换为双比特格雷码,再输入QPSK调制器。

全差分运算放大器设计

全差分运算放大器设计 岳生生(0126) 一、设计指标 以上华CMOS 工艺设计一个全差分运算放大器,设计指标如下: 直流增益:>80dB 单位增益带宽:>50MHz 负载电容:=5pF 相位裕量:>60度 增益裕量:>12dB 差分压摆率:>200V/us 共模电压:(VDD=5V) 差分输入摆幅:>±4V 运放结构选择

运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。如图2所示;(b )折叠共源共栅,folded-cascode 。如图3所示;(c )共源共栅,telescopic 。如图1的前级所示。本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的 ,DSAT N V 之和小于,输出端的所有PMOS 管的 ,DSAT P V 之和也必须小于。对于单 级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该要求,因此我们采用两级运算放大器结构。另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。 性能指标分析 差分直流增益 (Adm>80db) 该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益 1 3 5 1 1 1 3 5 7 1 1 3 5 1 3 5 7 5 3 ()m m m o o o o o m m m m o o o o m m g g g g g g G A R r r r r g g r r r r =-=-=- +P 第二级增益9 2 2 9 11 2 9 9 11 ()m o o o m m o o g g G A R r r g g =-=-=-+P 整个运算放大器的增益: 4 1 3 5 9 1 2 1 3 5 7 5 3 9 11 (80)10m m m m overall o o o o m m o o dB g g g g A A A g g g g r r r r == ≥++ 差分压摆率 (>200V/us ) 转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。 定义转换速率SR : 1)、输入级: max 1max |2| Cc out DS C C d SR dt I v I C C = = = 单位增益带宽1m u C g C ω= ,可以得到 1m C u g C ω =

差分放大器设计

第4节 差分放大器设计 [学习要求] 掌握差分放大器的主要特性参数及其测试方法;学会设计具有恒流源的差分放大器及电路的调试技术。 [重点与难点] 重点:差分放大器的传输特性及差模特性。 难点:恒流源的镜像电流;输入输出信号的连接方式对性能的影响。 [理论内容] 一、具有恒流源的差分放大器 具有恒流源的差分放大器,应用十分广泛。特别是在模拟集成电路中,常作为输入级或中间放大级,电路如图1所示。其中,T 1、T 2称为差分对管,常采用双三极管如5G921或BG319等,它与电阻R Bl 、R B2、R Cl 、R C2及电位器RP 共同组成差分放大器的基本电路。T 3、T 4与电阻R E3、R E4、R 共同组成恒流源电路,为差分对管的射极提供恒定电流。均压电阻R 0I 1、R 2给差分放大器提供对称差模输入信号。晶体管T 1与T 2、T 3与T 4的特性应相同,电路参数应完全对称,改变RP 可调整电路的对称性。由于电路的这种对称性结构特点及恒流源的作用,无论是温度的变化,还是电源的波动(称之为共模信号),对T 1、T 2两管的影响都是一样的。因此,差分放大器能有效地抑制零点漂移。 图1具有恒流源的差分放大器 1、输入输出信号的连接方式

如图1所示,差分放大器的输入信号与输出信号可以有4种不同的连接方 .id V . od V 式: ·双端输入—双端输出连接方式为①—A'—A ,②—B'—B ;③—C ,④—D 。 ·双端输入—单端输出连接方式为①—A'—A ,②—B'—B ;③、④分别接一电阻 RL 到地。 ·单端输入—双端输出连接方式为①—A ,②—B —地:③—C ,④—D 。 ·单端输入—单端输出连接方式为①—A ,②—B —地:③、④分别接一电阻R L 到地。 连接方式不同,电路的特性参数有所不同。 2、静态工作点的计算 静态时,差分放大器的输入端不加信号。对于恒流源电路的电流值 .id V 0 4444422I I I I I I I Q C Q C Q C Q C Q B R ≈≈+=+=β (1) 故称为0I R I 的镜像电流,其表达式为 407.0E EE R R R V V I I +??== (2) 上式表明,恒定电流主要由电源电压0I EE V ?及电阻R 、4E R 决定 对于差分对管T1、T2组成的对称电路,则有 2021I I I Q C Q C == (3) 21 01121C CC C Q C CC Q C Q C R I V R I V V V ?=?== (4) {}(){}mA I mV mA I mV r mA mA E be ?++?=?++?=226130026)1(3000ββ (5) 可见差分放大器的静态工作点,主要由恒流 源电流的大小决定 0I 二、主要特性参数及其测试方法 1、传输特性 传输特性是指差分放大器在差模信号输

差分放大器设计的实验报告

设计课题 设计一个具有恒流偏置的单端输入-单端输出差分放大器。 学校:延安大学

一: 已知条件 正负电源电压V V V V EE cc 12,12-=-+=+;负载Ω=k R L 20; 输入差模信号mV V id 20=。 二:性能指标要求 差模输入电阻Ω>k R id 10;差模电压增益15≥vd A ;共模抑制 比dB K CMR 50>。 三:方案设计及论证 方案一:

方案二

方案论证: 在放大电路中,任何元件参数的变化,都将产生输出电压的漂移,由温度变化所引起的半导体参数的变化是产生零点漂移的主要原因。采用特性相同的管子使它们产生的温漂相互抵消,故构成差分放大电路。差分放大电路的基本性能是放大差模信号,抑制共模信号好,采用恒流源代替稳流电阻,从而尽可能的提高共模抑制比。 论证方案一:用电阻R6来抑制温漂 ?优点:R6 越大抑制温漂的能力越强; ?缺点:<1>在集成电路中难以制作大电阻; <2> R6的增大也会导致Vee的增大(实际中Vee不

可能随意变化) 论证方案二 优点:(1)引入恒流源来代替R6,理想的恒流源内阻趋于无穷,直流压降不会太高,符合实际情况; (2)电路中恒流源部分增加了两个电位器,其中47R的用来调整电路对称性,10K的用来控制Ic的大小,从而调节静态工作点。 通过分析最终选择方案二。 四:实验工作原理及元器件参数确定 ?静态分析:当输入信号为0时, ?I EQ≈(Vee-U BEQ)/2Re ?I BQ= I EQ /(1+β) ?U CEQ=U CQ-U EQ≈Vcc-I CQ Rc+U BEQ 动态分析 ?已知:R1=R4,R2=R3

全差分放大器设计

对于全差分放大器,一般可以得到更大的swing (由于差分信号),同时可以实现对共模干扰、噪声以及偶数阶的非线性的抑制;但其需要有两个匹配的反馈网络,以及共模反馈电路 顺便提一下,对于全差分的折叠共源共栅(folded cascode)放大器,需要注意 转换速率(正向与负向)对输入对差分对的尾电流源和cascode电流源的考虑 非主极点的位置–输入对管的drain节点(注意全差分没有镜像极点的问题..),如果考虑PMOS输入的结构,将会折叠到n管的cascode,从而减小此节点阻抗,提高此非主极点的频率;但是P输入结构亦有其问题,如直流增益和cmfb电路的速度(考虑cmfb控制的为cascode的pmos电流源) 关于共模反馈CMFB 从反馈环路来看,共模的稳定问题来源于闭环的共模增益:由于输入差分对的尾电流源的local-feedback,通常共模增益较小,导致运放无法控制其输出共模点;通过CMFB共模反馈电路,可以提高共模反馈环路的增益,以稳定共模信号。 设计CMFB需考虑补偿以减小环路的稳定时间(settling time)和提高稳定性。 从性能上,我们希望共模反馈的单位增益带宽足够大,但由于cmfb的环路相较于差模通路可能有更多高频极点,故此在一定的功耗要求下其UGB一般比较难做的高,有书中提到可以将其设计为差模UGB 的1/3 一般共模反馈的方法是控制放大器的电流源,这里如果是folded-cascode的结构,可以考虑用cmfb控制cascode的电流源而不是输入差分对的电流源—-因其在共模环路中有较少的节点–>更容易补偿等..(另一种考虑是控制尾电流源可能导致共模增益的问题) 另外,对于cmfb控制的尾电流源,常见将尾电流源分为两半,其中之一由cmfb控制,另一半接恒定偏置电流;这种结构的具体分析可见Gray书12.4.2节的内容,简单来说,single-stage的opamp中控制尾电流源的cmfb结构,其UGB主要为gmt/CL, 其中gmt为尾电流源的跨导,这里拆分尾电流源来减半cmc共模控制的部分,这样UGB减小,即缩减带宽来提升共模反馈环路的相位裕度,当然cmfb的增益相应也减小了;另外恒定偏置部分也可帮助共模电压的初始建立,减小cmfb大的扰动。 具体的,共模反馈可以分为连续时间和开关电容两类 连续时间的共模反馈 一般的问题是信号幅度的限制和共模信号干扰,具体的共模反馈的方法: 1.电阻分压resistive-divider (如下左图) 电阻和cm-sense amplifier的输入电容会引入一个极点,可以通过在电阻上并联电容的方法,引入一个左半平面零点,来减小高频极点的影响

电流镜负载的差分放大器设计

《IC课程设计》报告——模拟部分电流镜负载的差分放大器设计

摘要 在对单极放大器与差动放大器的电路中,电流源起一个大电阻的作用,但不消耗过多的电压余度。而且,工作在包河区的MOS器件可以当作一个电流源。 在模拟电路中,电流源的设计是基于对基准电流的“复制”,前提是已经存在一个精确的电流源可以利用。但是,这一方法可能引起一个无休止的循环。一个相对比较复杂的电路被用来产生一个稳定的基准电流,这个基准电流再被复制,从而得到系统中很多电流源。而电流镜的作用就是精确地复制电流而不收工艺和温度的影响。在典型的电流镜中差动对的尾电流源通过一个NMOS镜像来偏置,负载电流源通过一个PMOS镜像来偏置。电流镜中的所有晶体管通常都采用相同的栅长,以减小由于边缘扩散所产生的误差。而且,短沟器件的阈值电压对沟道长度有一定的依赖性。因此,电流值之比只能通过调节晶体管的宽度来实现。而本题就是利用这一原理来实现的。 目录 1设计目标 (1) 2相关背景知识 (2) 3设计过程 (6) 3.1 电路结构设计 (6) 3.2 主要电路参数的手工推导 (6) 3.3 参数验证(手工推导) (7) 4 电路仿真 (9) 4.1 用于仿真的电路图 (9) NMOS: (9) PMOS (9) 整体电路图 (10) 4.2 仿真网表(注意加上注释) (10) 4.3 仿真波形 (13) 5 讨论 (17) 6 收获和建议 (17) 参考文献 (19)

1设计目标 设计一个电流镜负载的差分放大器,参考电路图如下:

2相关背景知识 据题目所述,电流镜负载的差分放大器的制作为0.35um CMOS 工艺,要求在5v 的电源电压下,负载电容为2pF 时,增益带宽积大于25MHz ,低频开环增益大于100,同时功耗和面积越小表示性能越优。 我们首先根据0.35um CMOS 工艺大致确定单个CMOS 的性能,即在一定值的W/L 下确定MOS 管在小信号模型中的等效输出电阻和栅跨导,然后记下得到的参数并将其带入到整体电路中计算,推导电流镜负载的差分放大器电路中的器件参数,例如,小信号模型的增益、带宽、功耗等,再分析是否满足题目中的各项指标的要求。若不满足,则依据摘要理所说的,调节晶体管的宽度,然后用调整后的参数进行仿真、验证,直到符合要求为止。 相关背景知识: 1. 差分式放大器 差分式放大器是由两个各项参数都相同的三端器件(包括BJT 、FET )所组成的差分式放大电路,并在两器件下端公共接点处连接一电流源。差分式又分为差模和共模信号:输入电压Vid 为Vi1和Vi2的差成为共模电压;另外,若输入电压Vic 为VI1和Vi2的算术平方根,则称为共模电压。当输入电压是共模形式时,,即在两个输入端各加入相同的信号电压,在差分放大电路中,无论是温度变化,还是电源波动引起的变化,其效果相当于在两个输入端加入了共模信号,两输出端输出的共模电压相同,故双端输出时输出电压为零;当输入电压是差模形式时,即在电路的两个输入端各加一个大小相等、极性相反的信号电压,一管电流将增加,另一管电流则减小,所以在两输出端间有信号电压输出。而差分放大器正是利用共模输入的特点来克服噪声信号和零点漂移的。此题要求用双端差模信号输入,单端输出,相应的计算公式如下: 1. 差模输入电压:12 id i i v v v =- 2. 共模输入电压:() 122 i i ic v v v += 3. 差模输出电压: 12 od o o v v v =- 4. 共模输出电压:12 2 o o oc v v v += 5. 双端输入——单端输出的差模电压增益: 2(2|| v d m d s d s A g r r = 6. 双端输入——单端输出的等效栅跨导:

全差分放大器的概念及其优势

全差分放大器的概念及其优势 目前,世界上大多数的高速模数转换器(ADC)都具有差分输入。这些ADC被广泛的运用于多种终端的应用当中,但不仅仅局限于通信无线基础设施和回传,以及测试与测量示波器和频谱分析仪。为了支持这一输入架构,工程师必须设计与ADC 进行差分对接的信号链。 为了获得最佳性能,用户必须在信号链上选择一个balun(平衡不平衡变换器),虽然这可能会导致某些应用中的耦合问题。然而,耦合问题并不是总是发生,特别是在某些需要DC分量的测试和测量应用中更是如此。全差分放大器(FDA)是一种多用途的工具,它可以替代balun(或与它一同使用)的同时,并且提供多种优点。与传统的使用单端输出的放大器相比,电路设计人员在使用由FDA实现的全差分信号处理频谱分析仪时,能够增加电路对外部噪声的抗扰度,从而将动态范围加倍,并且减少偶次谐波。 在这篇文章中,我们会回顾一下全差分放大器(FDA)的基本知识,FDA的重要技术规格,以及这些技术规格的含义,并且谈一谈如何使用一个balun类型的FDA,从而实现信号链与额外性能的对接。 FDA是什么? 想象一下,如果你不使用高级器件——FDA集成电路来驱动差分ADC。除了balun,一个解决方案就需要通过两个运算放大器来提供差分信号,其中一个运算放大器提供正(VIN+)输入信号,另外一个提供负(VIN-)输入信号。如果想要在运算放大器(op amp)外部建立适当增益,你将总共需要使用8个电阻器,这设计起来将会十分复杂。现在,工程师只需要一半数量的电阻器和一个IC,就可以使用一个FDA来提供ADC的单端至差分接口和一个差分至差分接口。同时,这个IC无需balun 便可以使得DC分量导通,这一点不同于提供DC隔离的balun。这个的关键点是在许多应用中需DC和低频的出色的频率响应。 那么,FDA到底是什么呢?基本上来说,FDA是具有两个放大器的器件。主差分放大器(从VIN至VOUT)由多个反馈路径和Vocm误差放大器组成,而Vocm误差放大器更多情况下被称为共模输出放大器。 我们先来讨论一下Vocm误差放大器。Vocm放大器在内部采样差分电压(VOUT+和VOUT–),并且将这个电压与施加到VOCM引脚上的电压相比较。通过一个内部反馈环路,Vocm放大器将Vocm误差放大器的“误差”电压(输入引脚间的电压)驱动为0,这样的话,VOUT_cm(图1)=Vocm。如果VOCM引脚保持在悬空的状态时,通常由一个内部分压器将偏置点的缺省值设定为VCC/2(电源间的中间位置)。(VOCM)引脚上的Vocm设置会影响到总体输出摆幅(稍后讨论)。这些特性不同于具有单端

模电设计-电流镜负载的差分放大器..

模拟集成电路课程设计报告电流镜负载的差分放大器

摘要: 差分放大器是最重要的电路发明之一,它可以追溯到真空管时代。有于差动放大具有很多有用的特性,像对差模输入信号的放大作用和对共模输入信号的抑制作用,所以它已经成为当代高性能模拟电路和混合信号电路的主要选择。电流源在差分放大器中广泛应用,电流源起一个大电阻的作用,但不消耗过多的电压余度。在模拟电路中,电流源的设计是基于对基准电流的“复制”,稳定的基准电流则由一个相对复杂的电路来产生。在电流镜中,只需调整MOS管的W/L就能获得不同的、精确的复制电流。在本课程设计中,将根据典型电流镜负载差动对中,增益、带宽与MOS管W/L之间的关系,获得满足要求的放大器。

一.设计目标 ................................................................................................................................ - 1 - 二.单个MOS管的的特性 ...................................................................................................... - 2 - 2.1 、NMOS特性仿真...................................................................................................... - 2 - 2.2 、PMOS特性仿真 ...................................................................................................... - 4 - 三.电路设计与参数推导.......................................................................................................... - 6 - 3.1电路设计:.................................................................................................................... - 6 - 3.2手工推导参数................................................................................................................ - 7 - 四.差分放大器仿真 ................................................................................................................. - 9 - 4.1、HSPICE仿真:......................................................................................................... - 9 - 4.2、器件参数修改........................................................................................................... - 10 - 4.3 仿真波形..................................................................................................................... - 12 - 4.2、共模电平的范围:................................................................................................... - 13 - 4.3 数据对比..................................................................................................................... - 16 - 五.总结 ...................................................................................................................................... - 17 -

差分输入-输出低功耗仪表放大器

差分输入/输出低功耗仪表放大器 目前所有市售的三运放仪表放大器(in-amp)仅提供了单端输出,而差分 输出的仪表放大器可使许多应用从中受益。全差分仪表放大器具有其他单端输 出放大器所没有的优势,它具有很强的共模噪声源抗干扰性,可减少二次谐波 失真并提高信噪比,还可提供一种与现代差分输入ADC连接的简单方式。 图1显示了低功耗全差分仪表放大器电路的实现方式,该仪表放大器由 OP2177精密低功耗双运算放大器(IC1)和AD8476全差分放大器/ADC驱动 器(IC2)级联而成。该复合放大器消耗的电源电流不超过1.2mA,输入噪声 为11nV/√Hz,最大输入偏置电流为2nA,最大输入参考失调电压为 75mV,最大输入参考失调电压漂移为0.9mV/K. 图1:低功耗全差分仪表放大器 OP2177与增益设定电阻器RF1、RF2和RG构成了仪表放大器的前置放大器,并将放大器的电压增益设置为:若RF1=RF2,则:AD8476充当仪表放大器的 减法器,因此它接收来自前置放大器的放大信号,抑制其共模分量并传递其差 模分量。AD8476的共模抑制比(CMRR)为90dB,即使在单位增益下也可使 仪表放大器的CMRR达到90dB.增益变高时,若参考输入,共模输入信号所引 起的误差在前置放大器电压增益的作用下进一步减小。 由于仪表放大器采用了三运放拓扑结构,分立电阻器RF1、RF2及RG之间 的匹配决定着放大器的增益精度(这是一个易于校准的参数),但不会限制放 大器的CMRR.AD8476同时还实现了仪表放大器的差分输出驱动,使其能够直 接驱动采样率高达500kSa/s的差分输入ADC.此外,可选网络RZ-CZ构成了一 个单极点低通滤波器,可被用作抗混叠滤波器。 驱动AD8476的VOCM引脚即可设置仪表放大器的输出共模电压。若该引

全差分运放

全差分放大器(转自小辉辉的博客) Title: Fully differential amplifiers By Jim Karki Systems Specialist, High-Speed Amplifiers Introduction 专业音频工程师通常使用术语“平衡”来指代差分信号传输。这也告知了我们对称的概念,同时它在差分系统中也是非常重要的。在差分系统中,驱动器有平衡的输出,传输线有平衡的特性,并且接收器有平衡的输入。 通常由两个方法用来处理差分信号:电子法和变压器法。 1. 电子的方法有着如成本低、尺寸和重量小以及优异的低频、直流响应等特点。 2. 变压器提供的好处是优异的共模抑制比、直流隔离、无功耗(效率几乎为100%),并且抗恶劣的EMC环境干扰。 本文着重介绍对于差分信号情况下的集成全差分放大器。这里将讨论一些基本的操作,如怎样将单端信号转换成差分信号以及怎样搭建有源抗混叠滤波器。 What is an integrated, fully differential amplifier? 一个集成的全差分放大器在框架上与标准运算放大器是非常相似的。 图1显示了一个简化版的集成全差分放大器。Q1和Q2是输入差分对。在一个标准运算放大器中,输出电流是只从输入差分对的一边取出的,并且输入电流是用来建立一个单端输出电压的。在一个全差分放大器中,来自差分输入对两边的电流都是用于在由Q3/Q5集电极和Q4/Q6集电极处形成的高阻抗节点处建立电压的。这些电压然后被缓冲至差分输出OUT+和OUT-。 对于一阶近似,送到IN+和IN-的共模电压并没有使得流过Q1或者Q2的电流产生变化,因此没有产生输出电压;它被抑制了。共模输出电压不是由输入端控制的。VCM误差放大器通过对输入端采样、将其与VCM处的电压作比较并调节内部反馈的方式来控制共模

全差分放大器产品常见问题解答(ADI)

差分放大器AD813x常见问 题解答 编写人CAST (M) 版本号 2.0 2007-8-14 ------------------------------------------------------------------------------------------------------------ 本报告为Analog Devices Inc. (ADI) 中国技术支持中心专用,ADI可以随时修改本报告而不用通知任何使用本报告的人员。 如有任何问题请与china.support@https://www.360docs.net/doc/431554981.html,联系。 ------------------------------------------------------------------------------------------------------------

目录 1 ADI差分放大器AD813x产品简介 (1) 1.1 产品列表 (1) 1.2 差分信号的特点 (1) 1.3 AD813x差分放大器特点 (2) 1.4 参考资料 (3) 2 常见问题解答 (3) 2.1 如何计算差分放大器电路的增益,如何分析差分放大器电路? (3) 2.2 为什么电路的输出不正确? (3) 2.3 单端输入时的端接问题 (9)

1ADI差分放大器AD813x产品简介 1.1 产品列表 图1是AD813x差分放大器产品及其相关性能的选型表格。 AD8138AD8132AD8139AD8137 Quiescent Current20 mA10.7 mA21.5 mA 2.6 mA -3dB BW310 MHz360 MHz385 MHz75 MHz Slew Rate950 V/uS1000 V/uS540 V/uS375 V/uS Settling Time (2V)16nS (.01%)20 nS (.1%)55 nS (.01%)110nS (.02%) Voltage Noise 5 nV/rtHz8 nV/rtHz 2.25 nV/rtHz8.25 nV/rtHz Current Noise 2 pA/rtHz 1.8 pA/rtHz 2.1 pA/rtHz 1 pA/rtHz Distortion Freq = 5MHz 2nd -90 dBc 3rd -100 dBc 2nd -100 dBc 3rd -99 dBc SFDR 87 dB SFDR 89 dB RL = 800Ω (500 kHz) Input CM Range.3 to 3.2 V.35 to 3 V 1 to 4 V 1 to 4 V Output Current95 mA50 mA80 mA20 mA Output Swing Single-ended 2.9 Vp-p 3.0 Vp-p 4.6 Vp-p 4.0 Vp-p RL = 500ΩRL = 500ΩRL = 10KΩRL = 1KΩ *以上所有指标是单电源5V供电的条件下测得的。 1.2 差分信号的特点 V OUT,Differential V OUT, Single ended V S- S+ V OCM 图2 差分信号 1.差分信号是一对幅度相同,相位相反的信号。差分信号会以一个共模信号V ocm为 1

CMOS差分放大器

CMOS差分放大器 一、差分放大器的基本电路结构 CMOS差分放大器的基本电路结构如图(a)、(b)所示 二、工作原理 假设M3与M4完全一致,则有:ID3=ID4,即ID1=ID3=ID4。根据输入状态来分析该电路的工作原理:… (1)VGS1=VGS2,则M1与M2的电流相等,即有:ID1=ID2,所以ID4=ID2,此时的输出电流为Io=ID4-ID2=0。… (2)VGS1>VGS2,ID1>ID2,则ID4>ID2,输出电流Io=ID4-ID2>0。 (3)VGS1<VGS2,ID1<ID2,则ID4<ID2,输出电流Io=ID4-ID2<0。 且由于ID1+ID2=IS,所以ID1的增加量(或减小量)等于ID2的减小量(或增加量),这样输出电流Io等于差分对管的漏极电流ID1与ID2之差,它的最大电流值为IS,从而实现了差分放大器的差分输出信号转换成单端输出信号。 图(b)则是另一种形式的CMOS差分放大器,PMOS管M1与M2作为差分对管,NMOS 管M3与M5构成电流源电路,作为差分放大器的负载。差分放大器的工作电流由电流源IS 所提供,该电路的工作原理如同图(a)的电路结构一致。 三、电路分析——大信号分析 以处于饱和区的NMOS管M0作为电流源。

转换特性 (1)Vi1<>Vi2:VGS2<Vth2,M2截止,M1、M3、M0饱和,M4工作于深线性区,并为零电流,故Vo=VDD。注:当Vi1 >VA+Vth时,M1 进入线性区。… (4)CMOS差分放大器的输入-输出特性可以用前图表示…CMOS差分放大器的输入-输出特性可以用前图表示。 四、电路分析--输入共模电压 由以上的分析可知,只有电路中的所有MOS管都处于饱和区时,电路的增益为最大,而为了保证MOS 管处于饱和区,则必须对电路的输入共模电压进行合理的设定。由图(a)可以看出,M2饱和的条件是VDS2不小于VGS2-Vth2,因此为了得到大允许输出压摆,输入的共模电平越小越好,但其小值为:VGS2+VDS0,min,此时放大器的输出最小为:VGS2+VDS0min-Vth。? CMOS差分放大器中输入共模电平与输出压摆间的直接相关是这种电路的一个明显的缺点。 五、电路分析--平衡输入时的输出电压 平衡输入是指Vi1=Vi2,假设电路中M1与M2,M3与M4完全对称,存在沟道制效应为保则根据但由于存在沟道调制效应,为了保证ID1=ID2 =ID3 =ID4,则根据饱和萨氏方程可知:Vo的电位必须与VA的电位相等,以确保VDS1=VDS2,VDS3=VDS4,所以输出电压应为: 但在实际的CMOS差分放大器中,存在着电路的非对称性,这就会导致Vo与VA之间的很大偏差,可能促使M2或M4进入线性区。例如,当M2的阈值电压略小于M1的阈值电压,即使Vi1=Vi2,前者的电流就大于后者,造成Vo明显下降,由于这个原因,该电路很少使用在开环状态放大小信号。

差分放大器-模拟集成电路课程设计

一、设计要求 低频增益: > 80 dB; 单位增益带宽: > 50 MHz; 负载电容: =5pF(可调整); 相位裕量: >60°; 增益裕量: >12dB。 二、电路结构的选择 1.共源共栅结构: 运算放大器的的结构主要有三种: (1)简单两级运放; (2)折叠共源共栅; (3)共源共栅。 共源共栅放大器的特点: (1)结合了CS、CG放大器的优点,Av较大且频带宽; (2)输出电压摆幅因层叠的MOS管而有所损失,在低电源电压运用中 是致命的; (3)在低电源电压电路中共源共栅结构因为要消耗过多的电压余度运用较少,此时需要多级CS放大器才能达到需要的增益,这会给放大器 的补偿带来更大困难。 折叠式共源共栅放大器的特点: (1)与套筒式结构相比,输出电压摆幅较大些; (2)折叠式共源共栅放大器的功耗较大、电压增益较低、极点频率较 低、噪声较高; (3)可使输入共模电平接近电源供给的一端电压。 2.反相放大器: COMS反相器通常由一个P沟道增强型MOS管和一个N沟道增强型MOS管串联组成。通常P沟道管作为负载管,N沟道管作为输入管。 COMS反相器具有如下特点: (1)静态功耗极低。在稳定时,COMS反相器工作时,总有一个MOS管 处于截止状态,流过的电流为极小的漏电流。 (2)抗干扰能力强。由于其阈值电压近似为0.5VDD,输入信号变化时, 过渡变化陡峭,所以低电平噪声容限和高电平噪声容限近似相等,且随电 源电压升高,抗干扰能力增强。 (3)电源利用率高。VOH=VDD,同时由于阈值电压随VDD变化而变化, 所以允许VDD有较宽的变化范围。 (4)输入阻抗高,带负载能力强。 本设计采用共源共栅结构和反相放大器级联的方式来达到设计要求。 首先采用共源共栅结构作为差分当大器的第一级,承担主要的放大能力以及尽可能宽的单位增益带宽。反相器作为第二级主要作为阻抗匹配,提高输出的带载能力,同时具有放大功能。同时在第二级输入和输出之间 加入串联RC负反馈网络,作为频率补偿,提高系统的稳定性,防止放大 器自激。 整个差分放大器的电路图如下图1所示:

全差分CMOS运算放大器的设计说明

CMOS运算放大器的设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部容。 作者签名:日期:

学位论文原创性声明 本人重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

差分放大器版图设计

.绪论 1.1 差分放大器的概述 差分放大器(Differential amplifier ),是能把两个输入电压的差值加以放大的电路,也称差动放大器。这是一种零点漂移很小的直接耦合放大器,常用于直流放大。它可以是平衡(术语“平衡”意味着差分)输入和输出,也可以是单端(非平衡)输入和输出,常用来实现平衡与不平衡电路的相互转换,是各种集成电路的一种基本单元。 由两个参数特性相同的晶体管用直接耦合方式构成的放大器。若两个输入端上分别输入大小相同且相位相同的信号时,输出为零,从而克服零点漂移。适于作直流放大器。 差分放大器是一种将两个输入端电压的差以一固定增益放大的电子放大器,有时简称为“差放”。差分放大器通常被用作功率放大器(简称“功放”)和发射极耦合逻辑电路(ECL, Emitter Coupled Logic?输入级。 差分放大器是普通的单端输入放大器的一种推广,只要将差放的一个输入端接地,即可得到单端输入的放大器。 很多系统在差分放大器的一个输入端输入信号,另一个输入端输入反馈信号,从而实现负反馈。常用于电机或者伺服电机控制,以及信号放大。 在离散电子学中,实现差分放大器的一个常用手段是差动放大,见于多数运算放大器集成电路中的差分电路。 差分放大器可以用晶体三极管(晶体管)或电子管作为它的有源器件。 输出电压u0=u01-u02是晶体管T1和T2集电极输出电压uO1和u02之差。 当T1和T2的输入电压幅度相等但极性相反,即us仁-us2时,差分放大器的增益Kd称差模增益)和单管放大器的增益相等,即Kc Q Rc/re式中Rc=Rc仁Rc2,re 是晶体管的射极电阻。通常re很小,因而Kd较大。当us仁us2即两输入电压的幅度与极性均相等时,放大器的输出u0 应等于零,增益也等于零。实际放大电路不可能完全对称,因而这时还有一定的增益。这种增益称为共模增益,记为

相关文档
最新文档