统计学和数据挖掘(中文).

统计学和数据挖掘(中文).
统计学和数据挖掘(中文).

统计学和数据挖掘:交叉学科

摘要:统计学和数据挖掘有很多共同点,但与此同时它们也有很多差异。本文讨论了两门学科的性质,重点论述它们的异同。

关键词:统计学知识发现

1.简介

统计学和数据挖掘有着共同的目标:发现数据中的结构。事实上,由于它们的目标相似,一些人(尤其是统计学家认为数据挖掘是统计学的分支。这是一个不切合实际的看法。

因为数据挖掘还应用了其它领域的思想、工具和方法,尤其是计算机学科,例如数据库技术和机器学习,而且它所关注的某些领域和统计学家所关注的有很大不同。

统计学和数据挖掘研究目标的重迭自然导致了迷惑。事实上,有时候还导致了反感。统计学有着正统的理论基础(尤其是经过本世纪的发展,而现在又出现了一个新的学科,有新的主人,而且声称要解决统计学家们以前认为是他们领域的问题。这必然会引起关注。更多的是因为这门新学科有着一个吸引人的名字,势必会引发大家的兴趣和好奇。把“数据挖掘”这个术语所潜在的承诺和“统计学”作比较的话,统计的最初含义是“陈述事实”,以及找出枯燥的大量数据背后的有意义的信息。当然,统计学的现代的含义已经有很大不同的事实。而且,这门新学科同商业有特殊的关联(尽管它还有科学及其它方面的应用。

本文的目的是逐个考察这两门学科的性质,区分它们的异同,并关注与数据挖掘相关联的一些难题。首先,我们注意到“数据挖掘”对统计学家来说并不陌生。例如,Everitt定义它为:“仅仅是考察大量的数据驱动的模型,从中发现最适合的”。统计学家因而会忽略对数据进行特别的分析,因为他们知道太细致的研究却难以发现明显的结构。尽管如此,事实上大量的数据可能包含不可预测的但很有价值的结构。而这恰恰引起了注意,也是当前数据挖掘的任务。

2.统计学的性质

试图为统计学下一个太宽泛的定义是没有意义的。尽管可能做到,但会引来很多异议。相反,我要关注统计学不同于数据挖掘的特性。

差异之一同上节中最后一段提到的相关,即统计学是一门比较保守的学科,目前有一种趋势是越来越精确。当然,这本身并不是坏事,只有越精确才能避免错误,发现真理。但是如果过度的话则是有害的。这个保守的观点源于统计学是数学的分支这样一个看法,我是不同意这个观点的(参见【15】,【9】,【14】,【2】,【3】尽管统计学确实以数学为基础(正如物理和工程也以数学为基础,但没有被认为是数学的分支,但它同其它学科还有紧密的联系。

数学背景和追求精确加强了这样一个趋势:在采用一个方法之前先要证明,而不是象计算机科学和机器学习那样注重经验。这就意味着有时候和统计学家关注同一问题的其它领域的研究者提出一个很明显有用的方法,但它却不能被证明(或还不能被证明。统计杂志倾向于发表经过数学证明的方法而不是一些特殊方法。数据挖掘作为几门学科的综合,已经从机器学习那里继承了实验的态度。这并不意味着数据挖掘工作者不注重精确,而只是说明如果方法不能产生结果的话就会被放弃。

正是统计文献显示了(或夸大了统计的数学精确性。同时还显示了其对推理的侧重。尽管统计学的一些分支也侧重于描述,但是浏览一下统计论文的话就会发现这些文献的核心问题就是在观察了样本的情况下如何去推断总体。当然这也常常是数据挖掘所关注的。下面我们会提到数据挖掘的一个特定属性就是要处理的是一个大数据集。这就意味着,由于可行性的原因,我们常常得到的只是一个样本,但是需要描述样本取自的那个大数据集。然而,

数据挖掘问题常常可以得到数据总体,例如关于一个公司的所有职工数据,数据库中的所有客户资料,去年的所有业务。在这种情形下,推断就没有价值了(例如,年度业务的平均值,因为观测到的值也就是估计参数。这就意味着,建立的统计模型可能会利用一系列概率表述(例如,一些参数接近于0,则会从模型中剔除掉,但当总体数据可以获得的话,在数据挖掘中则变得毫无意义。在这里,我们可以很方便的应用评

估函数:针对数据的足够的表述。事实是,常常所关注的是模型是否合适而不是它的可行性,在很多情形下,使得模型的发现很容易。例如,在寻找规则时常常会利用吻合度的单纯特性(例如,应用分支定理。但当我们应用概率陈述时则不会得到这些特性。

统计学和数据挖掘部分交迭的第三个特性是在现代统计学中起核心作用的“模型”。或许“模型”这个术语更多的含义是变化。一方面,统计学模型是基于分析变量间的联系,但另一方面这些模型关于数据的总体描述确实没有道理的。关于信用卡业务的回归模型可能会把收入作为一个独立的变量,因为一般认为高收入会导致大的业务。这可能是一个理论模型(尽管基于一个不牢靠的理论。与此相反,只需在一些可能具有解释意义的变量基础上进行逐步的搜索,从而获得一个有很大预测价值的模型,尽管不能作出合理的解释。(通过数据挖掘去发现一个模型的时候,常常关注的就是后者。

还有其它方法可以区分统计模型,但在这里我将不作探讨。对此可参见【10】。这里我想关注的是,现代统计学是以模型为主的。而计算,模型选择条件是次要的,只是如何建立一个好的模型。但在数据挖掘中,却不完全是如此。在数据挖掘中,准则起了核心的作用。(当然在统计学中有一些以准则为中心的独立的特例。Gifi的关于学校的非线性多变量分析就是其中之一。例如,Gifi说,在本书中我们持这样的观点,给定一些最常用的MV A(多变量分析问题,既可以从模型出发也可以技术出发。正如我们已经在1.1节所看到的基于模型的经典的多变量统计分析,……然而,在很多情形下,模型的选择并不都是显而易见的,选择一个合适的模型是不可能的,最合适的计算方法也是不可行的。在这种情形下,我们从另外一个角度出发,应用设计的一系列技术来回答MV A问题,暂不考虑模型和最优判别的选择。

相对于统计学而言,准则在数据挖掘中起着更为核心的作用并不奇怪,数据挖掘所继承的学科如计算机科学及相关学科也是如此。数据集的规模常常意味着传统的统计学准则不适合数据挖掘问题,不得不重新设计。部分地,当数据点被逐一应用以更新估计量,适应性和连续性的准则常常是必须的。尽管一些统计学的准则已经得到发展,但更多的应用是机器学习。(正如“学习”所示的那样

很多情况下,数据挖掘的本质是很偶然的发现非预期但很有价值的信息。这说明数据挖掘过程本质上是实验性的。这和确定性的分析是不同的。(实际上,一个人是不能完全确定一个理论的,只能提供证据和不确定的证据。确定性分析着眼于最适合的模型-建立一个推荐模型,这个模型也许不能很好的解释观测到的数据。很多,或许是大部分统计分析提出的是确定性的分析。然而,实验性的数据分析对于统计学并不是新生事务,或许这是统计学家应该考虑作为统计学的另一个基石,而这已经是数据挖掘的基石。所有这些都是正确的,但事实上,数据挖掘所遇到的数据集按统计标准来看都是巨大的。在这种情况下,统计工具可能会失效:百万个偶然因素可能就会使其失效。(【11】中包含例子

如果数据挖掘的主要目的是发现,那它就不关心统计学领域中的在回答一个特定的问题之前,如何很好的搜集数据,例如实验设计和调查设计。数据挖掘本质上假想数据已经被搜集好,关注的只是如何发现其中的秘密。

3.数据挖掘的性质

由于统计学基础的建立在计算机的发明和发展之前,所以常用的统计学工具包含很多可以手工实现的方法。因此,对于很多统计学家来说,1000个数据就已经是很大的了。但这

个“大”对于英国大的信用卡公司每年350,000,000笔业务或A T&T每天

200,000,000个长途呼叫来说相差太远了。很明显,面对这么多的数据,则需要设计不同于那些“原则上可以用手工实现”的方法。这意味这计算机(正是计算机使得大数据可能实现对于数据的分析和处理是关键的。分析者直接处理数据将变得不可行。相反,计算机在分析者和数据之间起到了必要的过滤的作用。这也是数据挖掘特别注重准则的另一原因。尽管有必要,把分析者和数据分离开很明显导致了一些关联任务。这里就有一个真正的危险:非预期的模式可能会误导分析者,这一点我下面会讨论。

我不认为在现代统计中计算机不是一个重要的工具。它们确实是,并不是因为数据的规模。对数据的精确分析方法如bootstrap方法、随机测试,迭代估计方法以

及比较适合的复杂的模型正是有了计算机才是可能的。计算机已经使得传统统计模型的视野大大的扩展了,还促进了新工具的飞速发展。

下面来关注一下歪曲数据的非预期的模式出现的可能性。这和数据质量相关。所有数据分析的结论依赖于数据质量。GIGO的意思是垃圾进,垃圾出,它的引用到处可见。一个数据分析者,无论他多聪明,也不可能从垃圾中发现宝石。对于大的数据集,尤其是要发现精细的小型或偏离常规的模型的时候,这个问题尤其突出。当一个人在寻找百万分之一的模型的时候,第二个小数位的偏离就会起作用。一个经验丰富的人对于此类最常见的问题会比较警觉,但出错的可能性太多了。

此类问题可能在两个层次上产生。第一个是微观层次,即个人记录。例如,特殊的属性可能丢失或输错了。我知道一个案例,由于挖掘者不知道,丢失的数据被记录为99而作为真实的数据处理。第二个是宏观层次,整个数据集被一些选择机制所歪曲。交通事故为此提供了一个好的示例。越严重的、致命的事故,其记录越精确,但小的或没有伤害的事故的记录却没有那么精确。事实上,很高比例的数据根本没有记录。这就造成了一个歪曲的映象-可能会导致错误的结论。

统计学很少会关注实时分析,然而数据挖掘问题常常需要这些。例如,银行事务每天都会发生,没有人能等三个月得到一个可能的欺诈的分析。类似的问题发生在总体随时间变化的情形。我的研究组有明确的例子显示银行债务的申请随时间、竞争环境、经济波动而变化。

至此,我们已经论述了数据分析的问题,说明了数据挖掘和统计学的差异,尽管有一定的重迭。但是,数据挖掘者也不可持完全非统计的观点。首先来看一个例子:获得数据的问题。统计学家往往把数据看成一个按变量交叉分类的平面表,存储于计算机等待分析。如果数据量较小,可以读到内存,但在许多数据挖掘问题中这是不可能的。更糟糕的是,大量的数据常常分布在不同的计算机上。或许极端的是,数据分布在全球互联网上。此类问题使得获得一个简单的样本不大可能。(先不管分析“整个数据集”的可能性,如果数据是不断变化的这一概念可能是不存在的,例如电话呼叫

当描述数据挖掘技术的时候,我发现依据以建立模型还是模式发现为目的可以很方便的区分两类常见的工具。我已经提到了模型概念在统计学中的核心作用。在建立模型的时候,尽量要概括所有的数据,以及识别、描述分布的形状。这样的“全”模型的例子如对一系列数据的聚类分析,回归预测模型,以及基于树的分类法则。相反,在模式发现中,则是尽量识别小的(但不一定不重要偏差,发现行为的异常模式。例如EEG轨迹中的零星波形、信用卡使用中的异常消费模式,以及不同于其它特征的对象。很多时候,这第二种实验是数据挖掘的本质-试图发现渣滓中的金块。然而,第一类实验也是重要的。当关注的是全局模型的建立的话,样本是可取的(可以基于一个十万大小的样本发现重要的特性,这和基于一个千万大小的样本是等效的,尽管这部分的取决于我们想法的模型的特征。然而,模式发现不同于此。仅选择一个样本的话可能会忽略所希望检测的情形。

尽管统计学主要关注的是分析定量数据,数据挖掘的多来源意味着还需要处理其它形式

的数据。特别的,逻辑数据越来越多-例如当要发现的模式由连接的和分离的要素组成的时候。类似的,有时候会碰到高度有序的结构。分析的要素可能是图象,文本,语言信号,或者甚至完全是(例如,在交替分析中科学研究资料。

4.讨论

数据挖掘有时候是一次性的实验。这是一个误解。它更应该被看作是一个不断的过程(尽管数据集时确定的。从一个角度检查数据可以解释结果,以相关的观点检查可能会更接近等等。关键是,除了极少的情形下,很少知道哪一类模式是有意义的。数据挖掘的本质是发现非预期的模式-同样非预期的模式要以非预期的方法来发现。

与把数据挖掘作为一个过程的观点相关联的是认识到结果的新颖性。许多数据挖掘的结果是我们所期望的-可以回顾。然而,可以解释这个事实并不能否定挖掘出它们的价值。没有这些实验,可能根本不会想到这些。实际上,只有那些可以依据过去经验形成的合理的解释的结构才会是有价值的。

显然在数据挖掘存在着一个潜在的机会。在大数据集中发现模式的可能性当然存在,大数据集的数量与日俱增。然而,也不应就此掩盖危险。所有真正的数据集(即使那些是以完全自动方式搜集的数据都有产生错误的可能。关于人的数据集(例如事务和行为数据尤其有这种可能。这很好的解释了绝大部分在数据中发现的“非预期的结构”本质上是无意义的,而是因为偏离了理想的过程。(当然,这样的结构可能会是有意义的:如果数据有问题,可能会干扰搜集数据的目的,最好还是了解它们。与此相关联的是如何确保(和至少为事实提供支持任何所观察到的模式是“真实的”,它们反应了一些潜在的结构和关联而不仅仅是一个特殊的数据集,由于一个随机的样本碰巧发生。在这里,记分方法可能是相关的,但需要更多的统计学家和数据挖掘工作者的研究。

数据挖掘科学正在萌芽。Fayyad et al做了重要的基础工作【6】,目前的研究范围可以参考国际知识发现和数据挖掘系列学报和《数据挖掘和知识发现》杂志所列的主题和领域(两个最重要的学报是【12】和【11】。关于统计学和数据分析的论文包括【8】,【4】和【10】。

参考文献目录见原文。

数据挖掘试验指导书

《商务数据分析》实验指导书(适用于国际经济与贸易专业) 江西财经大学国际经贸学院 编写人:戴爱明

目录 前言 (1) 实验一、SPSS Clementine 软件功能演练 (5) 实验二、SPSS Clementine 数据可视化 (9) 实验三、决策树C5.0 建模 (17) 实验四、关联规则挖掘 (30) 实验五、聚类分析(异常值检测) (38)

前言 一、课程简介 商务数据分析充分利用数据挖掘技术从大量商务数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程。数据挖掘的广义观点:数据挖掘就是从存放在数据库,数据仓库或其他信息库中的大量的数据中“挖掘”有趣知识的过程。数据挖掘,又称为数据库中知识发现(Knowledge Discovery in Database, KDD),因此,数据挖掘和数据仓库的协同工作,一方面,可以迎合和简化数据挖掘过程中的重要步骤,提高数据挖掘的效率和能力,确保数据挖掘中数据来源的广泛性和完整性。另一方面,数据挖掘技术已经成为数据仓库应用中极为重要和相对独立的方面和工具。 数据挖掘有机结合了来自多学科技术,其中包括:数据库、数理统计、机器学习、高性能计算、模式识别、神经网络、数据可视化、信息检索、图像与信号处理、空间数据分析等,这里我们强调商务数据分析所处理的是大规模数据,且其算法应是高效的和可扩展的。通过数据分析,可从数据库中挖掘出有意义的知识、规律,或更高层次的信息,并可以从多个角度对其进行浏览察看。所挖掘出的知识可以帮助进行商务决策支持。当前商务数据分析应用主要集中在电信、零售、农业、网络日志、银行等方面。

数据挖掘经典书籍

数据挖掘入门读物: 深入浅出数据分析这书挺简单的,基本的内容都涉及了,说得也比较清楚,最后谈到了R是大加分。难易程度:非常易。 啤酒与尿布通过案例来说事情,而且是最经典的例子。难易程度:非常易。 数据之美一本介绍性的书籍,每章都解决一个具体的问题,甚至还有代码,对理解数据分析的应用领域和做法非常有帮助。难易程度:易。 数学之美这本书非常棒啦,入门读起来很不错! 数据分析: SciPy and NumPy 这本书可以归类为数据分析书吧,因为numpy和scipy真的是非常强大啊。Python for Data Analysis 作者是Pandas这个包的作者,看过他在Scipy会议上的演讲,实例非常强!Bad Data Handbook 很好玩的书,作者的角度很不同。 数据挖掘适合入门的教程: 集体智慧编程学习数据分析、数据挖掘、机器学习人员应该仔细阅读的第一本书。作者通过实际例子介绍了机器学习和数据挖掘中的算法,浅显易懂,还有可执行的Python代码。难易程度:中。 Machine Learning in Action 用人话把复杂难懂的机器学习算法解释清楚了,其中有零星的数学公式,但是是以解释清楚为目的的。而且有Python代码,大赞!目前中科院的王斌老师(微博:王斌_ICTIR)已经翻译这本书了机器学习实战(豆瓣)。这本书本身质量就很高,王老师的翻译质量也很高。难易程度:中。我带的研究生入门必看数目之一! Building Machine Learning Systems with Python 虽然是英文的,但是由于写得很简单,比较理解,又有Python 代码跟着,辅助理解。 数据挖掘导论最近几年数据挖掘教材中比较好的一本书,被美国诸多大学的数据挖掘课作为教材,没有推荐Jiawei Han老师的那本书,因为个人觉得那本书对于初学者来说不太容易读懂。难易程度:中上。Machine Learning for Hackers 也是通过实例讲解机器学习算法,用R实现的,可以一边学习机器学习一边学习R。 数据挖掘稍微专业些的: Introduction to Semi-Supervised Learning 半监督学习必读必看的书。 Learning to Rank for Information Retrieval 微软亚院刘铁岩老师关于LTR的著作,啥都不说了,推荐!Learning to Rank for Information Retrieval and Natural Language Processing 李航老师关于LTR的书,也是当时他在微软亚院时候的书,可见微软亚院对LTR的研究之深,贡献之大。 推荐系统实践这本书不用说了,研究推荐系统必须要读的书,而且是第一本要读的书。 Graphical Models, Exponential Families, and Variational Inference 这个是Jordan老爷子和他的得意门徒Martin J Wainwright 在Foundation of Machine Learning Research上的创刊号,可以免费下载,比较难懂,但是一旦读通了,graphical model的相关内容就可以踏平了。 Natural Language Processing with Python NLP 经典,其实主要是讲NLTK 这个包,但是啊,NLTK 这个包几乎涵盖了NLP 的很多内容了啊! 数据挖掘机器学习教材: The Elements of Statistical Learning 这本书有对应的中文版:统计学习基础(豆瓣)。书中配有R包,非常赞!可以参照着代码学习算法。 统计学习方法李航老师的扛鼎之作,强烈推荐。难易程度:难。 Machine Learning 去年出版的新书,作者Kevin Murrphy教授是机器学习领域中年少有为的代表。这书是他的集大成之作,写完之后,就去Google了,产学研结合,没有比这个更好的了。

分析报告、统计分析和数据挖掘的区别

分析报告、统计分析和数据挖掘的区别 关于数据挖掘的作用,Berry and Linoff的定义尽管有些言过其实,但清晰的描述了数据挖掘的作用。“分析报告给你后见之明 (hindsight);统计分析给你先机 (foresight);数据挖掘给你洞察力(insight)”。 举个例子说。 你看到孙悟空跟二郎神打仗,然后写了个分析报告,说孙悟空在柔韧性上优势明显,二郎神在力气上出类拔萃,所以刚开始不相上下;结果两个人跑到竹林里,在竹子上面打,孙悟空的优势发挥出来,所以孙悟空赢了。这叫分析报告。 孙悟空要跟二郎神打架了,有个赌徒找你预测。你做了个统计,发现两人斗争4567次,其中孙悟空赢3456次。另外,孙悟空斗牛魔王,胜率是89%,二郎神斗牛魔王胜率是71%。你得出趋势是孙悟空赢。因为你假设了这次胜利跟历史的关系,根据经验作了一个假设。这叫统计分析。 你什么都没做,让计算机自己做关联分析,自动找到了出身、教育、经验、单身四个因素。得出结论是孙悟空赢。计算机通过分析发现贫苦出身的孩子一般比皇亲国戚功夫练得刻苦;打架经验丰富的人因为擅长利用环境而机会更多;在都遇得到明师的情况下,贫苦出身的孩子功夫可能会高些;单身的人功夫总比同样环境非单身的高。孙悟空遇到的名师不亚于二郎神,而打架经验绝对丰富,并且单身,所以这次打头,孙悟空赢。这叫数据挖掘。 数据挖掘跟LOAP的区别在于它没有假设,让计算机找出这种背后的关系,而这种关系可能是你所想得到的,也可能是所想不到的。比如数据挖掘找出的结果发现在2亿条打斗记录中,姓孙的跟姓杨的打,总是姓孙的胜利,孙悟空姓孙,所以,悟空胜利。 用在现实中,我们举个例子来说,做OLAP分析,我们找找哪些人总是不及时向电信运营商缴钱,一般会分析收入低的人往往会缴费不及时。通过分析,发现不及时缴钱的穷人占71%。而数据挖掘则不同,它自己去分析原因。原因可能是,家住在五环以外的人,不及时缴钱。这些结论对推进工作有很深的价值,比如在五环外作市场调研,发现需要建立更多的合作渠道以方便缴费。这是数据挖掘的价值。

数据挖掘复习知识点整理超详细

必考知识点: 信息增益算法/ ID3决策树(计算) (详细见教材) 使用朴素贝叶斯分类预测类标号(计算) FP-TREE(问答) (详细见教材) 数据仓库的设计(详见第二章)(问答) (见PPT) 数值规约Equi-depth、equi-width、v-optimal、maxdiff(问答) (详细见教材) BUC (这个也要考,但不记得怎么考的了) 后向传播神经网络(名词解释) K-平均,K-中心点,DBSCAN 解析特征化(这个也要考) 总论 数据挖掘:是从大量数据中发现有趣(非平凡的、隐含的、先前未知、潜在有用)模式,这些数据可以存放在数据库,数据仓库或其他信息存储中。 挖掘流程: (1)学习应用域(2)目标数据创建集(3)数据清洗和预处理(4)数据规约和转换(5)选择数据挖掘函数(总结、分类、回归、关联、分类)(6)选择挖掘算法(7)找寻兴趣度模式(8)模式评估和知识展示(9)使用挖掘的知识 概念/类描述:一种数据泛化形式,用汇总的、简洁的和精确的方法描述各个类和概念,通过(1)数据特征化:目标类数据的一般特性或特征的汇总;(2)数据区分:将目标类数据的一般特性与一个或多个可比较类进行比较;(3)数据特征化和比较来得到。 关联分析:发现关联规则,这些规则展示属性-值频繁地在给定数据集中一起出现的条件,通常要满足最小支持度阈值和最小置信度阈值。 分类:找出能够描述和区分数据类或概念的模型,以便能够使用模型预测类标号未知的对象类,导出的模型是基于训练集的分析。导出模型的算法:决策树、神经网络、贝叶斯、(遗传、粗糙集、模糊集)。 预测:建立连续值函数模型,预测空缺的或不知道的数值数据集。 孤立点:与数据的一般行为或模型不一致的数据对象。 聚类:分析数据对象,而不考虑已知的类标记。训练数据中不提供类标记,对象根据最大化类内的相似性和最小化类间的原则进行聚类或分组,从而产生类标号。 第二章数据仓库 数据仓库是一个面向主题的、集成的、时变的、非易失的数据集合,支持管理部门的决策过程。从一个或多个数据源收集信息,存放在一个一致的模式下,并且通常驻留在单个站点。数据仓库通过数据清理、变换、继承、装入和定期刷新过程来构造。面向主题:排除无用数据,提供特定主题的简明视图。集成的:多个异构数据源。时变的:从历史角度提供信息,隐含时间信息。非易失的:和操作数据的分离,只提供初始装入和访问。 联机事务处理OLTP:主要任务是执行联机事务和查询处理。 联系分析处理OLAP:数据仓库系统在数据分析和决策方面为用户或‘知识工人’提供服务。这种系统可以用不同的格式和组织提供数据。OLAP是一种分析技术,具有汇总、合并和聚集功能,以及从不同的角度观察信息的能力。

现代商务统计学部分课件

现代商务统计学部分课件

《现代商务统计学》 第一篇总论 第一章市场体系与商务统计 第一节市场及市场体系 一、市场的涵义 人们对市场涵义的理解,是随着商务活动内容的不断丰富和发展以及人们认识的不断完善而逐步加深的。因此,在不同的认识程度上对市场涵义的理解也是不同的。 (一)市场是商品交换的场所 这种市场涵义的理解是人们对市场的最早的认识。显然,这里的市场是一个地域概念。据我国《易传·系辞下》记载,早在神农氏之世,“日中为市,致天下之民,聚天下之货,交易而退,各得其所”。这就是我国最原始的市场。这是一种狭义的理解,狭义的市场是指各种市场主体进行商品买卖的地方或进行商品交换的场所。如,北京的西单商场、天津的圈业场、上海的中百公司、南京的“金鹰”公司等等。 (二)市场是商品交换和流通的领域,是交换关系的总和。 这种市场涵义的理解,是随着人们认识的不

断提高而获得的。随着社会分工的逐步细化,特别是货币出现以后,商品的生产与交换范围不断扩大,形成了商品的流通过程。商品从生产领域要转移到消费领域必须经过流通流域。在流通领域里,商品流通是以货币为媒介的商品交换过程,是商品交换过程连续进行的整体。任何市场主体的买(卖)总是与其他的市场主体买(卖)连续在一起的,许许多多商品的买卖关系交织在一起,则形成了商品的交换过程和流通全局。在这种市场涵义的理解中,市场既体现着商品买、卖双方与商务中介的关系,也体现着商务活动的管理机构与商品买、卖双方之间的关系。 (三)市场的实质是商品供求关系的总和 这种市场的涵义是从广义角度来理解的。从广义的角度理解,市场不仅是指商品流通领域,还应紧密联系整个社会再生产过程去分析商品供求关系。从供求关系角度分析,所有的生产、经营者构成了供给主体,所有的购买者构成了需求主体(生产、经营者在购买商品时,则成为需求主体),供给主体与需求主体之间的关系则构成了市场中的商品供求关系的总和。供给大于需求则形成买方市场,反之则形成卖方市场。而任何商品的生产、

数据挖掘课程教学大纲

《统计学》课程教学大纲 英文名:Statistics 课程类别:专业基础课 课程性质:专业课 学分:3学分 课时:54课时 前置课:政治经济学、线性代数、微积分、概率论 主讲教师:徐健腾 选定教材:徐国祥,统计学,上海人民出版社,2007 课程概述: 本课程是运用统计数量分析的基本理论和方法,紧密结合社会经济实践,分析社会经济现象的数量表现、数量关系和数量变化规律的一门方法论科学。该课程首先对统计学的基本问题作了描述,包括统计学的概念、统计学的发展简史、统计工作的程序、统计分析软件、统计学的应用领域;其次介绍了统计学的核心概念,包括统计学的常用术语、统计指标与统计指标体系、统计方法和模型构建;再次介绍了描述统计学的基本内容,包括数据的计量与种类、统计数据的搜集与整理、统计表与统计图、集中趋势的测度、离散程度的测度、分布偏态与峰度的测度、指数体系与因素分析、几种常用的经济指数以及综合评价指数等;最后介绍了推断统计学的基本内容,包括抽样推断、假设检验、方差分析、相关与回归分析、时间序列分析等。 教学目的: 通过本课程的学习,要求学生能够全面掌握统计学的基本理论和基本方法,了解统计学发展的简单历史过程,熟悉统计工作的基本程序和统计学的应用领域;同时要求学生能根据统计研究的目的、统计数据的来源渠道和数据类型的不同,选择恰当的数学模型来对社会经济现象进行拟合。为了结合非统计学专业学生的学习要求和教学内容的完整性,要求学生能够掌握必需的统计分析方法和基本的统计指标知识,为深入进行经济分析和理论研究提供依据。 教学方法: 使用本教材要注意理论与实践相结合,着重培养学生综合的分析问题和解决问题的能力、培养他们的实际动手能力。教学过程中应尽量避开繁琐的数学公式推导,以案例为依托,结合实际例子讲清楚统计公式的应用方法。在内容上,立足于“大统计”的角度,从统计数据出发,以统计数据的处理和分析为核心,并根据统计教学的实际需要构建本课程的内容体系。在方法上,力求简明易

统计学和数据挖掘区别

统计学和数据挖掘区别 数据分析微信公众号datadw——关注你想了解的,分享你需要的。 1.简介 统计学和数据挖掘有着共同的目标:发现数据中的结构。事实上,由于它们的目标相似,一些人(尤其是统计学家)认为数据挖掘是统计学的分支。这是一个不切合实际的看法。因为数据挖掘还应用了其它领域的思想、工具和方法,尤其是计算机学科,例如数据库技术和机器学习,而且它所关注的某些领域和统计学家所关注的有很大不同。 统计学和数据挖掘研究目标的重迭自然导致了迷惑。事实上,有时候还导致了反感。统计学有着正统的理论基础(尤其是经过本世纪的发展),而现在又出现了一个新的学科,有新的主人,而且声称要解决统计学家们以前认为是他们领域的问题。这必然会引起关注。更多的是因为这门新学科有着一个吸引人的名字,势必会引发大家的兴趣和好奇。把“数据挖掘”这个术语所潜在的承诺和“统计学”作比较的话,统计的最初含义是“陈述事实”,以及找出枯燥的大量数据背后的有意义的信息。当然,统计学的现代的含义已经有很大不同的事实。而且,这门新学科同商业有特殊的关联(尽管它还有科学及其它方面的应用)。 本文的目的是逐个考察这两门学科的性质,区分它们的异同,并关注与数据挖掘相关联的一些难题。首先,我们注意到“数据挖掘”对统计学家来说并不陌生。例如,Everitt定义它为:“仅仅是考察大量的数据驱动的模型,从中发现最适合的”。统计学家因而会忽略对数据进行特别的分析,因为他们知道太细致的

研究却难以发现明显的结构。尽管如此,事实上大量的数据可能包含不可预测的但很有价值的结构。而这恰恰引起了注意,也是当前数据挖掘的任务。 2.统计学的性质 试图为统计学下一个太宽泛的定义是没有意义的。尽管可能做到,但会引来很多异议。相反,我要关注统计学不同于数据挖掘的特性。 差异之一同上节中最后一段提到的相关,即统计学是一门比较保守的学科,目前有一种趋势是越来越精确。当然,这本身并不是坏事,只有越精确才能避免错误,发现真理。但是如果过度的话则是有害的。这个保守的观点源于统计学是数学的分支这样一个看法,我是不同意这个观点的。尽管统计学确实以数学为基础(正如物理和工程也以数学为基础,但没有被认为是数学的分支),但它同其它学科还有紧密的联系。 数学背景和追求精确加强了这样一个趋势:在采用一个方法之前先要证明,而不是象计算机科学和机器学习那样注重经验。这就意味着有时候和统计学家关注同一问题的其它领域的研究者提出一个很明显有用的方法,但它却不能被证明(或还不能被证明)。统计杂志倾向于发表经过数学证明的方法而不是一些特殊方法。数据挖掘作为几门学科的综合,已经从机器学习那里继承了实验的态度。这并不意味着数据挖掘工作者不注重精确,而只是说明如果方法不能产生结果的话就会被放弃。

大数据、数据分析和数据挖掘的区别

大数据、数据分析和数据挖掘的区别 大数据、数据分析、数据挖掘的区别是,大数据是互联网的海量数据挖掘,而数据挖掘更多是针对内部企业行业小众化的数据挖掘,数据分析就是进行做出针对性的分析和诊断,大数据需要分析的是趋势和发展,数据挖掘主要发现的是问题和诊断。具体分析如下: 1、大数据(big data): 指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产; 在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)Veracity(真实性) 。 2、数据分析:

是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。 数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。 3、数据挖掘(英语:Data mining): 又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。 简而言之: 大数据是范围比较广的数据分析和数据挖掘。 按照数据分析的流程来说,数据挖掘工作较数据分析工作靠前些,二者又有重合的地方,数据挖掘侧重数据的清洗和梳理。 数据分析处于数据处理的末端,是最后阶段。 数据分析和数据挖掘的分界、概念比较模糊,模糊的意思是二者很难区分。 大数据概念更为广泛,是把创新的思维、信息技术、统计学等等技术的综合体,每个人限于学术背景、技术背景,概述的都不一样。

统计学和数据挖掘(中文).

统计学和数据挖掘:交叉学科 摘要:统计学和数据挖掘有很多共同点,但与此同时它们也有很多差异。本文讨论了两门学科的性质,重点论述它们的异同。 关键词:统计学知识发现 1.简介 统计学和数据挖掘有着共同的目标:发现数据中的结构。事实上,由于它们的目标相似,一些人(尤其是统计学家认为数据挖掘是统计学的分支。这是一个不切合实际的看法。 因为数据挖掘还应用了其它领域的思想、工具和方法,尤其是计算机学科,例如数据库技术和机器学习,而且它所关注的某些领域和统计学家所关注的有很大不同。 统计学和数据挖掘研究目标的重迭自然导致了迷惑。事实上,有时候还导致了反感。统计学有着正统的理论基础(尤其是经过本世纪的发展,而现在又出现了一个新的学科,有新的主人,而且声称要解决统计学家们以前认为是他们领域的问题。这必然会引起关注。更多的是因为这门新学科有着一个吸引人的名字,势必会引发大家的兴趣和好奇。把“数据挖掘”这个术语所潜在的承诺和“统计学”作比较的话,统计的最初含义是“陈述事实”,以及找出枯燥的大量数据背后的有意义的信息。当然,统计学的现代的含义已经有很大不同的事实。而且,这门新学科同商业有特殊的关联(尽管它还有科学及其它方面的应用。 本文的目的是逐个考察这两门学科的性质,区分它们的异同,并关注与数据挖掘相关联的一些难题。首先,我们注意到“数据挖掘”对统计学家来说并不陌生。例如,Everitt定义它为:“仅仅是考察大量的数据驱动的模型,从中发现最适合的”。统计学家因而会忽略对数据进行特别的分析,因为他们知道太细致的研究却难以发现明显的结构。尽管如此,事实上大量的数据可能包含不可预测的但很有价值的结构。而这恰恰引起了注意,也是当前数据挖掘的任务。

数据挖掘概念与技术原书第版范明孟小峰绎课后习题修订稿

数据挖掘概念与技术原书第版范明孟小峰绎课 后习题 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

(a)它是又一种广告宣传吗? (b)它是一种从数据库、统计学、机器学习和模式识别发展而来的技术的简单转换或应用吗? (c)我们提出了一种观点,说数据挖掘是数据库技术进化的结果。你认为数据挖掘也是机器学习研究进化的结果吗你能基于该学科的发展历史提出这一观点吗针对统计学和模式识别领域,做相同的事。 (d)当把数据挖掘看做知识发现过程时,描述数据挖掘所涉及的步骤。 答:简单地说,数据挖掘其实就是从大量的数据中发现有用的信息,它是从大量数据中挖掘有趣模式和知识的过程。数据挖掘不是一种广告宣传,而是身处在信息时代数据如此庞大的今天,我们对由海量的数据转化为有用信息的迫切需要,所以它是信息技术自然进化的结果,而不是一种广告宣传。 数据挖掘也不是一种从数据库、统计学、机器学习和模式识别发展而来的技术的简单转换或应用,它涉及到了很多领域的技术,比如统计学、机器学习、模式识别、数据库和数据仓库、信息检索、可视化、神经网络、高性能计算、算法以及许多应用领域的大量技术。 数据挖掘起始于20世纪下半叶,是在当时多个学科发展的基础上发展起来的。随着数据库技术的发展应用,数据的积累不断膨胀,导致简单的查询和统计已经无法满足企业的商业需求,所以急需一种新型的技术去获取有用的信息,当时计算机

领域的人工智能也取得了巨大进展,进入了机器学习的阶段,人们就将两者结合起来,用数据库管理系统存储数据,用计算机分析数据,这两者的结合就促就以这一门新兴的学科,所以数据挖掘不是机器学习研究进化的结果,而是结合了机器学。 数据挖掘的步骤包括:(1)数据收集;(2)数据清洗、脱敏;(3)数据存储;(4)数据分析;(5)数据可视化。 1.2数据仓库与数据库有何不同他们有哪相似之处 答:数据库是按照数据结构来组织、和管理数据的仓库,它是以一定方式储存在一起、能为多个用户共享、具有尽可能小的的特点、是与应用程序彼此独立的数据集合。 数据仓库,是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。它是单个数据,出于分析性报告和决策支持目的而创建。 不同处:(1)数据库是面向事务的设计,数据仓库是面向主题设计的。 (2)数据库一般存储在线交易数据,数据仓库存储的一般是历史数据。 (3)数据库设计是尽量避免冗余,数据仓库在设计是有意引入冗余。 (4)数据库是为捕获数据而设计,数据仓库是为分析数据而设计。 相似处:两者都是数据的集合。

机器学习和数据挖掘的联系与区别_光环大数据培训

https://www.360docs.net/doc/433671163.html, 机器学习和数据挖掘的联系与区别_光环大数据培训 光环大数据培训机构了解到,从数据分析的角度来看,数据挖掘与机器学习有很多相似之处,但不同之处也十分明显,例如,数据挖掘并没有机器学习探索人的学习机制这一科学发现任务,数据挖掘中的数据分析是针对海量数据进行的,等等。从某种意义上说,机器学习的科学成分更重一些,而数据挖掘的技术成分更重一些。 机器学习(Machine Learning,ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。其专门研究计算机是怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构,使之不断改善自身的性能。 数据挖掘是从海量数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程。数据挖掘中用到了大量的机器学习界提供的数据分析技术和数据库界提供的数据管理技术。 学习能力是智能行为的一个非常重要的特征,不具有学习能力的系统很难称之为一个真正的智能系统,而机器学习则希望(计算机)系统能够利用经验来改善自身的性能,因此该领域一直是人工智能的核心研究领域之一。在计算机系统中,“经验”通常是以数据的形式存在的,因此,机器学习不仅涉及对人的认知学习过程的探索,还涉及对数据的分析处理。实际上,机器学习已经成为计算机数据分析技术的创新源头之一。由于几乎所有的学科都要面对数据分析任务,因此机

https://www.360docs.net/doc/433671163.html, 器学习已经开始影响到计算机科学的众多领域,甚至影响到计算机科学之外的很多学科。机器学习是数据挖掘中的一种重要工具。然而数据挖掘不仅仅要研究、拓展、应用一些机器学习方法,还要通过许多非机器学习技术解决数据仓储、大规模数据、数据噪声等实践问题。机器学习的涉及面也很宽,常用在数据挖掘上的方法通常只是“从数据学习”。然而机器学习不仅仅可以用在数据挖掘上,一些机器学习的子领域甚至与数据挖掘关系不大,如增强学习与自动控制等。所以笔者认为,数据挖掘是从目的而言的,机器学习是从方法而言的,两个领域有相当大的交集,但不能等同。 典型的数据挖掘和机器学习过程 下图是一个典型的推荐类应用,需要找到“符合条件的”潜在人员。要从用户数据中得出这张列表,首先需要挖掘出客户特征,然后选择一个合适的模型来进行预测,最后从用户数据中得出结果。 把上述例子中的用户列表获取过程进行细分,有如下几个部分。 业务理解:理解业务本身,其本质是什么?是分类问题还是回归问题?数据怎么获取?应用哪些模型才能解决? 数据理解:获取数据之后,分析数据里面有什么内容、数据是否准确,为下

统计学和数据挖掘交叉学科

统计学和数据挖掘:交叉学科 摘要:统计学和数据挖掘有很多共同点,但与此同时它们也有很多差异。本文讨论了两门学科的性质,重点论述它们的异同。 关键词:统计学知识发现 1.简介 统计学和数据挖掘有着共同的目标:发现数据中的结构。事实上,由于它们的目标相似,一些人(尤其是统计学家)认为数据挖掘是统计学的分支。这是一个不切合实际的看法。 因为数据挖掘还应用了其它领域的思想、工具和方法,尤其是计算机学科,例如数据库技术和机器学习,而且它所关注的某些领域和统计学家所关注的有很大不同。 统计学和数据挖掘研究目标的重迭自然导致了迷惑。事实上,有时候还导致了反感。统计学有着正统的理论基础(尤其是经过本世纪的发展),而现在又出现了一个新的学科,有新的主人,而且声称要解决统计学家们以前认为是他们领域的问题。这必然会引起关注。更多的是因为这门新学科有着一个吸引人的名字,势必会引发大家的兴趣和好奇。把“数据挖掘”这个术语所潜在的承诺和“统计学”作比较的话,统计的最初含义是“陈述事实”,以及找出枯燥的大量数据背后的有意义的信息。当然,统计学的现代的含义已经有很大不同的事实。而且,这门新学科同商业有特殊的关联(尽管它还有科学及其它方面的应用)。 本文的目的是逐个考察这两门学科的性质,区分它们的异同,并关注与数据挖掘相关联的一些难题。首先,我们注意到“数据挖掘”对统计学家来说并不陌生。例如,Everitt定义它为:“仅仅是考察大量的数据驱动的模型,从中发现最适合的”。统计学家因而会忽略对数据进行特别的分析,因为他们知道太细致的研究却难以发现明显的结构。尽管如此,事实上大量的数据可能包含不可预测的但很有价值的结构。而这恰恰引起了注意,也是当前数据挖掘的任务。 2.统计学的性质 试图为统计学下一个太宽泛的定义是没有意义的。尽管可能做到,但会引来很多异议。相反,我要关注统计学不同于数据挖掘的特性。 差异之一同上节中最后一段提到的相关,即统计学是一门比较保守的学科,目前有一种趋势是越来越精确。当然,这本身并不是坏事,只有越精确才能避免错误,发现真理。但是如果过度的话则是有害的。这个保守的观点源于统计学是数学的分支这样一个看法,我是不同意这个观点的(参见【15】,【9】,【14】,【2】,【3】)尽管统计学确实以数学为基础(正如物理和工程也以数学为基础,但没有被认为是数学的分支),但它同其它学科还有紧密的联系。 数学背景和追求精确加强了这样一个趋势:在采用一个方法之前先要证明,而不是象计算机科学和机器学习那样注重经验。这就意味着有时候和统计学家关注同一问题的其它领域的研究者提出一个很明显有用的方法,但它却不能被证明(或还不能被证明)。统计杂志倾向于发表经过数学证明的方法而不是一些特殊方法。数据挖掘作为几门学科的综合,已经从机器学习那里继承了实验的态度。这并不意味着数据挖掘工作者不注重精确,而只是说明如果方法不能产生结果的话就会被放弃。 正是统计文献显示了(或夸大了)统计的数学精确性。同时还显示了其对推理的侧重。尽管统计学的一些分支也侧重于描述,但是浏览一下统计论文的话就会发现这些文献的核心问题就是在观察了样本的情况下如何去推断总体。当然这也常常是数据挖掘所关注的。下面我们会提到数据挖掘的一个特定属性就是要处理的是一个大数据集。这就意味着,由于可行性的原因,我们常常得到的只是一个样本,但是需要描述样本取自的那个大数据集。然而,

《数据挖掘》课程教学大纲

《数据挖掘》课程教学大纲 一、《数据挖掘》课程说明 (一)课程代码:14132007 (二)课程英文名称:Data Mining (三)开课对象:计算机与信息管理及其相关专业 (四)课程性质: 数据挖掘是信息与计算科学专业的专业课程,本课程以数据挖掘为主要内容,讲述实现数据挖掘的各主要功能、挖掘算法和应用,并通过对实际数据的分析更加深入地理解常用的数据挖掘模型。掌握大型数据挖掘软件SAS Enterprise Miner的使用,培养学生数据分析和处理的能力。先修课程:《数据库原理》、《概率论与数理统计》、《SAS软件基础》。 (五)教学目的: 通过《数据挖掘》课程的教学,使学生理解数据挖掘的基本概念和方法,学习和掌握SAS Enterprise Miner中的数据挖掘方法。学生能够借助SAS Enterprise Miner软件工具进行具体数据的挖掘分析。 (六)教学内容: 本课程主要学习的内容包括数据预处理、分类与预测、聚类分析等内容。 (七)教学时数 课程学时:48 学分:3 (八)教学方式 以多媒体教学手段为主要形式的课堂教学 (九)考核方式和成绩记载说明 考核方式笔试加上机大作业,严格考核学生出勤情况,达到学籍管理规定的旷课量取消考试资格。综合成绩根据平时成绩和期末成绩评定,平时成绩占40% ,期末成绩占60% 。 二、讲授大纲与各章的基本要求 第一章数据挖掘导论 教学要点: 1、熟悉数据挖掘的基本概念和功能

2、了解数据挖掘的系统分类 教学时数:8学时 教学内容: 第一节数据挖掘发展概述 1、功能介绍 2、基本应用概述 第二节数据挖掘功能 1、概念描述:定性与对比 2、关联分析 3、分类与预测 4、聚类分析 5、异类分析 6、演化分析 第三节数据挖掘系统 1、系统分类 2、系统应用 3、数据挖掘在医学信息系统和社会保险领域的应用考核要求: 1、数据挖掘发展概述 1.1功能和基本应用概述(识记) 2、数据挖掘功能 2.1概念描述(识记) 2.2关联分析(领会) 2.3分类与预测 (领会) 2.4聚类分析 (领会) 2.5异类分析 (领会) 2.6演化分析 (领会) 3、数据挖掘系统(应用) 第二章数据预处理 教学要点: 1.了解数据预处理的重要性 2.熟悉数据预处理的方法 教学时数:6学时 教学内容: 第一节数据清洗 1、噪声数据处理

统计学与数据挖掘_中国人民大学统计学系数据挖掘中心

统计学与数据挖掘 中国人民大学统计学系数据挖掘中心* (中国人民大学统计学系,北京100872) 工业界的广泛关注。 统计学是搜集、展示、分析及解释数据的科学。统计学不是方法的集合,而是处理数据的科学。数据挖掘的大部分核心功能的实现都以计量和统计分析方法作为支撑。这些核心功能包括:聚类、估计、预测、关联分组以及分类等。统计学、数据库和人工智能共同构成数据挖掘技术 的三大支柱。许多成熟的统计方法构成了数据挖掘的核心内容。比如:回归分析(多元回归、自 回归、Logistic回归)、判别分析(Bayes判别、非参数判别、Fisher判别)、聚类分析(系统聚类、动态聚类)、探索性数据分析(Exploratory DataAnalysis,简称EDA)、列联分析等统计方法, 一直在数据挖掘领域发挥着巨大的作用。与此同时,从数据挖掘要处理的海量数据和数据的复 杂程度来看,基于总体假定进行推断和检验的传统统计方法,已显露出很大的局限性。统计能否继续作为数据挖掘的有力支撑,数据挖掘将为统计学提供怎样的发展机遇,是我们最关心的问题。 本文中,我们将以统计学最近40年的发展走势作为论述的起点,逐步对统计方法在数据 挖掘算法设计、开发过程中的应用情况,进行全面、系统的考察与分析,进而提出统计学和数据 挖掘协同发展的广阔前景。 二、统计学近40年的走势 20世纪60年代是稳健统计盛行的时代。稳健统计开创性地解决了与理论分布假定有偏 差的数据分析问题。其成果主要包括回归系数的敏感性分析;对异常值(Outliers)、高杠杆点(Leverage values)以及其他一些对少量污染异常敏感的回归诊断;M -估计量(M - estimator)等稳健估计量。稳健统计标志着基于正态假定的理论框架正在打破,打破框架的源动力来自于客观世界里真实的、具有复杂结构的数据。 20世纪70年代早期, John Tukey提出探索性数据分析(EDA),他通过箱线图等简单方 法,指出了统计建模应该结合数据真实分布情况。EDA的主要观点是,对数据的分析,不应该 从理论分布假定出发去建构模型,而是从数据的特征出发去研究和发现数据中有用的信息。这 一观点恰恰是数据挖掘的核心思想。EDA思想的直接体现是,重新提出了描述统计在数据分析中的重要性,这一简单、直观方法在理解数据方面是极为有用的。EDA的这种思想与数据挖 掘过程中的数据理解极为相似。EDA更深刻的意义则在于,它为统计学指明了发展方向——和数据相结合的道路。 继EDA之后,统计学在数据分析的道路上,硕果累累。20世纪70年代后期,广义线性模 型,概括了一个时期以来基于正态理论以外的线性模型研究,该理论通过将响应变量的方差分解成系统和随机两部分,允许建模者通过严格单调的关联函数(Link function)g(μ)=∑xjβj,

《数据挖掘:你必须知道的32个经典案例》

第五章 经典的机器学习案例 机器学习是一门成熟的学科,它所能解决的问题涵盖多种行业。本章介绍了四种经典的机器学习算法,它们所关心的重点在于机器学习是如何将统计学和数据挖掘连接起来的。通过学习本章,读者可以见识到机器学习的特殊魅力,并明白机器学习与其他学科的异同。使读者可以熟练地应用机器学习算法来解决实际问题是本章的目标。 5.1 机器学习综述 在正式开始了解机器学习之前,我们首先要搞清楚这样一个问题:世界上是不是所有的问题都可以使用一行一行清楚无误的代码解决?举个例子,倘若我们想让一个机器人完成出门去超市买菜并回家这一任务,我们能不能在程序里详详细细地把机器人所有可能遇到的情况以及对策都写下来,好让机器人一条一条按着执行? 答案是“很难”。机器人在路上可能遭遇塑料袋儿、石头、跑动的儿童等障碍物,在超市可能遇到菜卖完了、菜篮挪动了位置等问题,把这些问题全部罗列出来是不太可能的,因此我们就难以使用硬性的、固定的程序来命令机器人完成这件事,我们需要的是一种灵活的、可以变化的程序。就像你去买菜时不用你妈告诉你路上看见有人打架要躲开,你就知道要躲开一样(即便你以前从来没有遇见过这种情况),我们希望机器人也可以根据经验学习到正确的做法,而不是必须依赖程序员一条一条地输入“IF……THEN……”。 美国人塞缪尔设计的下棋程序是另一个的经典机器学习算法。塞缪尔设计了一个可以依靠经验积累概率知识的下棋程序,一开始这个程序毫无章法,但四年以后,它就能够打败塞缪尔了,又过了三年,它战胜了美国的围棋冠军。这个下棋程序进步的方式和人类学习下棋的过程非常类似,如何让机器像人类一样学习,正是机器学习关心的事情。 不难想象,机器学习是一门多领域交叉的学科,它主要依赖统计学、概率论、逼近论等数学学科,同时也依赖算法复杂度、编译原理等计算机学科。通俗的说,机器学习首先将统计学得到的统计理论拿来进一步研究,然后改造成适合编译成程序的机器学习算法,最终才会应用到实际中。但机器学习和统计学仍有不同的地方,这种差异主要在于统计学关心理论是否完美,而机器学习关心实际效果是否良好。同时,机器学习侧重于归纳和总结,而不是演绎。 机器学习将统计学的研究理论改造成能够移植在机器上的算法,数据挖掘将机器学习的成果直接拿来使用。从这一意义上来说,机器学习是统计学和数据挖掘之间的桥梁。机器学习也是人工智能的核心,机器学习算法普遍应用于人工智能的各个领域。此外,机器学习和模式识别具有并列的关系,它们一个注重模仿人类的学习方式,一个注重模仿人类认识世界的方式。因此机器学习、数据挖掘、人工智能和模式识别等本来就属于一个不可分的整体,离开其他学科的支持,任何学科都难以独立生存下去。 本章介绍了语义搜索、顺序分析、文本分析和协同过滤这四种经典的机器学习算法,它们不仅理论完善,同时也具有广泛的应用。通过本章的学习,读者将看到机器学习在各行各业中的神奇作用以及广阔前景,并学会如何使用机器学习算法来解决实际问题。

数据挖掘与数据分析的区别(经典)

数据挖掘与分析的区别(ByGanlin) 最牛解释: 关于数据挖掘的作用,Berry and Linoff的定义尽管有些言过其实,但清晰的描述了数据挖掘的作用。“分析报告给你后见之明 (hindsight);统计分析给你先机 (foresight);数据挖掘给你洞察力(insight)”。 举个例子说。 你看到孙悟空跟二郎神打仗,然后写了个分析报告,说孙悟空在柔韧性上优势明显,二郎神在力气上出类拔萃,所以刚开始不相上下;结果两个人跑到竹林里,在竹子上面打,孙悟空的优势发挥出来,所以孙悟空赢了。这叫分析报告。

孙悟空要跟二郎神打架了,有个赌徒找你预测。你做了个统计,发现两人斗争4567次,其中孙悟空赢3456次。另外,孙悟空斗牛魔王,胜率是89%,二郎神斗牛魔王胜率是71%。你得出趋势是孙悟空赢。因为你假设了这次胜利跟历史的关系,根据经验作了一个假设。这叫统计分析。 你什么都没做,让计算机自己做关联分析,自动找到了出身、教育、经验、单身四个因素。得出结论是孙悟空赢。计算机通过分析发现贫苦出身的孩子一般比皇亲国戚功夫练得刻苦;打架经验丰富的人因为擅长利用环境而机会更多;在都遇得到明师的情况下,贫苦出身的孩子功夫可能会高些;单身的人功夫总比同样环境非单身的高。孙悟空遇到的名师不亚于二郎神,而打架经验绝对丰富,并且单身,所以这次打头,孙悟空赢。这叫数据挖掘。 数据挖掘跟LOAP的区别在于它没有假设,让计算机找出这种背后的关系,而这种关系可能是你所想得到的,也可能是所想不到的。比如数据挖掘找出的结果发现在2亿条打斗记录中,姓孙的跟姓杨的打,总是姓孙的胜利,孙悟空姓孙,所以,悟空胜利。 用在现实中,我们举个例子来说,做OLAP分析,我们找找哪些人总是不及时向电信运营商缴钱,一般会分析收入低的人往往会缴费不及时。通过分析,发现不及时缴钱的穷人占71%。而数据挖掘则不同,它自己去分析原因。原因可能是,家住在五环以外的人,不及时缴钱。这些结论对推进工作有很深的价值,比如在五环外作市场调研,发现需要建立更多的合作渠道以方便缴费。这是数据挖掘的价值。 解释一:

数据挖掘技术教学大纲

《数据挖掘技术》课程教学大纲 一、课程基本信息 二、课程教育目标 (一)总体目标 数据挖掘是高级数据处理和分析技术。通过本课程学习,使学生了解数据挖掘这种现代数据分析和知识挖掘方法的思想与技术,了解数据挖掘的基本理论,掌握重要的数据挖掘方法,掌握如何利用Clementine实现数据分析和挖掘,并使学生具有进一步学习的基本与能力。 (二)具体目标 1. 能够导入、输出各种类型的数据,并对数据进行简单描述统计 2. 能够编写建立线性回归模型、非纯性回归模型、编写回归模型的程序,

并能够通过程序检验模型 3. 能够对数据进行聚类分析、分类分析、关联分析、能够对文本数据进行数据挖掘 三、课程学时分配 四、课程内容 第一章数据挖掘和Clementine使用概述 【教学内容】 1.1 数据挖掘的产生背景 1.数据挖掘产生的背景 2.数据挖掘的发展 3. 数据挖掘概述 1.2 什么是数据挖掘 1. 数据挖掘概念 2. 数据挖掘分类 3. 数据挖掘体系结构 1.3 Clementine软件概述 1. Clementine的配置

2. Clementine操作基础 【学习目标】 本章作为绪论,其目的是让学生对数据挖掘技术有一个总体的认识。因此,主要内容是对数据挖掘技术的概念、产生背景、发展趋势以及应用等进行提炼和概括,并熟悉Clementine软件的使用环境。要求学生掌握以下内容:1.数据挖掘的发展 2.数据挖掘基本知识 3.数据挖掘功能 4. 数据挖掘应用 5. 数据挖掘的热点问题 6. 熟悉Clementine软件 【重点、难点】 1.重点: (1)数据挖掘概念 (2)数据挖掘分类 2.难点:Clementine操作基础 【教学方法】 1.通过多媒体课件和传统教学相结合,阐明课程与教学基本原理,丰富学生课程与教学的基本知识结构,培养学生的职业规范; 2.通过案例分析,强调理论与实践相结合,促进学生知识整合,培养学生的反思能力。 第二章 Clementine数据管理 【教学内容】 2.1 数据源节点(Sources)

数理统计与统计学区别

数理统计是数学系各专业的一门重要课程。随着研究随机现象规律性的科学—概率论的发展,应用概率论的结果更深入地分析研究统计资料,通过对某些现象的频率的观察来发现该现象的内在规律性,并作出一定精确程度的判断和预测;将这些研究的某些结果加以归纳整理,逐步形成一定的数学概型,这些组成了数理统计的内容。 数理统计在自然科学、工程技术、管理科学及人文社会科学中得到越来越广泛和深刻的应用,其研究的内容也随着科学技术和经济与社会的不断发展而逐步扩大,但概括地说可以分为两大类:⑴试验的设计和研究,即研究如何更合理更有效地获得观察资料的方法;⑵统计推断,即研究如何利用一定的资料对所关心的问题作出尽可能精确可靠的结论,当然这两部分内容有着密切的联系,在实际应用中更应前后兼顾。但按本专业的总体设计,我们的数理统计课程只讨论统计推断。数理统计以概率论为基础,根据试验或观察得到的数据,来研究随机现象统计规律性的学科。本课程的目的是让学生了解统计推断检验等方法并能够应用这些方法对研究对象的客观规律性作出种种合理的估计和判断。掌握总体参数的点估计和区间估计。掌握假设检验的基本方法与技巧。理解平方差分析及回归分析的原理,并能运用其方法和技巧进行统计推断。统计学是一门研究随机现象,以推断为特征的方法论科学,“由部分推及全体”的思想贯穿于统计学的始终。

具体地说,它是研究如何搜集、整理、分析反映事物总体信息的数字资料,并以此为依据,对总体特征进行推断的原理和方法。用统计来认识事物的步骤是:研究设计—>抽样调查—>统计推断—>结论。这里,研究设计就是制定调查研究和实验研究的计划,抽样调查是搜集资料的过程,统计推断是分析资料的过程。显然统计的主要功能是推断,而推断的方法是一种不完全归纳法,因为是用部分资料来推断总体。增加定义:是关于收集、整理、分析和解释统计数据的科学,是一门认识方法论性质的科学,其目的是探索数据内在的数量规律性,以达到对客观事物的科学认识。统计学是收集、分析、表述和解释数据的科学。 要说统计学专业最好的学校,当然就是厦大了,所以最难考.但是中大和暨大也很难考.我们统计班考统计学研究生的全军覆没.问题不是出在数三上.(学统计的数学都不成问题,120分不在话下).而是出在专业课上.好多人的专业课都没时间答完.本科不是厦大、中山还是暨大这三个学校的学生考统计学,基本上很难找到历年专业课试题.这是个大问题.如果能解决这个问题,拿还是可以去考.否则,不要轻易认为自己只要把统计学的基础课看看就可以拿下专业课.当然,能考上的话,就业还是很好的.你也应该留意到,真正招统计学的单位,都是银行,证券投资等单位,做数据挖掘与分析处理.但是很多都只招统计学硕士.所

相关文档
最新文档