一元多项式的加法减法乘法的实现

一元多项式的加法减法乘法的实现
一元多项式的加法减法乘法的实现

福建农林大学计算机与信息学院

课程设计报告

课程名称:数据结构

课程设计题目:一元多项式的加法减法乘法的实现姓名:

系:软件工程系

专业:软件工程专业

年级:2014

学号:

指导教师:黄思先

职称:副教授

完成起止日期:2016.6.5 - 2016.7.1

2016年07月1日

福建农林大学计算机与信息学院课程设计结果评定

目录

一、问题分析和任务定义 (1)

二、程序设计内容 (1)

三、程序调试与测试 (7)

四、实验心得 (9)

五、程序编码 (9)

一、问题分析及任务定义

顺序结构、动态链表结构下的一元多项式的加法、减法、乘法的实现。

【问题描述和基本要求】设有一元多项式Am(x)和Bn(x).

Am(x)=A0+A1x1+A2x2+A3x3+… +Amxm

Bn(x)=B0+B1x1+B2x2+B3x3+… +Bnxn

请实现求M(x)= Am(x)+Bn(x)、M(x)= Am(x)-Bn(x)和M(x)= Am(x)×Bn(x)。

要求:

1) 首先判定多项式是否稀疏

2) 分别采用顺序和动态存储结构实现;

3) 结果M(x)中无重复阶项和无零系数项;

4) 要求输出结果的升幂和降幂两种排列情况

二、课程设计的内容

2.1函数

多项式创建函数PolyNode *Creatpoly()

多项式输出函数void Prin_poly(PolyNode *h)

多项式升序排列函数void Insortup(PolyNode *h)

多项式降序排列函数void Insortdown(PolyNode *h)

多项式合并函数void UnitePoly(PolyNode *h)

多项式相乘函数PolyNode *polymuti(PolyNode *h1,PolyNode *h2)

多项式相加函数PolyNode *addition(PolyNode *ha, PolyNode *hb)

多项式相减函数PolyNode *subduction (PolyNode *ha, PolyNode *hb)

2.2设计各个模块的流程图

(1)main()

(3)void Insortdown(PolyNode *h)

(4) PolyNode *polymuti(PolyNode *h1,PolyNode *h2)

(5)void UnitePoly(PolyNode *h)

(6) PolyNode *addition(PolyNode *ha, PolyNode *hb)

三、程序调试与测试

相加结果

相减结果

相乘结果

四、实验心得

在本次课程设计中,我明白了理论应与实际相结合,上机练习是提高编程能力最有效的办法,这次实验提高了我编写大型程序的能力以及查阅资料并从中获得有效资料的能力。这次课程设计加深了我对数据结构的进一步理解。

五、程序编码

实验程序:

#include

#include

#include

typedef struct Node

{

int coef;//系数

int exp;//指数

struct Node *next;

}PolyNode;

PolyNode *Creatpoly()//创建多项式的单链表

{

PolyNode *h,*p,*q;

h=(PolyNode *)malloc(sizeof(PolyNode));

p=h;

p->next=NULL;

printf("请输入多项式的系数及其指数a b,当系数输入0时停止输入\n");

q=(PolyNode *)malloc(sizeof(PolyNode));

scanf("%d %d",&q->coef,&q->exp);

while(q->coef!=0)

{

p->next=q;

p=q;

q=(PolyNode *)malloc(sizeof(PolyNode));

scanf("%d %d",&q->coef,&q->exp);

}

p->next=NULL;

return(h);

}

void Prin_poly(PolyNode *h)//将多项式输出函数

{

PolyNode *p;

p=h->next;

while(p!=NULL)

{

if(p->coef>0&&p!=h->next)

{

if(p->exp>0)

printf("+%dx^%d",p->coef,p->exp);

else if(p->exp<0)

printf("+%dx^(%d)",p->coef,p->exp);

else

printf("+%d",p->coef);

}

else if(p->coef<0&&p!=h->next)

{

if(p->exp>0)

printf("%dx^%d",p->coef,p->exp);

else if(p->exp<0)

printf("%dx^(%d)",p->coef,p->exp);

else

printf("%d",p->coef);

}

else

{

if(p->exp>0)

printf("%dx^%d",p->coef,p->exp);

else if(p->exp<0)

printf("%dx^(%d)",p->coef,p->exp);

else printf("%d",p->coef);

}

p=p->next;

}

}

void Insortup(PolyNode *h)//排序函数,使多项式中的各项按X的升幂排列{

PolyNode *s,*p;

int t,m;

for(p=h->next;p!=NULL;p=p->next)//类似于冒泡排序

{

for(s=h->next;s->next!=NULL;s=s->next)

{

if(s->exp>s->next->exp)

{

t=s->exp;

m=s->coef;

s->coef=s->next->coef;

s->exp=s->next->exp;

s->next->coef=m;

s->next->exp=t;

}

}

}

}

void Insortdown(PolyNode *h)//排序函数,使多项式中的各项按X的降幂排列{

PolyNode *s,*p;

int t,m;

for(p=h->next;p!=NULL;p=p->next)//类似于冒泡排序

{

for(s=h->next;s->next!=NULL;s=s->next)

{

if(s->expnext->exp)

{

t=s->exp;

m=s->coef;

s->coef=s->next->coef;

s->exp=s->next->exp;

s->next->coef=m;

s->next->exp=t;

}

}

}

}

void UnitePoly(PolyNode *h)//合并同类项

{

PolyNode *p1,*p2,*q1,*q2,*temp;

q1=h;

p1=q1->next;

while(p1!=NULL)

{

p2=p1->next;

q2=p1;

while(p2!=NULL)

{

if(p1->exp==p2->exp)

{

p1->coef=p1->coef+p2->coef;

if(p1->coef==0)

{

temp=p2;

q2->next=p2->next;

free(temp);

temp=p1;

q1->next=p1->next;

p1=q1;

free(temp);

break;

}

else

{

temp=p2;

q2->next=p2->next;

p2=p2->next;

free(temp);

}

}

else

{

q2=p2;

p2=p2->next;

}

}

q1=p1;

p1=p1->next;

}

}

PolyNode *polymuti(PolyNode *h1,PolyNode *h2)//多项式相乘

{

PolyNode *h,*p,*p1,*p2,*q;

p1=h1->next;

h=p=(PolyNode *)malloc(sizeof(PolyNode));

p->next=NULL;

while(p1)

{

p2=h2->next;

while(p2)

{

q=(PolyNode *)malloc(sizeof(PolyNode));

q->coef=p1->coef*p2->coef;

q->exp=p1->exp+p2->exp;

p->next=q;

p=q;

p2=p2->next;

}

p1=p1->next;

}

p->next=NULL;

return(h);

}

PolyNode *addition(PolyNode *ha, PolyNode *hb)//一元多项式相加函数,用于将两个多项式相加,然后将和多项式存放在多项式ha中,并将多项式hb删除

{

PolyNode *p,*q,*pre,*temp;

int sum;

p=ha->next;

q=hb->next;

pre=ha;

while(p!=NULL&&q!=NULL) {

if(p->expexp) {

pre->next=p;

pre=pre->next;

p=p->next;

}

else if(p->exp==q->exp)

{

if(sum!=0) {

p->coef=sum;

pre->next=p;

pre=pre->next;

p=p->next;

temp=q;q=q->next;free(temp);

}

else //如果系数和为零,则删除结点p与q,并将指针指向下一个结点

{

temp=p->next;

free(p);

p=temp;

temp=q->next;

free(q);

q=temp;

} }

else {

pre->next=q;

pre=pre->next;

q=q->next;

} }

if(p!=NULL) //将多项式A中剩余的结点加入到和多项式中

pre->next=p;

else pre->next=q;

return ha;

}

PolyNode *subduction(PolyNode *ha, PolyNode *hb)//一元多项式相减函数,用于将两个多项式相减,然后将差多项式存放在多项式ha中,并将多项式hb删除

{

PolyNode *p,*q,*pre,*temp;

int sum;

p=ha->next;

q=hb->next;

pre=ha;

while(p!=NULL&&q!=NULL) {

if(p->expexp) {

pre->next=p;

pre=pre->next;

p=p->next;

}

else if(p->exp==q->exp)

{

if(sum!=0) {

p->coef=sum;

pre->next=p;

pre=pre->next;

p=p->next;

temp=q;q=q->next;free(temp);

}

else //如果系数和为零,则删除结点p与q,并将指针指向下一个结点{

temp=p->next;

free(p);

p=temp;

temp=q->next;

free(q);

q=temp;

} }

else {

pre->next=q;

pre=pre->next;

q=q->next;

} }

if(p!=NULL) //将多项式A中剩余的结点加入到和多项式中

pre->next=p;

else pre->next=q;

return ha;

}

main()

{ int a=-1;

PolyNode *h1,*h2,*h;

h1=Creatpoly();

printf("该多项式为P1(x)=");

UnitePoly(h1);

Insortup(h1);

Prin_poly(h1);

printf("\n");

h2=Creatpoly();

printf("该多项式为P2(x)=");

UnitePoly(h2);

Insortup(h2);

Prin_poly(h2);

printf("\n");

printf("输入1查看两多项式相加结果\n输入2查看两多项式相减结果\n输入3查看两多项式相乘结果\n");

scanf("%d",&a);

if(a==1){

printf("相加后的多项式\n");

h=addition(h1,h2);

UnitePoly(h);

printf("按X的升幂排列");

Insortup(h);

Prin_poly(h);

printf("\n");

printf("按X的降幂排列");

Insortdown(h);

Prin_poly(h);

printf("\n");}

if(a==2){

printf("相减后的多项式\n");

h=subduction(h1,h2);

UnitePoly(h);

printf("按X的升幂排列");

Insortup(h);

Prin_poly(h);

printf("\n");

printf("按X的降幂排列");

Insortdown(h);

Prin_poly(h);

printf("\n");}

if(a==3){

printf("相乘后的多项式为\n");

h=polymuti(h1,h2);

UnitePoly(h);

printf("按X的升幂排列");

Insortup(h);

Prin_poly(h);

printf("\n");

printf("按X的降幂排列");

Insortdown(h);

Prin_poly(h);

printf("\n");}

if(a!=1&&a!=2&&a!=3)printf("输入有误");

return 0;

}

沪科数学七下《 整式乘法《多项式与多项式相乘》教案2

《多项式与多项式相乘》 【教学目标】: 理解多项式乘法法则;灵活运用多项式乘以多项式的运算法则. 【教学重点】: 多项式乘法的运算. 【教学难点】: 探索多项式乘法的法则,注意多项式乘法的运算中“漏项”、“符号”的问题. 【教学过程】: 情境导入 复习单项式×多项式运算法则. 整式的乘法实际上就是. 单项式×单项式. 单项式×多项式 多项式×多项式 组织讨论: 如图,计算此长方形的面积有几种方法? 如何计算?小组讨论,你从计算中发现了什么? 由于(m +n )(a +b )和(ma +mb +na +nb )表示同一个量, 即有(m +n )(a +b )=ma +mb +na +nb 探索法则与应用 根据乘法分配律,我们也能得到下面等式: (m +n )(a +b )=ma +mb +na +nb 总结多项式与多项式的乘法法则. 理论依据: 乘法对加法的分配律. 多项式乘以多项式先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加 例题讲解巩固练习. 1、计算下列各题. (1)(x +2)(x +3) (2)(a -4)(a +1) (3))31))(21(+-y y (4))4 36))(42(-+x x (5)(m +3n )(m -3n ) 2、某零件如图所示,求图中阴影部分的面积S.

练习点评: 在讲解、练习过程中,提醒学生法则的灵活、正确应用,注意符号,不要漏乘注意: 一定要用第一个多项式的每一项依次去乘第二个多项式的每一项,在计算时要注意多项式中每个单项式的符号 课堂总结 主要针对以下方面: 1、多项式×多项式. 2、整式的乘法. 用一个多项式中的每一项乘遍另一个多项式的每一项,不要漏乘在没有合并同类项之前,两个多项式相乘展开后的项数应是这两个多项式项数之 积. 本资源的初衷,是希望通过网络分享,能够为广大读者提供更好的服务,为您水平的提高提供坚强的动力和保证。内容由一线名师原创,立意新,图片精,是非常强的一手资料。

多项式乘以多项式及乘法公式习题(终审稿)

多项式乘以多项式及乘 法公式习题 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

多项式乘以多项式及乘法公式 副标题 题号一二三总分 得分 一、选择题(本大题共12小题,共36.0分) 1.若(x-1)(x+3)=x2+mx+n,则m+n=()A.-1B.-2C.-3D.2 2.若,则p、q的值为()A.p=-3, q=-10B.p=-3,q=10C.p=7,q=-10D.p=7,q=10 3.若代数式的结果中不含字母x的一次项,那么a的值是 A.0B.2 C. D.- 4.(x-2)(x+3)的运算的结果是() A.x2-6? B.x2+6? C.x2-5x-6? D.x2+x-6 5.如果(x+1)(x2-5ax+a)的乘积中不含x2项,则a为() A. B.- C.-5 D.5 6.若代数式x2+kxy+9y2是完全平方式,则k的值是() A.3 B.±3 C.6 D.±6 7.9x2-mxy+16y2是一个完全平方式,那么m的值是()A.12B.-12C.±12D.±24 8.下列多项式乘法,能用平方差公式计算的是()A.(-3x-2)(3x+2)B.(-a-b)(-b+a)C.(-3x+2)(2-3x)D.(3x+2)(2x-3)

9.若x2-nx+16是一个完全平方式,则n等于()A.4B.±4C.8D.±8 10.若-ax+x2是一个完全平方式,则常数a的值为() A. B. C.1D.±1 11.已知,,则的值为() A.7 B.5 C.3 D.1 12.下列各式能用平方差公式计算的是() ①② ③④ A.①②B.②③C.①③D.③④ 二、填空题(本大题共7小题,共21.0分) 13.若(x-5)(x+20)=x2+mx+n,则m=______,n=______. 14.已知(x-1)(x+3)=ax2+bx+c,则代数式9a-3b+c的值为 ______. 15.在x+p与x2﹣2x+1的积中不含x,则p的值为. 16.多项式x2-6x+9因式分解的结果为________. 17.(2a-b)(-2a-b)=______;(3x+5y)(______)=25y2-9x2. 18.已知,那么. 19.若是一个完全平方式,则▲. 三、计算题(本大题共7小题,共42.0分) 20.若(x2+mx-8)(x2-3x+n)的展开式中不含x2和x3项,求m和n的值. 21. 22.已知(x+y)2=18,(x-y)2=4,求下列各式的值:(1)x2+y2;(2)xy. 23.已知:x+y=6,xy=4,求下列各式的值

(完整word版)初中数学乘法公式

第 1 页 共 16 页 乘法公式 概念总汇 1、平方差公式 平方差公式:两个数的和与这两个数的差的乘积等于这两个数的平方差,即 (a +b )(a -b )=a 2 -b 2 说明: (1)几何解释平方差公式 如右图所示:边长a 的大正方形中有一个边长为b 的小正方形。 第一种:用正方形的面积公式计算:a 2-b 2; 第二种:将阴影部分拼成一个长方形,这个长方形长为(a +b ),宽为(a -b ), 它的面积是:(a +b )(a -b ) 结论:第一种和第二种相等,因为表示的是同一块阴影部分的面积。 所以:a 2-b 2=(a +b )(a -b )。 (2)在进行运算时,关键是要观察所给多项式的特点,是否符合平方差公式的形式,即只有当这两个多项式它们的一部分完全相同,而另一部分只有符合不同,才能够运用平方差公式。平方差公式的a 和b ,可以表示单项式,也可以表示多项式,还可以表示数。应用平方差公式可以进行简便的多项式乘法运算,同时也可以简化一些数字乘法的运算 2、完全平方公式 完全平方公式:两个数和(或差)的平方,等于它们的平方和,加上(或减去)它们积的两倍,即 (a +b )2 =a 2 +2ab +b 2 ,(a -b )2 =a 2 -2ab +b 2 这两个公式叫做完全平方公式。平方差公式和完全平方公式也叫做乘法公式 说明: (1)几何解释完全平方(和)公式 如图用多种形式计算右图的面积 第一种:把图形当做一个正方形来看,所以 它的面积就是:(a +b )2 第二种:把图形分割成由2个正方形和2个相同的

第 2 页 共 16 页 长方形来看,其中大正方形的的边长是a ,小正方形 的边长是b ,长方形的长是a ,宽是b ,所以 它的面积就是:a 2+ab +ab +b 2=a 2+2ab +b 2 结论:第一种和第二种相等,因为表示的是同一个图形的面积 所以:(a +b )2=a 2+2ab +b 2 (2)几何解释完全平方(差)公式 如图用多种形式计算阴影部分的面积 第一种:把阴影部分当做一个正方形来看,所以 它的面积就是:(a -b )2 第二种:把图形分割成由2个正方形和2个相同的 长方形来看,长方形小正方形大正方形阴影S S S S ?=2-- 其中大正方形的的边长是a ,小正方形的边长是b ,长方形的长是(a -b ),宽是b ,所以 它的面积就是:()2 2 2 2 22b ab a b b a b a +-=?-?-- 结论:第一种和第二种相等,因为表示的是同一个图形的面积 所以:()222 2b ab a b a +-=- (3)在进行运算时,防止出现以下错误:(a +b )2=a 2+b 2,(a -b )2=a 2-b 2 。要注意符号的处理,不同的处理方法就有不同的解法,注意完全平方公式的变形的运用。完全平方公式的a 和b ,可以表示任意的数或代数式,因此公式的使用就不必限于两个二项式相乘,而可以扩大到两个多项式相乘,但要注意在表示成完全平方公式的形式才能运用公式,完全平方公式有着广泛的应用,尤其要注意完全平方公式和平方差公式的综合应用 方法引导 1、乘法公式的基本计算 例1 利用平方差公式计算: (1)(3x +5y )(3x -5y ); (2)(0.5b +a )(-0.5b +a ) (3)(-m +n )(-m -n ) 难度等级:A

多项式的乘法教学设计

15.1.5 整式的乘法2 【课题】:多项式的乘法 【教学时间】: 【学情分析】:(适用于特色班)学生前面已学习了幂的运算性质、单项式的乘法、单项式与多项式的乘法及乘法的分配律,适当地进行复习,即可巩固前面的学习,也为多项式乘法的学习打好基础,使学生较容易地把多项式乘法归结为单项式的乘法。 【教学目标】: (一)教学知识点 探索并了解多项式与多项式相乘的法则,并运用它们进行运算. (二)能力训练要求 让学生主动参与到一些探索过程中去,逐步形成独立思考,主动探索的习惯,培养思维的批判性、严密性和初步解决问题的愿望和能力. (三)情感与价值观要求 在发展推理能力和有条理的语言、符号表达能力的同时,进一步体会学习数学的兴趣,提高学习数学的信心,感受数学的简洁美. 【教学重点】:多项式与多项式相乘的法则。 【教学难点】:运用法则进行混合运算。 【教学突破点】:整体思想的贯彻。 【教法、学法设计】:合作探究式分层次教学,讲授、练习相结合。 【课前准备】:课件 【教学过程设计】: 教学环节教学活动设计意图 一、师生互动,探究分类 1.练一练:教科书第175页练习1、2 2.前面这节课我们研究了单项式与单项式、单项式与多项式相乘的方法,请同学回忆方法. 二、创造问题情境,探究新知 我们再来看一看第一节课悬而未决的问题: 为了扩大绿地面积,要把街心花园的一块长a米,宽m米的长 方形绿地增长b米,加宽n米(课件展示街心花园实景,而后抽象成 数学图形,并用不同的色彩表示出原有部分及其新增部分).提出问 题:你能用几种方法表示扩大后绿地的面 积?不同的表示方法之间有什么关系? 用不同的方法怎样表示扩大后的绿地 面积?用不同的方法得到的代数式为什么是 相等的呢?这个问题激起学生的求知欲望, 引起学生对多项式乘法学习的兴趣. 从实际生 活中的实例引 入,体现了数 学知识源于生 活,调动学生 学的积极性。

乘法公式与因式分解

乘法公式、多項式與因式分解 主題一:乘法公式的判別與求值 1. 乘法公式 1.2222)(b ab a b a ++=+(和的平方) 2.2222)(b ab a b a +-=-(差的平方) 3.22))((b a b a b a -=-+ (平方差) 4.(a+b)(c+d)=ac+ad+bc+bd (乘法分配律) 5. ac bc ab c b a c b a 222)(2222+++++=++(三項和的平方) 6.3223333)(b ab b a a b a +++=+(和的立方) 7.3223333)(b ab b a a b a -+-=-(差的立方) 8.3322))((b a b ab a b a +=+-+(立方和) 9.3322))((b a b ab a b a -=++-(立方差) 10.42242222))((b b a a b ab a b ab a ++=+-++ 2. 求值公式: (1) a 2+b 2=(a +b )2-2ab =(a -b )2+2ab 【若已知a +b 及ab ,欲求a -b 時,須先算出(a -b )2,再用平方根來求】 (2) x 2+x 21=(x +x 1)2-2=(x -x 1)2+2 (3) a 2+b 2+c 2+ab +bc +ca = 2 1〔(a +b )2+(b +c )2+(c +a )2〕 (4) (a +b )2=(a -b )2+4ab (5) (a -b )2=(a +b )2-4ab 3.乘法公式的應用與式子的展開: (1)(ax +b )(cx +d )=acx 2++ad x +bcx +bd (2)(ax +b )2=(ax )2+2×ax ×b +b 2=a 2x 2+2abx +b 2 (3)(ax -b )2=(ax )2-2×ax ×b +b 2=a 2x 2-2abx +b 2 (4)(ax +b )(ax -b )=(ax )2-b 2=a 2x 2-b 2 (5)(-ax +b )2=(ax -b )2;(-ax -b )2=(ax +b )2 主題二:多項式 1. 多項式的定義:由數和文字符號x 進行加法和乘法運算所構成的式子。多項式的文字x 不可在分母、指數、根號內與絕對值內,且須為有限項。 例:231 +X ,22-X ,5-X ,.....12+++X X 不是X 的多項式。 2.多項式的次數: (1) 只含一個文字的多項式,以文字的最高次數為此多項式之次數。 (2) 含二個或二個以上文字的多項式,以各項中文字的次數總和的最高次數為此多項式之次數。 (3) 常數多項式,包含零次多項式(只有常數項,且不為0)及零多項式(就是0)。

八年级数学多项式乘以多项式练习题

3.多项式与多项式相乘 一、选择题 1.计算(2a-3b)(2a+3b)的正确结果是() A.4a2+9b2B.4a2-9b2C.4a2+12ab+9b2D.4a2-12ab+9b2 2.若(x+a)(x+b)=x2-kx+ab,则k的值为() A.a+b B.-a-b C.a-b D.b-a 3.计算(2x-3y)(4x2+6xy+9y2)的正确结果是() A.(2x-3y)2B.(2x+3y)2C.8x3-27y3D.8x3+27y3 4.(x2-px+3)(x-q)的乘积中不含x2项,则() A.p=q B.p=±q C.p=-q D.无法确定 5.若0<x<1,那么代数式(1-x)(2+x)的值是() A.一定为正B.一定为负C.一定为非负数D.不能确定 6.计算(a2+2)(a4-2a2+4)+(a2-2)(a4+2a2+4)的正确结果是() A.2(a2+2)B.2(a2-2)C.2a3D.2a6 7.方程(x+4)(x-5)=x2-20的解是() A.x=0 B.x=-4 C.x=5 D.x=40 8.若2x2+5x+1=a(x+1)2+b(x+1)+c,那么a,b,c应为() A.a=2,b=-2,c=-1 B.a=2,b=2,c=-1 C.a=2,b=1,c=-2 D.a=2,b=-1,c=2 9.若6x2-19x+15=(ax+b)(cx+b),则ac+bd等于() A.36 B.15 C.19 D.21 10.(x+1)(x-1)与(x4+x2+1)的积是() A.x6+1 B.x6+2x3+1 C.x6-1 D.x6-2x3+1 二、填空题 1.(3x-1)(4x+5)=__________. 2.(-4x-y)(-5x+2y)=__________. 3.(x+3)(x+4)-(x-1)(x-2)=__________. 4.(y-1)(y-2)(y-3)=__________.

多项式的乘法优秀教案

多项式的乘法 【教学目标】 1.经历探索多项式的乘法运算法则的过程,掌握多项式与多项式相乘的法则。 2.会运用单项式与单项式,单项式与多项式,多项式与多项式相乘的法则,化简整式。 3.会用多项式的乘法解决简单的实际问题。 【教学重难点】 多项式与多项式相乘的运算。 【教学过程】 一、创设情境,引出课题 小明找来一张铅画纸包数学课本,已知课本长a 厘米,宽b 厘米,厚c 厘米,小明想将课本封面与封底的每一边都包进去m 厘米,问如果你是小明你会在铅画纸上裁下一块多大面积的长方形? 二、引出新知,探究示例 1.合作探索学习:有一家厨房的平面布局如图1 (1)请用三种不同的方法表示厨房的总面积。 (2)这三种不同的方法表示的面积应当相等,你能用运算律解释吗? (3)通过上面的讨论,你能总结出单项式与多项式相乘的运算规律 吗? (让学生以同桌合作的形式进行探索,然后表达交流) 答: (1)总面积:(a+n)(b+m);a(b+m)+n(b+m)或b(a+n)+m(a+n);ab+am+nb+nm (2)总面积相等,由此可得到(a+n)(b+m)=a(b+m)+n(b+m)……① =ab+am+nb+nm ……② 第①步运用分配律把(b+m)看成一个数,第②步再运用分配律。 (3)由(a+n)(b+m)=ab+am+nb+nm 师生共同总结得出多项式与多项式相乘的法则: (学生归纳,教师板书) 2.运用新知,计算例题 例1:计算 n a m 右侧 矮矮柜 b

(1)(x+y)(a+2b) (2)(3x-1)(x+3) (3)(x-1)2 解:(1)(x+y)(a+2b)=x ?a+x ?(2b)+y ?a+y ?(2b)=ax+2bx+ay+2by (2)(3x-1)(x+3)=3x2+9x-x-3=3x2+8x-3 (3)(x-1)2=(x-1)(x-1)=x2-x-x+1=x2-2x+1 教师在示范过程中引导学生注意这三题都按多项式相乘的法则进行,运算过程中注意符号,防止漏乘,结果要合并同类项。 例2,先化简,再求值:(2a-3)(3a+1)-ba(a-4),其中a= 721- 解:(2a-3)(3a+1)-ba(a-4)=6a2+2a-9a-3-6a2+24a=17a-3 当a=721-时,原式=17a-3=17×(1719-)-3=-19-3=-22 注意的几点:(1)必须先化简,再求值,注意符号及解题格式。 (2)当代入的是一个负数时,添上括号。 (3)在运算过程中,把带分数化为假分数来计算。 反馈练习:计算当y=-2时,(3y+2)(y-4)-(y-2)(y-3)的值。 三、分层训练,能力升级 1.填空 (1)(2x-1)(x-1)= (2)x(x2-1)-(x+1)(x2+1)= (3)若(x-a)(x+2)=x2-6x-16,则a= (4)方程y(y-1)-(y-2)(y+3)=2的解为 2.某地区有一块原长m 米,宽a 米的长方形林区增长了200米,加宽了15米,则现在这块地的面积为 平方米。 3.某人以一年期的定期储蓄把2000元钱存入银行,当年的年利率为x ,第二年的年利率减少10%,则第二年到期时他的本利和为多少元? 四、小结 让学生谈谈通过这节课的学习,有哪些收获与疑问?教师及时总结内容并解答疑惑。 【作业布置】 课本的分层作业题。

乘法公式、指数基本运算与多项式

第 一 章 乘法公式、指數基本運算與多項式 §§乘法公式、指數基本運算與多項式 1.乘法公式: (1)(a+b)2=a 2+2ab+b 2 (2)(a -b)2 =a 2-2ab+b 2 (3)(a+b+c)2=a 2+b 2+c 2+2ab+2bc+2ca (4)(a+b)(a -b)=a 2-b 2 (5)(a+b)(a 2-ab+b 2)=a 3+b 3 (6)(a -b)(a 2+ab+b 2)=a 3-b 3 (7)(a+b)3=a 3+3a 2b+3ab 2+b 3= a 3+b 3+3ab(a+b) (8)(a -b)3=a 3-3a 2b+3ab 2-b 3= a 3-b 3-3ab(a -b) (9)(x+a)(x+b)=x 2+(a+b)x+ab (10)(a+b)(c+d)=ac+ad+bc+bd (11)(a+b+c)(a 2+b 2+c 2-ab -bc -ca)=a 3+b 3+c 3-3abc 2.指數律: (1)a m ×a n =a m+n (2)a m ÷a n =a m -n ---a ≠0 (3)(a m )n =a m×n (4)(ab)n =a n b n (5)n n n b a b a =?? ? ??---b ≠0 (6)a ≠0?a 0=1 (7)n n a 1 a =----a ≠0 (8)n n 1 a a =---a>0 (9)n m a =n m a ---a>0

3.求值公式: [型一]已知a+b 和ab 之值: (1)a 2+b 2=(a+b)2-2ab (2)a 3+b 3=(a+b)3-3ab(a+b) (3)a 4+b 4=(a 2+b 2)2-2a 2b 2 (4)(a -b)2=(a+b)2-4ab [型二]已知a -b 和ab 之值: (1)a 2+b 2=(a -b)2+2ab (2)a 3-b 3=(a -b)3+3ab(a -b) (3)(a+b)2=(a -b)2+4ab [型三]分式型,已知x 1x +或x 1 x -之值: (1)2x 1x x 1x 2 22 -??? ? ?+=+ (2)2x 1x x 1x 2 22 +??? ? ?-=+ (3)4x 1x x 1x 2 2-??? ? ? +=??? ??- (4)4x 1x x 1x 2 2+??? ? ? -=??? ??+ (5)??? ??+-??? ??+=+x 1x 3x 1x x 1x 3 33 (6)??? ? ?-+??? ??-=-x 1x 3x 1x x 1x 3 33 4.商高定理(畢氏定理):?A BC 中,∠C=900 ,則2 2AB BC AC =+, 即直角三角形兩股長的平方和等於斜邊的平方。 常見的直角三角形三邊長: (1)四類型:(3,4,5)、(5,12,13)、(7,24,25)、(8,15,17)。 (2)將五類型的三邊按一定比例放大或縮小也可成為直角三角形。例:(3,4,5)→(6,8,10)→(9,12,15)→……。 5.坐標平面上兩點間的距離及中點坐標求法: 設坐標平面上相異兩點A (x 1,y 1)、B(x 2,y 2),O 為原點,則: (1)()()221221y y x x AB -+-= (2)AB 中點M 的坐標為?? ? ??++2y y ,2x x 2121 B C

多项式乘多项式练习题

整式乘法:多项式乘多项式习题(4) 一、选择题 1.计算(2a-3b)(2a+3b)的正确结果是() A.4a2+9b2B.4a2-9b2C.4a2+12ab+9b2D.4a2-12ab+9b2 2.若(x+a)(x+b)=x2-kx+ab,则k的值为() A.a+b B.-a-b C.a-b D.b-a 3.计算(2x-3y)(4x2+6xy+9y2)的正确结果是() A.(2x-3y)2B.(2x+3y)2C.8x3-27y3D.8x3+27y3 4.(x2-px+3)(x-q)的乘积中不含x2项,则() A.p=q B.p=±q C.p=-q D.无法确定 5.若0<x<1,那么代数式(1-x)(2+x)的值是() A.一定为正B.一定为负C.一定为非负数D.不能确定6.计算(a2+2)(a4-2a2+4)+(a2-2)(a4+2a2+4)的正确结果是() A.2(a2+2)B.2(a2-2)C.2a3D.2a6 7.方程(x+4)(x-5)=x2-20的解是() 8.A.x=0 B.x=-4 C.x=5 D.x=40 9.若2x2+5x+1=a(x+1)2+b(x+1)+c,那么a,b,c应为() A.a=2,b=-2,c=-1 B.a=2,b=2,c=-1 C.a=2,b=1,c=-2 D.a=2,b=-1,c=2 10.若6x2-19x+15=(ax+b)(cx+b),则ac+bd等于() A.36 B.15 C.19 D.21 11.(x+1)(x-1)与(x4+x2+1)的积是() A.x6+1 B.x6+2x3+1 C.x6-1 D.x6-2x3+1 二、填空题 1.(3x-1)(4x+5)=__________. 2.(-4x-y)(-5x+2y)=__________. 3.(x+3)(x+4)-(x-1)(x-2)=__________. 4.(y-1)(y-2)(y-3)=__________. 5.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是__________.

多项式与多项式相乘同步练习(含答案)

第3课时 多项式与多项式相乘 要点感知 多项式与多项式相乘,先用一个多项式的_____乘另一个多项式的_____,再把所得的积_____.(a +b )(p +q )=_____. 预习练习1-1 填空:(1)(a +4)(a +3)=a ·a +a ·3+4·_____+4×3=_____; (2)(2x -5y )(3x -y )=2x ·3x +2x ·_____+(-5y )·3x +(-5y )·_____=_____. 1-2 计算:(x +5)(x -7)=_____;(2x -1)·(5x +2)=_____. 知识点1 直接运用法则计算 1.计算: (1)(m +1)(2m -1); (2)(2a -3b )(3a +2b ); (3)(2x -3y )(4x 2+6xy +9y 2); (4)(y +1)2; (5)a (a -3)+(2-a )(2+a ). 2.先化简,再求值:(2x -5)(3x +2)-6(x +1)(x -2),其中x =5 1. 知识点2 多项式乘以多项式的应用 3.若一个长方体的长、宽、高分别是3x -4,2x -1和x ,则它的体积是( ) -5x 2+4x -11x 2+4x -4x 2 -4x 2+x +4 4.为参加市里的“灵智星”摄影大赛,小阳同学将同学们参加“义务献爱心”活动的照片放大为长为a 厘米,宽为

43a 厘米的长方形形状,又精心在四周加上了宽2厘米的装饰彩框,那么小阳同学的这幅摄影作品照片占的面积是_____平方厘米. 5.我校操场原来的长是2x 米,宽比长少10米,现在把操场的长与宽都增加了5米,则整个操场面积增加了_____平方米. 知识点3 (x +p )(x +q )=x 2+(p +q )x +pq 6.下列多项式相乘的结果为x 2+3x -18的是( ) A.(x -2)(x +9) B.(x +2)(x -9) C.(x +3)(x -6) D.(x -3)(x +6) 7.已知(x +1)(x -3)=x 2+ax +b ,则a ,b 的值分别是( ) =2,b =3 =-2,b =-3 =-2,b =3 =2,b =-3 8.计算: (1)(x +1)(x +4) (2)(m -2)(m +3) (3)(y +4)(y +5) (4)(t -3)(t +4). 9.计算: (1)(m -2n )(-m -n ); (2)(x 3-2)(x 3+3)-(x 2)3+x 2·x ;

多项式乘以多项式及乘法公式习题

多项式乘以多项式及乘法公式 副标题 一、选择题(本大题共12小题,共36.0分) 1.若(x-1)(x+3)=x2+mx+n,则m+n=() A.-1 B.-2 C.-3 D.2 2.若,则p、q的值为() A.p=-3,q=-10 B.p=-3, q=10 C.p=7,q=-10 D.p=7,q=10 3.若代数式的结果中不含字母x的一次项,那么a的值是 A.0 B.2 C. D.- 4.(x-2)(x+3)的运算的结果是() A.x2-6 B.x2+6 C.x2-5x-6 D.x2+x-6 5. 如果(x+1)(x2-5ax+a)的乘积中不含x2项,则a为() A. B. - C. -5 D. 5 6.若代数式x2+kxy+9y2是完全平方式,则k的值是() A.3 B.±3 C.6 D.±6 7.9x2-mxy+16y2是一个完全平方式,那么m的值是() A.12 B.-12 C.±12 D.±24 8.下列多项式乘法,能用平方差公式计算的是() A.(-3x-2)(3x+2) B.(-a-b)(-b+a) C.(-3x+2)(2-3x) D.(3x+2)(2x-3)

9.若x2-nx+16是一个完全平方式,则n等于( ) A.4 B.±4 C.8 D.±8 10. 若 -ax+x2是一个完全平方式,则常数a的值为() A. B. C. 1 D. ±1 11. 已知,,则的值为() A.7 B.5 C.3 D.1 12. 下列各式能用平方差公式计算的是() ①② ③④ A.①② B.②③ C.①③ D.③④ 二、填空题(本大题共7小题,共21.0分) 13.若(x-5)(x+20)=x2+mx+n,则m= ______ ,n= ______ . 14.已知(x-1)(x+3)=ax2+bx+c,则代数式9a-3b+c的值为 ______ . 15.在x+p与x2﹣2x+1的积中不含x,则p的值为. 16.多项式x2-6x+9因式分解的结果为________. 17.(2a-b)(-2a-b)= ______ ;(3x+5y)( ______ )=25y2-9x2. 18.已知,那么. 19.若是一个完全平方式,则▲ . 三、计算题(本大题共7小题,共42.0分) 20.若(x2+mx-8)(x2-3x+n)的展开式中不含x2和x3项,求m和n的值. 21.

多项式乘以多项式教学设计

《多项式乘以多项式》教学设计 朱宾琪教学目标: 知识与技能: 1、探索多项式与多项式相乘的乘法法则。 2. 能灵活地进行整式的乘法运算。 过程与方法: 1、经历探索多项式与多项式相乘的乘法法则的过程,体会乘法分配律的作用以及“整体”和“转化”的数学思想; 2、通过对乘法法则的探索,归纳与描述,发展有条理思考的能力和语言表达能力; 情感、态度与价值观 体验学习和把握数学问题的方法,树立学好数学的信心,培养学习数学的兴趣。 教学重点:多项式的乘法法则及其应用。 教学难点:探索多项式的乘法法则,灵活地进行整式的乘法运算。关键:多项式的乘法应先转化为单项式与多项式相乘进行运算,进一步转化为单项式的乘法,紧紧扣住这一线索。 教学方法:小组合作,自主学习 教学过程: 一、课前提问 师:1、多项式与多项式相乘的法则是什么?

依据是什么? 2、多项式与多项式相乘,结果的项数与原多项式的项数有何关系? 3、积的每一项的符号由谁决定? 计算: )32(3)4() 53(2)3() 35(4)2() 32(7)1(23322222xy xy y x b a a ax a ax b ab a +---- 生:交流答案 师:同学们看这道题怎样做?())()5(b n a m ++(多媒体展示)他和我们以前所学的有何不同? 生:现在是多项式乘多项式 师:那多项式乘多项式如何去计算呢?这节课我们一起来探究吧! 二、 学习目标(多媒体) 师:看到这个课题你想学习哪些知识呢? 生:交流 师:(多媒体呈现) 1、探究并了解多项式与多项式相乘的法则 2、熟练的运用法则进行运算 三、探求新知 问题助学一: 文文帮爸爸把原长为m 米,宽为b 米的菜地加长了n 米,拓宽了a 米,聪明的你能迅速表示出这块菜地现在的总面积吗? 你还能用更多的方法表示吗? (学生活动)小组内展评作品,推选出最优秀的同学的作品给全班学生展示。

201x版七年级数学下册 第9章 从面积到乘法公式 9.3 多项式乘多项式教案 苏科版

2019版七年级数学下册 第9章 从面积到乘法公式 9.3 多项式乘多项式教案 (新版)苏科版 教学目标: 1.理解多项式乘多项式运算的算理,会进行多项式乘多项式的运算(仅指一次式之间以及一次式与二次式之间相乘); 2.经历探究多项式乘多项式运算法则的过程,感悟数与形的关系,体验转化思想,知道使用符号可 以进行运算和推理,得到的结论具有一般性. 教学重点:多项式乘多项式的运算法则. 教学难点:利用单项式乘多项式的运算法则来推导多项式乘多项式的运算法则. 教学方法: 教学过程: 一.【情景创设】 提问:前面已经学习了单项式乘单项式,单项式乘多项式,那多项式乘多项式如:))((d c b a ++应该如何计算? 二.【问题探究】 活动一.(1)请计算下图的面积,你有哪些不同的方法?并把你的算法与同学交流. (2)将学生汇报的四个式子进行组合,得到下面两个式子: )((d c b a ++)()(d c b d c a +++= bd bc ad ac +++. ))((d c b a ++)()(b a d b a c +++= bd ad bc ac +++=. a c b d

提问:观察两个等式,对于))((d c b a ++的计算有何新的想法? 活动二.(1)引导学生发现运算过程,也可以表示为: ))((d c b a ++bd b c a d ac +++= (2)思考:多项式乘多项式应该如何计算? (3)得出法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加. 问题1 计算.(1))3)(2(-+x x (2))2)(13(--x x 问题2计算.(1))2)(3(n m n m -+; (2))2)(1(++n n n 问题3填空. (1)若n mx x x x ++=+-2)7)(4(,则____,==n m . (2)若2,1-==-ab b a ,则________)1)(1(=-+b a . 三【变式拓展】 问题4问题4计算:2)(b a + 问题5(2)若)3)(8(22q x x px x +-++的乘积中不含x 2与x 3的项,求p 、q 的值.

单项式乘法教学设计示例

单项式乘法教学设计示例 一、教学目的 1.使学生理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算. 2.注意培养学生归纳、概括能力,以及运算能力. 3.通过单项式的乘法法则在生活中的应用培养学生的应用意识. 二、重点、难点 重点:掌握单项式与单项式相乘的法则. 难点:分清单项式与单项式相乘中,幂的运算法则. 三、教学过程 复习提问: 什么是单项式?什么叫单项式的系数?什么叫单项式的次数? 引言我们已经学习了幂的运算性质,在这个基础上我们可以学习整式的乘法运算.先来学最简单的整式乘法,即单项式之间的乘法运算(给出标题). 新课看下面的例子:计算 (1)2x2y·3xy2;(2)4a2x2·(-3a3bx). 同学们按以下提问,回答问题: (1)2x2y·3xy2 ①每个单项式是由几个因式构成的,这些因式都是什么?

2x2y·3xy2=(2·x2·y)·(3·x·y2) ②根据乘法结合律重新组合 2x2y·3xy2=2·x2·y·3·x·y2 ③根据乘法交换律变更因式的位置 2x2y·3xy2=2·3·x2·x·y·y2 ④根据乘法结合律重新组合 2x2y·3xy2=(2·3)·(x2·x)·(y·y2) ⑤根据有理数乘法和同底数幂的乘法法则得出结论 2x2y·3xy2=6x3y3 按以上的分析,写出(2)的计算步骤: (2)4a2x2·(-3a3bx) =4a2x2·(-3)a3bx =[4·(-3)]·(a2·a3)·(x2·x)·b =(-12)·a5·x3·b =-12a5bx3. 通过以上两题,让学生总结回答,归纳出单项式乘单项式的运算步骤是: ①系数相乘为积的系数; ②相同字母因式,利用同底数幂的乘法相乘,作为积的因式;

人教版初中七年级数学下册《多项式的乘法》教案

多项式的乘法 第一课时 单项式与多项式相乘 教学目标: 1.经历探索单项式与多项式相乘的运算法则的过程,会进行单项式与多项式乘法运算。 2.理解单项式与多项式相乘的乘法运算的算理,体会乘法分配律的作用和转化思想,发展有条理的思考及语言表达能力。 教学重点:单项式与多项式的乘法运算。 教学难点:推测单项式与多项式相乘的乘法运算法则。 教学方法:尝试练习法,讨论法,归纳法。 教学过程: 一、准备知识: 1、乘法的分配律 a(b+c)=ab+ac 2、计算:2x ·(3x 2-x-5) 单项式与多项式相乘 =2x ·3x 2-2x ·x-2x ·5 运用乘法的分配律 =6x 3-2x 2-10x 运用单项式与单项式相乘的法则 3、归纳:单项式与多项式相乘,利用乘法对加法的分配律进行运算。 二、范例分析 1、讲解P95的例1 例1计算:( 解:原式= 利用乘法分配律计算 = 运算注意符号及字母的指数 例2计算的值,其中x=2,y=-1 解:原式= 乘法分配律 = 单项式乘以单项式 = 合并同类项 当x=2,y=-1时, 原式= =24+32 =56 )4()42 122ab b a ab -?-)4(4)4(2 122ab b a ab ab -?--?2332162b a b a +-)(4)42(2 122222xy y x y x xy x -?--?- )(4)4(21221222222xy y x y x x xy x -?--?-?-23242342y x y x y x ++-242323y x y x +2423)1(22)1(23-?+-?

三、练习与小结: 1、练习P96的练习1、2题 2、小结: 单项式与多项式相乘:就是根据分配律用单项式去乘多项式的每一项再把所得的积相加。 四、作业 P100A 组6题、7题 第二课时 多项式与多项式相乘 教学目标: 1.经历探索多项式与多项式相乘的运算法则的过程,会进行多项式与多项式乘法运算。 2.理解多项式与多项式相乘的乘法运算的算理,体会乘法分配律的作用和转化思想,发展有条理的思考及语言表达能力。 教学重点:多项式与多项式的乘法运算。 教学难点:探索多项式与多项式相乘的乘法运算法则。注意多项式乘法的运算中“漏项”、“符号”的问题 教学方法:尝试练习法,讨论法,归纳法。 教学过程: 一、准备知识: 1、单项式与多项式相乘的法则 2、计算题:(1) (2) -3x(-y -xyz) (3) 3x 2(-y -xy 2+x 2) 3、有一个长方形,它的长为3acm ,宽为(7a+2b )cm ,则它的面积为多少? 二、探究新知: 1、P96的动脑筋 一套三房一厅的居室, 其平面图如图所示(单位: 米),请你用代数式表示 出它的面积。 计算方法1:(m+n)(a+b)平方米 计算方法2:(am+an+bm+bn)平方米。 计算方法3: a(m+n)+b(m+n)平方米。 认真想一想,这几种算法正确吗?你能从中得到什么启动? 2、归纳: )26 1(2a a a

多项式乘以多项式

多项式的乘法 教学建议 一、知识结构 二、重点、难点分析 本节教学的重点是利用公式(x+a)(x+b)=x2+(a+b)x+ab熟练地计算.难点是理解并掌握公式.本节内容是进一步学习乘法公式及后续知识的基础. 1.多项式乘法法则,是多次运用单项式与多项式相乘的法则得到的.计算 时,先把看成一个单项式,是一个多项式,运用单项式与多项式相乘的法则,得到 然后再次运用单项式与多项式相乘的法则,得到: 2.含有一个相同字母的两个一次二项式相乘,得到的积是同一字母的二次三项式,它的二次项由两个因式中的一次项相乘得到;积的一次项是由两个因式中的常数基分别乘以两个因式中的一次项后,合并同类项得到;积的常数项等于两个因式中常数项的积.如果因式中一次项的系数都是1,那么积的二次项系数也是1,积的一次项系数等 于两个因式中的常数项的和,这就是说,如果用、分别表示一个含有系数是1的相同字母的两个一次二项式中的常数项,则有 3.在进行两个多项式相乘、直接写出结果时,注意不要“漏项”.检查的办法是:两个多项式相乘,在没有合并同类项之前,积的项数应是这两个多基同甘共苦的积.如 积的项数应是,即六项: 当然,如有同类项则应合并,得出最简结果. 4.运用多项式乘法法则时,必须做到不重不漏,为此,相乘时,要按一定的顺序进行.例如,,可先用第一个多项式中的第一项“”分别与第二个多项式的每一项相乘,再用第一个多项式中的第二项“”分别与第二个多项式的每一项相乘,然后把所得的积相加,即.

5.多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积. 6.注意确定积中每一项的符号,多项式中每一项都包含它前面的符号,“同号得正,异号得负”. 三、教法建议 教学时,应注意以下几点: (1)要防止两个多项式相乘,直接写出结果时“漏项”.检查的办法是:两个多项式相乘,在没有合并同类项之前,积的项数应是这两个多项式项数的积.如 , 积的项数应是,即四项当然,如有同类项,则应合并同类项,得出最简结果. (2)要不失时机地指出:多项式是单项式的和,每一项都包括前面的符号,在计算时一定要注意确定积中各项的符号. (3)例2的第(1)小题是乘法的平方差公式,例2的第(2)小题是两数和的完全平方公式.实际上任何乘法公式都是直接用多项式乘法计算出来的.然后,我们把这种特殊形式的乘法连同它的结果作为公式.这里只是为后面学习乘法公式作准备,不必提它们是乘法公式,分散学生的注意力.当然,在讲解这个1题时,要讲清它们在合并同类项前的项数. (4)例3是另一种形式的多项式的乘法,要讲清楚两个因式的特点,积与两个因式的关系.总之,要讲清楚这种特殊形式的两个多项式相乘的规律,使学生在计算这种类型的题目时,能够迅速地求得结果.如对于练习第1题中的 , 等等,能够直接写出结果. 教学设计示例 一、教学目标 1.理解和掌握单项式与多项式乘法法则及其推导过程. 2.熟练运用法则进行单项式与多项式的乘法计算.

多项式与多项式相乘经典练习题

【基础知识】多项式与多项式的乘法法则 多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加. 【题型1】多项式乘多项式 计算 (1)(2x -5y)(3x -y) (2)(x +5)(2x -7) (3)(4x +2y)(2x -7y) (4)(2x -y)(5x +2y-1) (5) ))((22y xy x y x ++- (4)(2x -y+2)(5x +2y-1) 【变式训练】 1.下列计算正确的是( ) A.473)4)(132-+=-+x x x x ( B.222)(b a b a +=+ C.22))(b a b a b a +=-+( D.2 2232)2)(2(y xy x y x y x --=-+ 2.若(x +2)(x -1)=x 2+mx +n ,则m +n = . 3.我校操场原来的长是2x 米,宽比长少10米,现在把操场的长与宽都增加了5米,则整个操场面积增加了 平方米. 4.计算 (1)(m +1)(2m -1) (2)(2a -3b)(3a +2b) (3)(3m -2n)(-m -n)

(4)(ab-b)(5ab+2b) (5)(a2b-b2)(5ab2+2b) (6)(-7x2-8y2)(-x2+3y2) (7)(y+2)2 (8) (x+2y)2 (9) (3x-2y)2 (10)(x+1)(x2-x+1) (11)(2x+y)(x2-xy+y) (12)(2xy+y)(x2-xy+y2) (13)(2a+3b)(3a+ab-2b) (14)(a-3b)(3ab+a2-2b2) (15)(5xy+2x-1)(xy+2) (16)(x3-2)(x3+3)-(x2)3+x2.x (17)(3x-2y)(y-3x)-(2x-y)(3x+y) 5.先化简,再求值(x-5)(x+2)-(x+1)(x-2),其中x=-4.

多项式的乘法初中一年级教案

一、知识结构 二、重点、难点分析 本节教学的重点是利用公式(x+a)(x+b)=x2+(a+b)x+ab熟练地计算.难点是理解并掌握公式.本节内容是进一步学习乘法公式及后续知识的基础. 1.多项式乘法法则,是多次运用单项式与多项式相乘的法则得到的.计算时,先把看成一个单项式,是一个多项式,运用单项式与多项式相乘的法则,得到 然后再次运用单项式与多项式相乘的法则,得到: 2.含有一个相同字母的两个一次二项式相乘,得到的积是同一字母的二次三项式,它的二次项由两个因式中的一次项相乘得到;积的一次项是由两个因式中的常数基分别乘以两个因式中的一次项后,合并同类项得到;积的常数项等于两个因式中常数项的积.如果因式中一次项的系数都是1,那么积的二次项系数也是1,积的一次项系数等于两个因式中的常数项的和,这就是说,如果用、分别表示一个含有系数是1的相同字母的两个一次二项式中的常数项,则有 3.在进行两个多项式相乘、直接写出结果时,注意不要“漏项”.检查的办法是:两个多项式相乘,在没有合并同类项之前,积的项数应是这两个多基同甘共苦的积.如积的项数应是,即六项: 当然,如有同类项则应合并,得出最简结果. 4.运用多项式乘法法则时,必须做到不重不漏,为此,相乘时,要按一定的顺序进行.例如,,可先用第一个多项式中的第一项“”分别与第二个多项式的每一项相乘,再用第一个多项式中的第二项“”分别与第二个多项式的每一项相乘,然后把所得的积相加,即. 5.多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积. 6.注意确定积中每一项的符号,多项式中每一项都包含它前面的符号,“同号得正,异号得负”. 三、教法建议 教学时,应注意以下几点: (1)要防止两个多项式相乘,直接写出结果时“漏项”.检查的办法是:两个多项式相乘,在没有合并同类项之前,积的项数应是这两个多项式项数的积.如,

相关文档
最新文档