雷达信号matlab仿真剖析

雷达信号matlab仿真剖析
雷达信号matlab仿真剖析

雷达系统分析大作

1. 最大不模糊距离: ,max 1252u r

C R km f == 距离分辨率: 1502m

c

R m B ?=

= 2. 天线有效面积: 22

0.07164e G

A m λπ

==

半功率波束宽度:

3 6.4o db

θ==

3. 模糊函数的一般表示式为

()

()()2

2*

2

;?

-+=

dt e t s t s f d f j d πττχ 对于线性调频信号 (

)21

Re j t p t s t ct e T πμ??= ? ???

则有:

()()2

21

;Re Re p j t T j t d p

p

p t t f ct ct e e dt T T T πμπμτ

χτ∞+-∞????+=

? ? ? ?????

? ()

()()sin 1;11d p p d p d p p f T T f T f T T τπμττχττπμτ????+- ?

? ? ???????=- ? ?????+-

? ?

?

?

分别令0,0==d f τ可得()()2

2

0;,;0τχχd f

()()

sin 0;d p d d p

f T f f T πχπ=

(

)sin 1;011p p p p p T T T T T τπμττχττπμτ??

??-

? ? ? ???????=- ? ?????- ? ??

?

程序代码见附录1的T_3.m, 仿真结果如下:

4. 程序代码见附录1的T_4.m, 仿真结果如下:

通过比较得知,加窗后的主副瓣比变大,副瓣降低到40db以下,但主瓣的宽度却增加了,约为未加窗时的1.5倍,主瓣也有一定的损失。

5.由雷达方程

22

134

(4)

t

PG Te

SNR

KT LFR

λσ

π

=

计算可得1196.5540log

SNR R

=- db

作图输出结果如下,程序代码见附录1的T_5.m

在R=70km 时,计算得单个脉冲的SNR 1=2.7497 db,要达到要求的检测性能则需要12.5dB 的最小检测输入信噪比,而M 个相参脉冲积累可以将信噪比提高M 倍, 故

1

0)

1(SNR D M ==9.4413

因此要达到要求就需要10个以上的相参脉冲进行积累。可求得可积累脉冲数为: 3256db

r a

N f θ=

其中,a Ω为天线的搜索速度等于30o /s.r f 是重复频率为1200hz.故满足要求.

6. 设t 时刻弹舰径向与目标航向的夹角为a (t),目标偏离弹轴方向的夹角为t β()

,在t=0时,31o o α

α==(), 1o ββ==(0).

由几何关系知, sin cos o o OM R MP R αα

==

经t 秒后,

''cos '''sin '

s a a M P MP V t V t O M OM V t αα=--=-

''()''O M t arctan M P α??

=

???

()()'t t βαα=-

sin '

''()sin ()sin ()

a OM V t O M R t t t ααα-=

=

cos ()cos ()d a s V V t V t βα=+

又因为

cos ()cos(()')t t βαα=-

cos ()cos 'sin ()sin '1cos ()sin ()22

t t t t αααααα=+=+

1

cos ()sin ()cos ()22d a s V V t t V t ααα??=++

???

信号的频谱分析及MATLAB实现

第23卷第3期湖南理工学院学报(自然科学版)Vol.23 No.3 2010年9月 Journal of Hunan Institute of Science and Technology (Natural Sciences) Sep. 2010信号的频谱分析及MATLAB实现 张登奇, 杨慧银 (湖南理工学院信息与通信工程学院, 湖南岳阳 414006) 摘 要: DFT是在时域和频域上都已离散的傅里叶变换, 适于数值计算且有快速算法, 是利用计算机实现信号频谱分析的常用数学工具. 文章介绍了利用DFT分析信号频谱的基本流程, 重点阐述了频谱分析过程中误差形成的原因及减小分析误差的主要措施, 实例列举了MATLAB环境下频谱分析的实现程序. 通过与理论分析的对比, 解释了利用DFT分析信号频谱时存在的频谱混叠、频谱泄漏及栅栏效应, 并提出了相应的改进方法. 关键词: MA TLAB; 频谱分析; 离散傅里叶变换; 频谱混叠; 频谱泄漏; 栅栏效应 中图分类号: TN911.6 文献标识码: A 文章编号: 1672-5298(2010)03-0029-05 Analysis of Signal Spectrum and Realization Based on MATLAB ZHANG Deng-qi, YANG Hui-yin (College of Information and Communication Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China) Abstract:DFT is a Fourier Transform which is discrete both in time-domain and frequency-domain, it fits numerical calculation and has fast algorithm, so it is a common mathematical tool which can realize signal spectrum analysis with computer. This paper introduces the basic process of signal spectrum analysis with DFT, emphasizes the causes of error producing in spectrum analysis process and the main ways to decrease the analysis error, and lists the programs of spectrum analysis based on MATLAB. Through the comparison with the theory analysis, the problems of spectrum aliasing, spectrum leakage and picket fence effect are explained when using DFT to analyze signal spectrum, and the corresponding solution is presented. Key words:MATLAB; spectrum analysis; DFT; spectrum aliasing; spectrum leakage; picket fence effect 引言 信号的频谱分析就是利用傅里叶分析的方法, 求出与时域描述相对应的频域描述, 从中找出信号频谱的变化规律, 以达到特征提取的目的[1]. 不同信号的傅里叶分析理论与方法, 在有关专业书中都有介绍, 但实际的待分析信号一般没有解析式, 直接利用公式进行傅里叶分析非常困难. DFT是一种时域和频域均离散化的傅里叶变换, 适合数值计算且有快速算法, 是分析信号的有力工具. 本文以连续时间信号为例, 介绍利用DFT分析信号频谱的基本流程, 重点阐述频谱分析过程中可能存在的误差, 实例列出MATLAB 环境下频谱分析的实现程序. 1 分析流程 实际信号一般没有解析表达式, 不能直接利用傅里叶分析公式计算频谱, 虽然可以采用数值积分方法进行频谱分析, 但因数据量大、速度慢而无应用价值. DFT在时域和频域均实现了离散化, 适合数值计算且有快速算法, 是利用计算机分析信号频谱的首选工具. 由于DFT要求信号时域离散且数量有限, 如果是时域连续信号则必须先进行时域采样, 即使是离散信号, 如果序列很长或采样点数太多, 计算机存储和DFT计算都很困难, 通常采用加窗方法截取部分数据进行DFT运算. 对于有限长序列, 因其频谱是连续的, DFT只能描述其有限个频点数据, 故存在所谓栅栏效应. 总之, 用DFT分析实际信号的频谱, 其结果必然是近似的. 即使是对所有离散信号进行DFT变换, 也只能用有限个频谱数据近似表示连续频 收稿日期: 2010-06-09 作者简介: 张登奇(1968? ), 男, 湖南临湘人, 硕士, 湖南理工学院信息与通信工程学院副教授. 主要研究方向: 信号与信息处理

基于MATLAB的GMSK调制与解调课设报告

基于Matlab的GMSK调制与解调 1.课程设计目的 (1)加深对GMSK基本理论知识的理解。 (2)培养独立开展科研的能力和编程能力。 (3)通过SIMULINK对BT=0.3的GMSK调制系统进行仿真。 2.课程设计要求 (1)观察基带信号和解调信号波形。 (2)观察已调信号频谱图。 (3)分析调制性能和BT参数的关系。 3.相关知识 3.1GMSK调制 调制原理图如图2.2,图中滤波器是高斯低通滤波器,它的输出直接对VCO 进行调制,以保持已调包络恒定和相位连续。 非归零数字序 高斯低通滤 波器频率调制器 (VCO) GMSK已 调信号 图3.1GMSK调制原理图 为了使输出频谱密集,前段滤波器必须具有以下待性: 1.窄带和尖锐的截止特性,以抑制FM调制器输入信号中的高频分量; 2.脉冲响应过冲量小,以防止FM调制器瞬时频偏过大; 3.保持滤波器输出脉冲响应曲线下的面积对应丁pi/2的相移。以使调制指数为1/2。前置滤波器以高斯型最能满足上述条件,这也是高斯滤波器最小移频键控(GMSK)的由来。

GMSK 信号数据 3.2GMSK 解调 GMSK 本是MSK 的一种,而MSK 又是是FSK 的一种,因此,GMSK 检波也可以采用FSK 检波器,即包络检波及同步检波。而GMSK 还可以采用时延检波,但每种检波器的误码率不同。 GMSK 非相干解调原理图如图2.3,图中是采用FM 鉴频器(斜率鉴频器或相位鉴频器)再加判别电路,实现GMSK 数据的解调输出。 图3.2GMSK 解调原理图 4.课程设计分析 4.1信号发生模块 因为GMSK 信号只需满足非归零数字信号即可,本设计中选用(Bernoulli Binary Generator)来产生一个二进制序列作为输入信号。 图4.1GMSK 信号产生器 该模块的参数设计这只主要包括以下几个。其中probability of a zero 设置为0.5表示产生的二进制序列中0出现的概率为0.5;Initial seed 为61表示随机数种子为61;sample time 为1/1000表示抽样时间即每个符号的持续时为0.001s。当仿真时间固定时,可以通过改变sample time 参数来改变码元个数。例如仿真时间为10s,若sample time 为1/1000,则码元个数为10000。 带通滤 波器限幅器判决器鉴频器GMSK 信号 输出

matlab频谱分析

设计出一套完整的系统,对信号进行频谱分析和滤波处理; 1.产生一个连续信号,包含低频,中频,高频分量,对其进行采样,进行频谱分析,分别设计三种高通,低通,带通滤波器对信号进行滤波处理,观察滤波后信号的频谱。 2.采集一段含有噪音的语音信号(可以录制含有噪音的信号,或者录制语音后再加进噪音信号),对其进行采样和频谱分析,根据分析结果设计出一合适的滤波器滤除噪音信号。 %写上标题 %设计低通滤波器: [N,Wc]=buttord() %估算得到Butterworth低通滤波器的最小阶数N和3dB截止频率Wc [a,b]=butter(N,Wc); %设计Butterworth低通滤波器 [h,f]=freqz(); %求数字低通滤波器的频率响应 figure(2); % 打开窗口2 subplot(221); %图形显示分割窗口 plot(f,abs(h)); %绘制Butterworth低通滤波器的幅频响应图 title(巴氏低通滤波器''); grid; %绘制带网格的图像 sf=filter(a,b,s); %叠加函数S经过低通滤波器以后的新函数 subplot(222); plot(t,sf); %绘制叠加函数S经过低通滤波器以后的时域图形 xlabel('时间(seconds)'); ylabel('时间按幅度'); SF=fft(sf,256); %对叠加函数S经过低通滤波器以后的新函数进行256点的基—2快速傅立叶变换 w= %新信号角频率 subplot(223); plot()); %绘制叠加函数S经过低通滤波器以后的频谱图 title('低通滤波后的频谱图'); %设计高通滤波器 [N,Wc]=buttord() %估算得到Butterworth高通滤波器的最小阶数N和3dB截止频率Wc [a,b]=butter(N,Wc,'high'); %设计Butterworth高通滤波器 [h,f]=freqz(); %求数字高通滤波器的频率响应 figure(3); subplot(221); plot()); %绘制Butterworth高通滤波器的幅频响应图 title('巴氏高通滤波器'); grid; %绘制带网格的图像 sf=filter(); %叠加函数S经过高通滤波器以后的新函数 subplot(222); plot(t,sf); ;%绘制叠加函数S经过高通滤波器以后的时域图形 xlabel('Time(seconds)'); ylabel('Time waveform'); w; %新信号角频率 subplot(223);

基于Matlab的语音信号处理与分析

系(院)物理与电子工程学院专业电子信息工程题目语音信号的处理与分析 学生姓名 指导教师 班级 学号 完成日期:2013 年5 月 目录 1 绪论 (3) 1.1课题背景及意义 (3) 1.2国内外研究现状 (3) 1.3本课题的研究内容和方法 (4) 1.3.1 研究内容 (4) 1.3.2 开发环境 (4) 2 语音信号处理的总体方案 (4) 2.1 系统基本概述 (4) 2.2 系统基本要求与目的 (4) 2.3 系统框架及实现 (5) 2.3.1 语音信号的采样 (5) 2.3.2 语音信号的频谱分析 (5) 2.3.3 音乐信号的抽取 (5) 2.3.4 音乐信号的AM调制 (5) 2.3.5 AM调制音乐信号的同步解调 (5) 2.4系统设计流程图 (6) 3 语音信号处理基本知识 (6) 3.1语音的录入与打开 (6)

3.2采样位数和采样频率 (6) 3.3时域信号的FFT分析 (7) 3.4切比雪夫滤波器 (7) 3.5数字滤波器设计原理 (8) 4 语音信号实例处理设计 (8) 4.1语音信号的采集 (8) 4.3.1高频调制与低频调制 (10) 4.3.2切比雪夫滤波 (11) 4.3.3 FIR滤波 (11) 5 总结 (12) 参考文献 (13) 语音信号的处理与分析 【摘要】语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。 Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱为语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化,使人机交互更加便捷。信号处理是Matlab重要应用的领域之一。 本设计针对现在大部分语音处理软件内容繁多、操作不便等问题,采用MATLAB7.0综合运用GUI界面设计、各种函数调用等来实现语音信号的变频、变幅、傅里叶变换及滤波,程序界面简练,操作简便,具有一定的实际应用意义。 最后,本文对语音信号处理的进一步发展方向提出了自己的看法。 【关键词】Matlab 语音信号傅里叶变换低通滤波器

Matlab通信系统仿真实验报告

Matlab通信原理仿真 学号: 2142402 姓名:圣斌

实验一Matlab 基本语法与信号系统分析 一、实验目的: 1、掌握MATLAB的基本绘图方法; 2、实现绘制复指数信号的时域波形。 二、实验设备与软件环境: 1、实验设备:计算机 2、软件环境:MATLAB R2009a 三、实验内容: 1、MATLAB为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。 MATLAB程序如下: x = -pi::pi; y1 = sin(x); y2 = cos(x); %准备绘图数据 figure(1); %打开图形窗口 subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x,y1绘图 title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x,y2绘图 xlabel('time'),ylabel('y') %第二幅图横坐标为’time’,纵坐标为’y’运行结果如下图: 2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图: MATLAB程序如下: x=-pi:.1:pi; y1=sin (x); y2=cos (x); figure (1); %subplot (2,1,1); plot (x,y1); title ('plot (x,y1)'); grid on %subplot (2,1,2); plot (x,y2);

信号与系统的MATLAB仿真

成绩
课程设计说明书(计算书、论文)
题 目 信号与系统的 MATLAB 仿真
课 程 名 称 院 (系)
信号与系统 电子通信工程学院
专 业 班 级 学 生 姓 名 学 号
设 计 地 点 指 导 教 师
设计起止时间:

月 日





1.
课程设计应达到的目的
(1)熟悉 Matlab 软件的运行环境 (2)掌握采用 Matlab 软件程序实现信号与系统分析的方法 (3)掌握正确的编程过程和仿真分析 (4)总结对比软件仿真与硬件实验的区别及特点 2.课程设计题目及要求 《信号与系统》课程设计选题主要是要体现本课程的主要教学 内容中的重点部分,同时要求选题能过反映出信号仿真的代表性, 系统分析的应用性, 灵活性, 并且能与原本理论教学中繁琐的数学 计算相比较, 体现出软件计算的方便快捷性, 本课程设计主要包括 四个小设计部分,分别是: (1)信号的产生与简单运算:产生一个方波周期为 4π ,t[0 50]。
(2)?求解微分方程:y"(t)+3y'(t)+2y(t)=2e-2 ε(t)求 yzs; ?求卷积:e-2 ε (t)*e-3 ε (t)
t t
t
(3)求 H (s) ?
2s 2 ? 1 s 3 ? 4s 2 ? 6s ? 9
?求零、极点 ?并绘图 ?冲激响应

(4)求解差分方程:y(n)-y(n-1)-2y(n-2)=f(n) ?f(n)=( 1 )nε (n)
3
?f(n)=δ (n)
3.课程设计思路 利用信号与系统中的 matlab 常用命令集求解微分方程,并利用结 果和绘图命令绘图。
4.课程设计原理 设计原理 (1)设计一个简单程序能实现方波信号的生成。 利用Matlab软件的信号处理工具箱(Signal Processing Toolbox)中的专用函数产生 信号并绘出波形。
(2) ?对于求方程的零状态响应,即是求解常微分方程。Matlab 解常微分方程式的语法是 dsolve('equation','condition'),其中equation代表常微分方程式即 y'=g(x,y), 且须以Dy代表一 微分项y'',condition则为初始条件。 ?利用MATLAB中conv命令求解卷积。 阶微分项y' D2y代表二阶

基于matlab的通信信道及眼图的仿真 通信原理课程设计

通信原理课程设计 基于matlab的通信信道及眼图的仿真 作者: 摘要 由于多径效应和移动台运动等影响因素,使得移动信道对传输信号在时间、频率和角度上造成了色散,即时间色散、频率色散、角度色散等等,因此多径信道的特性对通信质量有着重要的影响,而多径信道的包络统计特性则是我们研究的焦点。根据不同无线环境,接收信号包络一般服从几种典型分布,如瑞利分布、莱斯分布等。因此我们对瑞利信道、莱斯信道进行了仿真并针对服从瑞利分布的多径信道进行模拟仿真。由于眼图是实验室中常用的一种评价基带传输系统的一种定性而方便的方法,“眼睛”的张开程度可以作为基带传输系统性能的一种度量,它不但反映串扰的大小,而且也可以反映信道噪声的影响。为此,我们在matlab上进行了仿真,加深对眼图的理解。 关键词:瑞利信道莱斯信道多径效应眼图 一、瑞利信道 在移动通信系统中,发射端和接收端都可能处于不停的运动状态之中,这种相对运动将产生多普勒频移。在多径信道中,发射端发出的信号通过多条路径到达接收端,这些路径具有不同的延迟和接收强度,它们之间的相互作用就形成了衰落。MATLAB中的多径瑞利衰落信道模块可以用于上述条件下的信道仿真。 多径瑞利衰落信道模块用于多径瑞利衰落信道的基带仿真,该模块的输入信号为复信号,可以为离散信号或基于帧结构的列向量信号。无线系统中接收机与发射机之间的相对运动将引起信号频率的多普勒频移,多普勒频移值由下式决定: 其中v是发射端与接收端的相对速度,θ是相对速度与二者连线的夹角,λ是信号的波长。

Fd的值可以在该模块的多普勒平移项中设置。由于多径信道反映了信号在多条路径中的传输,传输的信号经过不同的路径到达接收端,因此产生了不同的时间延迟。当信号沿着不同路径传输并相互干扰时,就会产生多径衰落现象。在模块的参数设置表中,Delay vector(延迟向量)项中,可以为每条传输路径设置不同的延迟。如果激活模块中的Normalize gain vector to 0 dB overall gain,则表示将所有路径接收信号之和定为0分贝。信号通过的路径的数量和Delay vector(延迟向量)或Gain vector(增益向量)的长度对应。Sample time(采样时间)项为采样周期。离散的Initial seed(初始化种子)参数用于设置随机数的产生。 1.1、Multipath Rayleigh Fading Channel(多径瑞利衰落信道)模块的主要参数 参数名称参数值 Doppler frequency(Hz) 40/60/80 Sample time 1e-6 Delay vector(s) [0 1e-6] Gain vector(dB) [0 -6] Initial seed 12345 使能 Normalize gain vector to 0 dB overall gain Bernoulli Random Binary Generator(伯努利二进制随机数产生器)的主要参数 参数名称参数值 Probability of a zero0.5 Initial seed54321

基于MATLAB的信号与系统仿真及应用

本科毕业(论文) 题 目 (中、英文 ) in The Signal System 分类 号 学号 密级 公开 学校代码 1107044431 TN911.6 基于MATLAB 的信号系统仿真及应用 The Application of MATLAB in The Signal System 工科 作者姓名 指导教师 学科门类 专业名称 电气工程及其自动化 提交论文日期 成绩评定 二零一五年五月

摘要 当前的科学信息技术正在日新月异的高速发展,而通过应用数字信号处理的方法,已成为一个非常重要的技术手段被广泛应用在通信、音频和图像、遥感,视频等领域。为了更好地了解信号与系统的基本理论和掌握其方法,从而更好地理解和掌握数字信号处理的理论知识,因此在实验过程中我们就需要通过MATLAB 计算机辅助设计平台。 本论文主要探究MATALB在信号与系统中的连续信号和离散信号中的应用,主要从连续和离散两方面入手,进一步掌握信号系统中的相关知识。同时引进计算机软件—MATLAB,对信号系统二阶系统的时域和频域分析,通过它在计算机上对程序进行仿真,阐述信号与系统理论应用与实际相联系。以此激发学习兴趣,变被动接受为主动探知,从而提升学习效果,培养主动思维,学以致用的思维习惯,也可以让人们进一步了解MATLAB软件 关键词:采样定理;MATLAB;信号与系统;抽样定理

Abstract Current, the rapid development of science and information technology are changing and through the application of digital signal processing method, has become a very important technology is widely used in communication, audio and video, remote sensing, video, etc. In order to better understand the basic theory of signal and system, and grasp the method, to better understand and master the theoretical knowledge of digital signal processing, so we need in the process of experiment by MATLAB computer aided design platform. This thesis mainly explores MATALB in signal and system, the application of discrete and continuous signals, mainly from the two aspects of the continuous and discrete, further to master relevant knowledge of signal system. Introduction of computer software - MATAB at the same time, the signal system of second order system time domain and frequency domain analysis, through its d on program on computer simulation, signal and system theory associated with the actual application. To stimulate interest in learning, change passive accept to active detection, so as to improve learning effect, active thinking, to practice habits of thinking, also can let people learn more about MATLAB software. Key words:Sampling theorem; MATLAB; Signals and systems; The sampling theorem

matlab信号处理学习总结

常用函数 1 图形化信号处理工具,fdatool(滤波器设计),fvtool(图形化滤波器参数查看)sptool (信号处理),fvtool(b,a),wintool窗函数设计.或者使用工具箱 filter design设计。当使用离散的福利叶变换方法分析频域中的信号时,傅里叶变换时可能引起漏谱,因此 需要采用平滑窗, 2数字滤波器和采样频率的关系。 如果一个数字滤波器的采样率为 FS,那么这个滤波器的分析带宽为Fs/2。也就是说这 个滤波器只可以分析[0,Fs/2]的信号.举个例字: 有两个信号,S1频率为20KHz,S2频率为40KHz,要通过数字方法滤除S2。 你的滤波器的采样率至少要为Fs=80HKz,否则就分析不到 S2了,更不可能将它滤掉 了!(当然根据采样定理,你的采样率 F0也必须大于80HK,,Fs和 F0之间没关系不大,可以任取,只要满足上述关系就行。) 3 两组数据的相关性分析 r=corrcoef(x,y) 4 expm 求矩阵的整体的 exp 4 离散快速傅里叶 fft信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。Ft为连续傅里叶变换。反傅里叶 ifft 5 ztrans(),Z变换是把离散的数字信号从时域转为频率 6 laplace()拉普拉斯变换是把连续的的信号从时域转为频域 7 sound(x)会在音响里产生 x所对应的声音 8 norm求范数,det行列式,rank求秩 9 模拟频率,数字频率,模拟角频率关系 模拟频率f:每秒经历多少个周期,单位Hz,即1/s; 模拟角频率Ω是指每秒经历多少弧度,单位rad/s; 数字频率w:每个采样点间隔之间的弧度,单位rad。 Ω=2pi*f; w = Ω*T 10 RMS求法 Rms = sqrt(sum(P.^2))或者norm(x)/sqrt(length(x) var方差的开方是std标准差,RMS应该是norm(x)/sqrt(length(x))吧. 求矩阵的RMS:std(A(:)) 11 ftshift 作用:将零频点移到频谱的中间 12 filtfilt零相位滤波, 采用两次滤波消除系统的非线性相位, y = filtfilt(b,a,x);注意x的长度必须是滤波器阶数的3倍以上,滤波器的 阶数由max(length(b)-1,length(a)-1)确定。 13 [h,t]=impz(b,a,n,fs),计算滤波器的冲激响应 h为n点冲击响应向量 [h,x]=freqz(b,a,n,fs)计算频响,有fs时,x为频率f,无fs,x为w角频率, 常用于查看滤波器的频率特性 14 zplane(z,p) 画图零极点分布图 15 beta=unwarp(alpha) 相位会在穿越+-180发生回绕,可将回绕的 16 stepz 求数字滤波器的阶跃响应 [h,t] = stepz(b,a,n,fs) fvtool(b1,a1,b2,a2,...bn,an) fvtool(Hd1,Hd2,...) h = fvtool(...) 15 IIR数字滤波器设计方法 1 先根据已知带同参数求出最佳滤波器阶数和截止频率 [n,Wn] = buttord(Wp,Ws,Rp,Rs);

MATLAB通信系统仿真实验报告1

MATLAB通信系统仿真实验报告

实验一、MATLAB的基本使用与数学运算 目的:学习MATLAB的基本操作,实现简单的数学运算程序。 内容: 1-1要求在闭区间[0,2π]上产生具有10个等间距采样点的一维数组。试用两种不同的指令实现。 运行代码:x=[0:2*pi/9:2*pi] 运行结果: 1-2用M文件建立大矩阵x x=[0.10.20.30.40.50.60.70.80.9 1.11.21.31.41.51.61.71.81.9 2.12.22.32.42.52.62.72.82.9 3.13.23.33.43.53.63.73.83.9] 代码:x=[0.10.20.30.40.50.60.70.80.9 1.11.21.31.41.51.61.71.81.9 2.12.22.32.42.52.62.72.82.9 3.13.23.33.43.53.63.73.83.9] m_mat 运行结果: 1-3已知A=[5,6;7,8],B=[9,10;11,12],试用MATLAB分别计算 A+B,A*B,A.*B,A^3,A.^3,A/B,A\B. 代码:A=[56;78]B=[910;1112]x1=A+B X2=A-B X3=A*B X4=A.*B X5=A^3 X6=A.^3X7=A/B X8=A\B

运行结果: 1-4任意建立矩阵A,然后找出在[10,20]区间的元素位置。 程序代码及运行结果: 代码:A=[1252221417;111024030;552315865]c=A>=10&A<=20运行结果: 1-5总结:实验过程中,因为对软件太过生疏遇到了些许困难,不过最后通过查书与同学交流都解决了。例如第二题中,将文件保存在了D盘,而导致频频出错,最后发现必须保存在MATLAB文件之下才可以。第四题中,逻辑语言运用到了ij,也出现问题,虽然自己纠正了问题,却也不明白错在哪了,在老师的讲解下知道位置定位上不能用ij而应该用具体的整数。总之第一节实验收获颇多。

matlab信号仿真谐波

综合训练① 实验内容:利用matlab绘制频率自定的正弦信号(连续时间和离散时间),复指数信号(连续时间),并举例实际中哪些物理现象可以用正弦信号,复指数信号来表示。绘制成谐波关系的正弦信号(连续时间和离散时间),分析其周期性和频率之间的关系。实验步骤: 一、绘制谐波关系的正弦信号 分析:由于正弦信号可以表示成两个共轭的复指数信号相减,然后再除去两倍的单位虚数得到,故,我们将正弦信号设置为 X=exp(j*pi*n/4)-exp(-j*pi*n/4))/(2*j) 此信号就相当于 x=sin(pi*n/4) 设计程序如下: n=[0:32]; %设置n的取值 x=(exp(j*pi*n/4)-exp(-j*pi*n/4))/(2*j); %限定离散正弦信号 stem(n,x) %绘制该离散正弦信号 通过Matlab所得图形如下:

分析:同样的连续型的正弦信号同样也可以用类似方式绘制. x=sym('(exp(j*pi*t/T)+exp(-j*pi*t/T))/2');%函数表示正弦信号 x5=subs(x,5,'T'); %设置周期大小ezplot(x5,[0,10]) %绘制图形 所得结果如下:

二、绘制复指数信号 分析:由于复指数信号有实数部分和虚数部分,所以绘制其图形,我们采取了分别绘制的方法,将实数和虚数分别画出。 实验程序如下: t=[0:.01:10]; %产生时间轴的等差点 y=exp((1+j*10)*t); %设置复指数信号 subplot(211),plot(t,real(y)); %绘制实数信号图形 grid subplot(212),plot(t,imag(y)); %绘制虚数部分图形 grid 实验所得结果如下:

基于matlab的信号分析与处理

基于m a t l a b的信号分 析与处理 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

山东建筑大学 课程设计说明书题目:基于MATLAB的信号分析与处理课程:数字信号处理课程设计 院(部):信息与电气工程学院 专业:通信工程 班级:通信111班 学生姓名: 学号: 指导教师: 完成日期: 2014年1月

目录4

摘要 这次是基于MATLAB的信号分析与处理。所谓数字滤波器,就是输入、输出都是数字信号的,通过数值计算处理改变输入信号所含频率成分的相对比例,或者滤除某些频率成分的数字器件或程序。常用的经典滤波器有低通、高通、带通、带阻。 首先产生一个连续信号,包含低频、中频、高频分量;对其进行采样,得到数字信号;对数字信号进行FFT频谱分析,绘制其频谱图;根据信号频谱分析的结果,分别设计高通、低通、带通滤波器,绘制滤波器的幅频及相频特性;用所设计的滤波器对信号滤波,并绘制出滤波后的频谱图。 关键词:MATLAB; FFT;滤波器;信号产生;频谱分析

1设计目的和要求 产生一个连续信号,包含低频,中频,高频分量,对其进行采样,进行频谱分析,分别设计三种高通,低通,带通滤波器对信号进行滤波处理,观察滤波后信号的频谱。 2设计原理 信号的采样要符合奈奎斯特采样定律,一般为被采信号最高频率的2倍,只有这样,才能保证频域不混叠,也就是采样出来数字信号中包含了被采信号的所有信息,而且没有引入干扰。这就是信号的时域采样。 频谱分析是指对信号进行频域谱的分析,观察其频域的各个分量的功率大小,其理论基础是傅立叶变换,现在一般采用数字的方法,也就是将时域信号数字化后做FFT,可以得到频域的波形。 数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。可以设计系统的频率响应,让它满足一定的要求,从而对通过该系统的信号的某些特定的频率成分进行过滤,这就是滤波器的基本原理。 IIR滤波器的设计原理: IIR数字滤波器的设计一般是利用目前已经很成熟的模拟滤波器的设计方法来进行设计,通常采用模拟滤波器原型有butterworth函数、chebyshev函数、bessel函数、椭圆滤波器函数等。 IIR数字滤波器的设计步骤: (1)按照一定规则把给定的滤波器技术指标转换为模拟低通滤波器的技术指标; (2)根据模拟滤波器技术指标设计为响应的模拟低通滤波器; (3)很据脉冲响应不变法和双线性不变法把模拟滤波器转换为数字滤波器; (4)如果要设计的滤波器是高通、带通或带阻滤波器,则首先把它们的技术指标转化为模拟低通滤波器的技术指标,设计为数字低通滤波器,最后通过频率转换的方法来得到所要的滤波器。 本课程设计设计思想:首先利用MATLAB分别产生低频、中频、高频信号,然后进行叠加得到连续时间信号;对所产生的连续时间信号进行采样,得到数字信号;对信

基于matlab的模拟信号数字化仿真.

基于matlab的模拟信号数字化仿真 作者:李亚琼 学号:1305160425

摘要 本文研究的主要内容模拟信号数字化Matlab软件仿真。若信源输出的是模拟信号,如电话传送的话音信号,模拟摄像机输出的图像信号等,若使其在数字信道中传输,必须在发送端将模拟信号转换成数字信号,即进行A/D变换,在接收端则要进行D/A变换。模拟信号数字化由抽样、量化、编码三部分组成。由于数字信号的传送具有稳定性好,可靠性高,方便传送和传送等诸多优点,使得被广泛应用到各种技术中。不仅如此,Matlab仿真软件是常用的工具之一,可用于通信系统的设计和仿真。在科研教学方面发挥着重要的作用。Matlab有诸多优点,编程简单,操作容易、处理数据迅速等。 本文主要阐述的是模拟信号数字化的理论基础和实现方法。利用Matlab提供的可视化工具建立了数字化系统的仿真模型,详细讲述了抽样、量化、编码的设计,并指出了在仿真建模中要注意的问题。在给定的仿真条件下,运行了仿真程序,得到了预期的仿真结果。 关键词:Matlab、模拟信号数字化、仿真 1.1基本原理 模拟信号的数字传输是指把模拟信号先变换为数字信号后,再进行传输。由于与模拟传输相比,数字传输有着众多优点,因而此技术越来越受到重视。此变化成为A/D变换。A/D变换是把模拟基带信号变换喂数字基带信号,尽管后者的带宽会比前者大得很多,但本质上仍属于基带信号。这种传输可直接采用基带传输,或经过熟悉调制后再做频带传输。A/D变化包括抽样、量化、编码三个步骤,如图。 图1.模拟信号数字化 1.1.1抽样定理 抽样就是把模拟信号在时间上的连续变成离散的抽样值。而能不能用这一系列抽样值重新恢复原信号,就需要抽样定理来解决了。所以说,如果我们要传输模拟信号,可以通过传输抽样定理的抽样值来实现而不是非要传输原本的模拟信号。模拟信号数字化的理论基础就是抽样定理,抽样定理的作用不言而喻。 抽样定理:设时间连续信号) f,其最高截止频率为m f,如果用时间间 (t

信号分析与处理MATLAB仿真程序

一正弦信号 w=pi/6; ns1=0;nf1=48; n1=[ns1:nf1]; x1=sin(w*n1); subplot(1,1,1); stem(n1,x1); axis([0,50,-1.2,1.2]); xlabel('n');ylabel('x');title('正弦信号'); grid on; 二周期信号 x=[1 1 0 -1 -1 1 0 0]; xn1=x'*ones(1,8); xn1=xn1(:); xn1=xn1'; n1=0:length(xn1)-1; subplot(1,1,1); stem(n1,xn1); axis([0,42,-1.5,1.5]); xlabel('n');ylabel('xn');title('周期信号'); grid on; 三高斯随机信号 n1=30; xn1=randn(1,n1); subplot(1,1,1); stem(xn1); axis([0,32,-4,4]); xlabel('n');ylabel('xn');title('高斯随机信号'); grid on; 四正选信号求特征值: >> clear w=pi/6; ns1=0;nf1=48; >> n1=[ns1:nf1]; >> xn1=sin(w*n1); >> x=mean(xn1); >> y=var(xn1); >> x x = -1.0931e-017 >> y y = 0.5000 五周期信号特征值计算: >> clear >> x=[1 1 0 -1 -1 1 0 0]; xn1=x'*ones(1,8);

xn1=xn1(:); xn1=xn1'; n1=0:length(xn1)-1; >> u=mean(xn1); >> v=var(xn1); >> u u = 0.1250 >> v v = 0.6190 六高斯随机信号特征值计算: >> clear >> n1=30; xn1=randn(1,n1); >> m=mean(xn1); >> v=var(xn1); >> m m = -0.1349 >> v v = 1.3187 七信号运算 w=pi/6; ns1=0;nf1=48;n1=[ns1:nf1]; xn1=sin(w*n1); x=[1 1 0 -1 -1 1 0 0]; xn2=x'*ones(1,8); xn2=xn2(:); xn2=xn2'; ns2=0;nf2=length(xn2)-1;n2=0:nf2;ny=0:max(nf1,nf2); y1=zeros(1,length(ny));y2=y1; y1(find(ny<=nf1))=xn1;y2(find(ny<=nf2))=xn2; ya=y1+y2;ys=y1-y2; subplot(3,2,1);stem(n1,xn1); xlabel('n');ylabel('xn');title('正弦信号');grid on; subplot(3,2,2);stem(ny,y1); xlabel('n');ylabel('xn');title('修正后的正弦信号');grid on; subplot(3,2,3);stem(n2,xn2); xlabel('n');ylabel('xn');title('周期信号');grid on; subplot(3,2,4);stem(ny,y2); xlabel('n');ylabel('xn');title('修正后的周期信号');grid on;

MATLAB产生信号波形的仿真实验

实验一产生信号波形的仿真实验 一、实验目的:熟悉MATLAB软件的使用,并学会信号的表示和以及用MATLAB 来产生信号并实现信号的可视化。 二、实验内容: 对信号进行时域分析,首先需要将信号随时间变化的规律用二维曲线表示出来。对于简单信号可以通过手工绘制其波形,但对于复杂的信号,手工绘制信号波形显得十分困难,且难以绘制精确的曲线。 一种是用向量来表示信号,另一种则是用符合运算的方法来表示信号。用适当的MATLAB语句表示信号后,可以利用MATLAB的绘图命令绘制出直观的信号波形。 1.向量表示法 对于连续时间信号f(t),可以用两个行向量f和t来表示,其中向量t是 形如t=t 1:p:t 2 的MATLAB命令定义的时间范围向量,t 1 为信号起始时间,t 2 为信 号终止时间,p为时间间隔。向量f为连续信号f(t)在向量t所定义的时间点上的样值。 下面分析连续时间信号f(t)=Sa(t)=sin(t)/t,可用如下的两个变量表示: t= -10:0.02:10 f=sin(t)./t 命令运行结果为: t = Columns 1 through 8 -10.0000 -8.5000 -7.0000 -5.5000 -4.0000 -2.5000 -1.0000 0.5000 Columns 9 through 14 2.0000 3.5000 5.0000 6.5000 8.0000 9.5000 f = Columns 1 through 8 -0.0544 0.0939 0.0939 -0.1283 -0.1892 0.2394 0.8415 0.9589 Columns 9 through 14

基于matlab的信号分析与处理

山东建筑大学 课程设计说明书题目:基于MATLAB的信号分析与处理课程:数字信号处理课程设计 院(部):信息与电气工程学院 专业:通信工程 班级:通信111班 学生姓名: 学号: 指导教师: 完成日期:2014年1月

目录 摘要 (Ⅰ) 1 设计目的和要求 (1) 2 设计原理 (2) 3 设计内容 (3) 3.1 程序源代码 (4) 3.2 调试分析与过程描述 (7) 3.3 结果分析 (12) 总结 (13) 致谢 (14) 参考文献 (15)

摘要 这次是基于MATLAB的信号分析与处理。所谓数字滤波器,就是输入、输出都是数字信号的,通过数值计算处理改变输入信号所含频率成分的相对比例,或者滤除某些频率成分的数字器件或程序。常用的经典滤波器有低通、高通、带通、带阻。 首先产生一个连续信号,包含低频、中频、高频分量;对其进行采样,得到数字信号;对数字信号进行FFT频谱分析,绘制其频谱图;根据信号频谱分析的结果,分别设计高通、低通、带通滤波器,绘制滤波器的幅频及相频特性;用所设计的滤波器对信号滤波,并绘制出滤波后的频谱图。 关键词:MATLAB; FFT;滤波器;信号产生;频谱分析

1设计目的和要求 产生一个连续信号,包含低频,中频,高频分量,对其进行采样,进行频谱分析,分别设计三种高通,低通,带通滤波器对信号进行滤波处理,观察滤波后信号的频谱。 2设计原理 信号的采样要符合奈奎斯特采样定律,一般为被采信号最高频率的2倍,只有这样,才能保证频域不混叠,也就是采样出来数字信号中包含了被采信号的所有信息,而且没有引入干扰。这就是信号的时域采样。 频谱分析是指对信号进行频域谱的分析,观察其频域的各个分量的功率大小,其理论基础是傅立叶变换,现在一般采用数字的方法,也就是将时域信号数字化后做FFT,可以得到频域的波形。 数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。可以设计系统的频率响应,让它满足一定的要求,从而对通过该系统的信号的某些特定的频率成分进行过滤,这就是滤波器的基本原理。 IIR滤波器的设计原理: IIR数字滤波器的设计一般是利用目前已经很成熟的模拟滤波器的设计方法来进行设计,通常采用模拟滤波器原型有butterworth函数、chebyshev函数、bessel函数、椭圆滤波器函数等。 IIR数字滤波器的设计步骤: (1)按照一定规则把给定的滤波器技术指标转换为模拟低通滤波器的技术指标; (2)根据模拟滤波器技术指标设计为响应的模拟低通滤波器; (3)很据脉冲响应不变法和双线性不变法把模拟滤波器转换为数字滤波器; (4)如果要设计的滤波器是高通、带通或带阻滤波器,则首先把它们的技术指标转化为模拟低通滤波器的技术指标,设计为数字低通滤波器,最后通过频率转换的方法来得到所要的滤波器。 本课程设计设计思想:首先利用MATLAB分别产生低频、中频、高频信号,然后进行叠加得到连续时间信号;对所产生的连续时间信号进行采样,得到数字信号;对信号进行FFT频谱分析,绘制其频谱图;根据信号频谱分析的结果,分别设计高通,低通,带通滤波器,得到滤波器的幅频及相频特性。

相关文档
最新文档