九年级数学相似三角形的性质及应用(教师版)知识点+典型例题+详细答案(吐血推荐)

九年级数学相似三角形的性质及应用(教师版)知识点+典型例题+详细答案(吐血推荐)
九年级数学相似三角形的性质及应用(教师版)知识点+典型例题+详细答案(吐血推荐)

相似三角形的性质及应用

【学习目标】

1、探索相似三角形的性质,能运用性质进行有关计算;

2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题). 【要点梳理】

要点一、相似三角形的性质

1.相似三角形的对应角相等,对应边的比相等. 2. 相似三角形中的重要线段的比等于相似比.

相似三角形对应高,对应中线,对应角平分线的比都等于相似比. 3. 相似三角形周长的比等于相似比

,则

由比例性质可得:

4. 相似三角形面积的比等于相似比的平方

,则

分别作出

的高

和,则

211

22=1122

ABC A B C BC AD k B C k A D S k S B C A D B C A D '''''''????=='''''''''??△△

要点诠释:相似三角形的性质是通过比例线段的性质推证出来的. 要点二、相似三角形的应用 1.测量高度

测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决.

要点诠释:测量旗杆的高度的几种方法:

平面镜测量法 影子测量法 手臂测量法 标杆测量法

2.测量距离

测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。

1.如甲图所示,通常可先测量图中的线段DC、BD、CE的距离(长度),根据相似三角形的性质,求出AB的长.

2.如乙图所示,可先测AC、DC及DE的长,再根据相似三角形的性质计算AB的长.

要点诠释:

1.比例尺:表示图上距离比实地距离缩小的程度,比例尺= 图上距离/ 实际距离;

2.太阳离我们非常遥远,因此可以把太阳光近似看成平行光线.在同一时刻,两物体影子之比等于其对应高的比;

3.视点:观察事物的着眼点(一般指观察者眼睛的位置);

4. 仰(俯)角:观察者向上(下)看时,视线与水平方向的夹角.

【典型例题】

类型一、相似三角形的性质

1. △ABC∽△DEF,若△ABC的边长分别为5cm、6cm、7cm,而4cm是△DEF中一边的长度,你能求出△DEF的另外两边的长度吗?试说明理由.

【答案】

设另两边长是xcm,ycm,且x<y.

(1)当△DEF中长4cm线段与△ABC中长5cm线段是对应边时,有,

从而x=cm,y=cm.

(2)当△DEF中长4cm线段与△ABC中长6cm线段是对应边时,有,

从而x=cm,y=cm.

(3)当△DEF中长4cm线段与△ABC中长7cm线段是对应边时,有,

从而x=cm,y=cm.

综上所述,△DEF的另外两边的长度应是cm,cm或cm,cm

或cm,cm三种可能.

2.如图所示,已知△ABC中,AD是高,矩形EFGH内接于△ABC中,且长边FG在BC

上,矩形相邻两边的比为1:2,若BC=30cm,AD=10cm.求矩形EFGH的面积.

【答案】∵四边形EFGH是矩形,∴ EH∥BC,

∴△AEH∽△ABC.

∵ AD⊥BC,

∴ AD⊥EH,MD=EF.

∵矩形两邻边之比为1:2,

设EF=xcm,则EH=2xcm.

由相似三角形对应高的比等于相似比,得,

∴,

∴,

∴.

∴ EF=6cm,EH=12cm.

举一反三

1、如图,在和中,,,,的周长是24,面积是48,求的周长和面积.

【答案】在和中,

.

又∵

∽,相似比为.

的周长为,的面积是.

2、有同一三角形地块的甲、乙两地图,比例尺分别为1∶200和1∶500,求:甲地图与乙地图的相似比和面积比.

【答案】设原地块为△ABC,地块在甲图上为△A1B1C1,在乙图上为△A2B2C2.

∴△ABC∽△A1B1C1∽△A2B2C2

且,,

∴,

∴.

3、如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于()

A. 2:5 B.14:25 C.16:25 D. 4:21

【答案】B.

【解析】由已知可得AB=10,AD=BD=5,设AE=BE=x, 则CE=8-x,

在Rt△BCE中,x2-(8-x)2=62,x=,

由△ADE∽△ACB得,

S△BCE:S△BDE=(64-25-25):25=14:25,所以选B.

4、在锐角△ABC中,AD,CE分别为BC,AB边上的高,△ABC和△BDE的面积分别等于18和2,DE=2,求AC边上的高.

【答案】过点B做BF⊥AC,垂足为点F,

∵AD,CE分别为BC,AB边上的高,

∴∠ADB=∠CEB=90°,

又∵∠B=∠B,

∴Rt△ADB∽Rt△CEB,

,BD AB BD BE

BE CB AB CB

==即, 且∠B=∠B , ∴△EBD ∽△CBA,

∴2

21189

BED BCA

DE AC S S

??

=== ?

??△△, ∴

1

3

DE AC =, 又∵DE=2, ∴AC=6, ∴

1

1862

ABC AC BF S =

?=∴△,BF=. 5、已知:如图,在△ABC 与△CAD 中,DA ∥BC ,CD 与AB 相交于E 点,

且AE ︰EB=1︰2,EF ∥BC 交AC 于F 点,△ADE 的面积为1,求△BCE 和△AEF 的面积.

【答案】∵DA ∥BC , ∴△ADE ∽△BCE . ∴S △ADE :S △BCE =AE 2:BE 2.

∵AE ︰BE=1:2, ∴S △ADE :S △BCE =1:4. ∵S △ADE =1, ∴S △BCE =4.

∵S △ABC :S △BCE =AB:BE=3:2, ∴S △ABC =6. ∵EF ∥BC , ∴△AEF ∽△ABC .

∵AE:AB=1:3, ∴S △AEF :S △ABC =AE 2:AB 2=1:9. ∴S △AEF ==

. 6、如图,已知中,,

,点

上, (与

点不重合),点在

上.

(1)当的面积与四边形的面积相等时,求的长. (2)当

的周长与四边形

的周长相等时,求

的长.

【答案】 (1)∵

.

(2)∵的周长与四边形的周长相等.

=6,

.

类型二、相似三角形的应用

3. 如图,我们想要测量河两岸相对应两点A、B之间的距离(即河宽) ,你有什么方法?

【答案】如上图,先从B点出发与AB成90°角方向走50m到O处立一标杆,然后方向不变,继续向前走10m到C处,在C处转90°,沿CD方向再走17m到达D处,使得A、O、D在同一条直线上.那么A、B之间的距离是多少?

∵AB⊥BC,CD⊥BC

∴∠ABO=∠DCO=90°

又∵∠AOB=∠DOC

∴△AOB∽△DOC.

∵BO=50m,CO=10m,CD=17m

∴AB=85m

即河宽为85m.

4. 如图:小明欲测量一座古塔的高度,他站在该塔的影子上前后移动,直到他本身影子的顶端正好与塔的影子的顶端重叠,此时他距离该塔18 m,已知小明的身高是1.6 m,他的影长是2 m.

(1)图中△ABC与△ADE是否相似?为什么?

(2)求古塔的高度.

【答案】(1)△ABC∽△ADE.

∵BC⊥AE,DE⊥AE,∴∠ACB=∠AED=90°

∵∠A=∠A,∴△ABC∽△ADE

(2)由(1)得△ABC∽△ADE

∵AC=2m,AE=2+18=20m,BC=1.6m,

∴DE=16m

即古塔的高度为16m。

举一反三

1、小明把一个排球打在离他2米远的地上,排球反弹后碰到墙上,如果他跳起来击排球时的高度是1.8米,排球落地点离墙的距离是7米,假设排球一直沿直线运动,那么排球能碰到墙上离地多高的地方?

【答案】

如图,∵AB=1.8米,AP=2米,PC=7米,作PQ⊥AC,

根据物理学原理知∠BPQ=∠QPD,则∠APB=∠CPD,

∠BAP=∠DCP=90°,

∴△ABP∽△CDP,

∴AB AP DC PC

=,

即1.82

7 DC

=,

∴DC=6.3米.

即球能碰到墙上离地6.3米高的地方.

2、在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上。已知铁塔底座宽CD=12m,塔影长DE=18m,小明和小华的身高都是1.6m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m和1m,那么塔高AB为()

A.24m

B.22m

C.20m

D.18m

【答案】 A.

【解析】过点D做DN⊥CD交光线AE于点N,则

1.6

0.8

2

DN

DE

==,DN=14.4,

又∵AM:MN=1.6:1,∴AM=1.6MN=1.6BD=1.6×6=9.6

∴塔高AB=AM+DN=14.4+9.6=24,所以选A.

3、已知:如图,阳光通过窗口照射到室内,在地面上留下1.5m宽的亮区DE.亮区一边到窗下的墙脚距离CE=1.2m,窗口高AB=1.8m,求窗口底边离地面的高度BC.

【答案】作EF⊥DC交AD于F.

∵AD∥BE,∴

又∵,

∴,∴.

∵AB∥EF, AD∥BE,

∴四边形ABEF是平行四边形,

∴EF=AB=1.8m. ∴m.

【巩固练习一】

一、选择题

1.如图1所示,△ABC中DE∥BC,若AD∶DB=1∶2,则下列结论中正确的是( ) A. B.

C.D.

(图1)(图2)

2. 如图2, 在△ABC中, D、E两点分别在AB、AC边上, DE∥BC. 若AD:DB = 2:1, 则S△ADE: S△ABC为( )

A. 9:4

B. 4:9

C. 1:4

D. 3:2

3.某校有两块相似的多边形草坪,其面积比为9∶4,其中一块草坪的周长是36米,则

另一块草坪的周长是().

A.24米B.54米C.24米或54米D.36米或54米

4. 图为△ABC与△DEC重叠的情形,其中E在BC上,AC交DE于F点,且AB// DE.若△ABC与△DEC的面积相等,且EF=9,AB=12,则DF=( )

A.3 B.7 C.12 D.15

5.如图是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光

线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是()

A.6米 B.8米 C.18米D.24米

6.要把一个三角形的面积扩大到原来面积的8倍,而它的形状不变,那么它的边长要增

大到原来的()倍.

A.2

B.4

C.2

D.64

二、填空题

7. 如图所示,为了测量一棵树AB 的高度,测量者在D 点立一高CD =2m 的标杆,现测量者从E 处可以看到杆顶C 与树顶A 在同一条直线上,如果测得BD =20m ,FD =4m ,EF =1.8m ,则树AB 的高度为______m .

8. 已知两个相似三角形的相似比为,面积之差为25,则较大三角形的面积为

______.

9.如图,小明为了测量一座楼MN 的高,在离点N 为20m 的A 处放了一个平面镜,小明沿NA 后退到点C ,正好从镜中看到楼顶M ,若AC =1.5m ,小明的眼睛离地面的高度为1.6m ,请你帮助小明计算一下楼房的高度是__________.(精确到0.1m )

10. 梯形ABCD 中,AD ∥BC,AC ,BD 交于点O ,若AOD S △=4, OC S △B =9,S 梯形ABCD =________. 11.如图,在平行四边形ABCD 中,点E 为CD 上一点,DE:CE=2:3,连接AE,BE,BD,且AE,BD 交于点F ,则::DEF EF BAF S S S △△B △________________.

12.把一个三角形改做成和它相似的三角形,如果面积缩小到原来的

2

1

倍,那么边长应缩小到原来的________倍. 三、解答题

13. 一位同学想利用树影测量树高,他在某一时刻测得长为1m 的竹竿影长0.9m ,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图,他先测得留在墙上的影高1.2m ,又测得地面部分的影长2.7m ,他求得树高是多少?

14. 如图所示,一段街道的两边沿所在直线分别为AB,PQ,并且AB∥PQ,建筑物的一端

DE所在的直线MN⊥AB于点M,交PQ于点N,小亮从胜利街的A处,沿着AB方向前进,小明一直站在点P的位置等待小亮.

(1)请你画出小亮恰好能看见小明的视线,以及此时小亮所在的位置(用点C标出).(2)已知:MN=30m,MD=12m,PN=36m.求(1)中的点C到胜利街口的距离.

15. 在正方形中,是上一动点,(与不重合),使为直角,

交正方形一边所在直线于点.

(1)找出与相似的三角形.

(2)当位于的中点时,与相似的三角形周长为,则的周长为

多少?

【答案与解析】

一.选择题

1.【答案】D.

【解析】提示:相似比为1:3.

2.【答案】B.

【解析】提示:面积比等于相似比的平方.

3.【答案】C.

4.【答案】B.

5.【答案】B.

【解析】提示:入射角等于反射角,所以△ABP∽△CDP.

6.【答案】C.

【解析】提示:面积比等于相似比的平方.

二.填空题

7.【答案】3.

8.【答案】45cm2.

9.【答案】21.3m.

10.【答案】25.

【解析】∵ AD ∥BC ,∴ △AOD ∽△COB ,∴ 2

A O D

B O C

49S AO CO S ??

== ?

??△△,∴ AO :CO =2:3,

又∵

AOD DOC 2

3

S AO S OC ==△△,∴ COD 6S =△,又 C O D A O B S S =△△

∴ ABCD 492625S =++?=梯形.

11.【答案】4:10:25

【解析】∵ 平行四边形ABCD ,∴△DEF ∽△BAF,∴2

DEF AEB S DE S AB ??

= ???

△△,

∵DE:EC=2:3,∴DE:DC=2:5,即DE:AB=2:5,∴D E F

BAF S S △△∵△DEF 与△BEF 是同高的三角形,∴

DEF BEF S S △△24

.510

==

12.

【答案】

2

. 三.综合题 13.【解析】作CE ∥DA 交AB 于E ,设树高是xm , ∵ 长为1m 的竹竿影长0.9m ∴

1 1.2

0.9 2.7

x -=

即 x =4.

2m

14.【解析】(1)如图1所示,CP 为视线,点C 为所求位置. (2)∵ AB ∥PQ ,MN ⊥AB 于M ,

∴ ∠CMD =∠PND =90°. 又∵ ∠CDM =∠PDN , ∴ △CDM ∽△PDN ,

C M

D M

P N D N

= ∵ MN =30m ,MD =12m , ∴ ND =18m .

12

3618

CM = ∴ CM =24(m ).

∴ 点C 到胜利街口的距离CM 为24m .

15.【解析】(1)与△BPC 相似的图形可以是图(1),(2)两种情况: △PDE ∽△BCP ,△PCE ∽△BCP ,△BPE ∽△BCP .

(2)①如图(1),当点P 位于CD 的中点时,若另一直角边与AD 交于点E , 则

1

2

PD BC = ∵ △PDE ∽△BCP

∴ △PDE 与△BCP 的周长比是1:2 ∴ △BCP 的周长是2a . ②如图(2),当点P 位于CD 的中点时,若另一直角边与BC 延长线交于点E

时,

1

2

PC BC =, ∵ △PCE ∽△BCP

∴ △PCE 与△BCP 的周长比是1:2 ∴ △BCP 的周长是2a . ③如图(2),当点P 位于CD 的中点时,若另一直角边与BC 延长线交于点E

时,

BP BC =∵ △BPE ∽△BCP

∴ △BPE 与△BCP 2,

∴ △BCP 的周长是

5

a .

【巩固练习二】

一、选择题

1.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值()

A.只有1个 B.可以有2个C.有2个以上,但有限 D.有无数个

2. 若平行四边形ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF∽△CDE,则BF的长为().

A.1.8 B.5 C.6或4 D.8或2

3. 如图,已知D、E分别是的AB、AC边上的点,且

那么等于()

A.1:9 B.1:3 C.1:8 D.1:2

4.如图G是△ABC的重心,直线过A点与BC平行.若直线CG分别与AB、交于D、E 两点,直线BG与AC交于 F点,则△AED的面积:四边形ADGF的面积=( ) A.1:2 B.2:1 C.2:3 D.3:2

5. 如图,将△ABC的高AD四等分,过每一个分点作底边的平行线,把三角形的面积分成四部分S1、S2、S3、S4,则S1︰S2︰S3︰S4等于()

A.1︰2︰3︰4

B.2︰3︰4︰5

C.1︰3︰5︰7

D.3︰5︰7︰9

6..如图,在□ABCD中,E为CD上一点,DE:CE=2:3,连结AE、BE、BD,且AE、BD交于点F,则

S△DEF:S△EBF:S△ABF等于( )

A.4:10:25

B.4:9:25

C.2:3:5

D.2:5:25

二、填空题

7.如图,梯形ABCD中,AB∥CD,AC、BD相交于点E,

1

,

2

DEC

S

S

△CEB

DEC

S

S

△AEB

=___________.

8.如图,△ABC中,点D在边AB上,满足∠ADC=∠ACB,若AC=2,AD=1,则DB=_________.

9.如图,在△PAB中,M、N是AB上两点,且△PMN是等边三角形,△BPM∽△PAN,则∠APB 的度数是

_______________.

10.如图,△ABC中,DE∥BC,BE,CD交于点F,且S△EFC=3S△EFD,则S△ADE:S△ABC=______________.

11. 如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5m,两个路灯的高度都是9m,则两路灯之间的距离是_________________

12.如图,锐角△ABC中,AD,CE分别为BC,AB边上的高,△ABC和△BDE的面积分别等于18和2,DE=2,

则AC边上的高为______________.

三、解答题

13. 为了测量图(1)和图(2)中的树高,在同一时刻某人进行了如下操作:

图(1):测得竹竿CD的长为0.8米,其影CE长1米,树影AE长2.4米.

图(2):测得落在地面的树影长2.8米,落在墙上的树影高1.2米,请问图(1)和图(2)中的树高各是多少?

14.(1)阅读下列材料,补全证明过程:

已知:如图,矩形ABCD中,AC、BD相交于点O,OE⊥BC于E,连结DE交OC于点F,作FG⊥BC于G.求证:点G是线段BC的一个三等分点.

证明:在矩形ABCD中,OE⊥BC,DC⊥BC,

∴OE∥DC.∵=,∴==.∴=.

……

(2)请你仿照(1)的画法,在原图上画出BC的一个四等分点(要求保留画图痕迹,可不写画法及证明过程).

15. 已知如图,在矩形ABCD中,AB=12cm,BC=6cm,点E自A点出发,以每秒1cm的速度向D点前进,同时点F从D点以每秒2cm的速度向C点前进,若移动的时间为t,且0≤t ≤6.

(1)当t为多少时,DE=2DF;

(2)四边形DEBF的面积是否为定值?若是定值,请求出定值;若不是定值,请说明理由.(3)以点D、E、F为顶点的三角形能否与△BCD相似?若能,请求出所有可能的t的值;若不能,请说明理由.

一.选择题 1.【答案】B.

【解析】x 可能是斜边,也可能是直角边. 2.【答案】A. 3.【答案】B. 4.【答案】D. 5.【答案】C.

【解析】本题要求运用相似三角形的面积比等于相似比的平方。由

所以

,又由,可得,下略.

6.【答案】 A.

【解析】 □ABCD 中,AB ∥DC ,△DEF ∽△ABF ,

(△DEF 与△EBF 等高,面积比等于对应底边的比),所以答案选A. 二、填空题 7.【答案】

14

. 【解析】∵

1

,2DEC ECB S S =△△且△DEC 与△CEB 是同高不同底的两个三角形,即1.2

DE EB =因为AB ∥CD,

所以△DEC ∽△BEA,所以

DEC AEB

S S △△=22

1124

DE EB ????== ? ????? 8.【答案】3.

【解析】 ∵∠ADC=∠ACB ,∠DAC=∠BAC,∴△ACD ∽△ABC,∴

,AC AD AB AC =AB=22

241

AC AD ==, ∴BD=AB-AD=4-1=3. 9. 【答案】120°.

【解析】∵ △BPM ∽△PAN ,∴ ∠BPM =∠A ,

∵ △PMN 是等边三角形,∴ ∠A+∠APN =60°,即∠APN+∠BPM =60°, ∴ ∠APB =∠BPM+∠MPN+∠APN =60°+60°=120°.

【解析】∵EFC S △=3EFD S △,∴FC:DF=3:1,又∵DE ∥BC,∴△BFC ∽△EFD,即BC :DE=FC:FD=3:1,

由△ADE ∽△ABC ,即ADE S △:ABC S △=1:9.

11.【答案】30m. 12.【答案】 6.

三、解答题

13.14.【解析】(1)补全证明过程:

∵ FG ⊥BC ,DC ⊥BC , ∴ FG ∥DC .

相似三角形经典大题(含答案)

相似三角形经典大题解析 1.如图,已知一个三角形纸片ABC ,B C 边的长为8,B C 边上的高为6,B ∠和C ∠都为锐角,M 为A B 一动点(点M 与点A B 、不重合),过点M 作M N B C ∥,交A C 于点N ,在A M N △中,设M N 的长为x ,M N 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿M N 折叠,使A M N △落在四边形B C N M 所在平面,设点A 落在平面的点为1A ,1A M N △与四边形B C N M 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1)M N B C ∥ A M N A B C ∴△∽△ 68 h x ∴= 34 x h ∴= (2)1AM N A M N △≌△ 1A M N ∴△的边M N 上的高为h , ①当点1A 落在四边形B C N M 内或B C 边上时, 1A M N y S =△= 2 11332 2 4 8 M N h x x x = = ·· (04x <≤) ②当1A 落在四边形B C N M 外时,如下图(48)x <<, 设1A EF △的边E F 上的高为1h , 则132662h h x =-= - 11EF M N A EF A M N ∴ ∥△∽△ 11A M N ABC A EF ABC ∴ △∽△△∽△

12 16A EF S h S ??= ??? △△ABC 168242 A B C S = ??= △ 2 2 3632241224 62EF x S x x ?? - ?∴==?=-+ ? ??? 1△A 112 223 3912241224828A M N A EF y S S x x x x x ??=-= --+=-+- ??? △△ 所以 2 91224 (48)8 y x x x =- +-<< 综上所述:当04x <≤时,2 38 y x =,取4x =,6y =最大 当48x <<时,2 912248 y x x =-+-, 取163 x = ,8y =最大 86> ∴当163 x = 时,y 最大,8y =最大 M N C B E F A A 1

初三《相似三角形》知识点总结

相似三角形知识点总结 知识点1、三角对应相等,三边对应成比例的三角形叫相似三角形。 如△ABC 与△A /B /C /相似,记作: △ABC ∽△A /B /C / 。 相似三角形的比叫相似比 相似三角形的定义既是相似三角形的性质,也是三角形相似的判定方法。 注意:(1)相似比是有顺序的。 (2)对应性,两个三角形相似时,通常把对应顶点写在对应位置,这 样写比较容易找到相似三角形的对应角和对应边。 (3)顺序性:相似三角形的相似比是有顺序的,若△ABC ∽△A /B /C /, 相似比为k ,则△A /B /C /与△ABC 的相似比是1 k 知识点2、相似三角形与全等三角形的关系 (1)两个全等的三角形是相似比为1的相似三角形。 (2)两个等边三角形一定相似,两个等腰三角形不一定相似。 (3)二者的区别在于全等要对应边相等,而相似要求对应边成比例。 知识点3、平行线分线段成比例定理 1. 比例线段的有关概念: 在比例式 ::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2 =AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质: a b c d ad bc =?= ②合比性质:±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0 3. 平行线分线段成比例定理 (1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 已知l1∥l2∥l3, A D l1 B E l2 C F l3 可得 EF BC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB =====或或或或等.

相似三角形压轴经典大题(含答案)

相似三角形压轴经典大题解析 1.如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A , 1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1) MN BC ∥ AMN ABC ∴△∽△ 68 h x ∴= 34 x h ∴= (2)1AMN A MN △≌△ 1A MN ∴△的边MN 上的高为h , ①当点1A 落在四边形BCNM 内或BC 边上时, 1A MN y S =△=211332248MN h x x x ==··(04x <≤) ②当1A 落在四边形BCNM 外时,如下图(48)x <<, 设1A EF △的边EF 上的高为1h , 则13 2662 h h x =-= - 11EF MN A EF A MN ∴∥△∽△ 11A MN ABC A EF ABC ∴△∽△△∽△

12 16A EF S h S ??= ??? △△ABC 1 68242 ABC S =??=△ 2 2 363224122 462EF x S x x ??- ?∴==?=-+ ? ? ?? 1△A 1122233912241224828A MN A EF y S S x x x x x ?? =-= --+=-+- ??? △△ 所以 2 91224(48)8 y x x x =- +-<< 综上所述:当04x <≤时,2 38 y x =,取4x =,6y =最大 当48x <<时,2 912248 y x x =-+-, 取16 3x = ,8y =最大 86> ∴当16 3 x =时,y 最大,8y =最大 2.如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式; (2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由; M N C B E F A A 1

相似三角形典型模型及例题

1:相似三角形模型 一:相似三角形判定的基本模型 (一)A 字型、反A 字型(斜A 字型) A B C D E C B A D E (平行) (不平行) (二)8字型、反8字型 J O A D B C A B C D (蝴蝶型) (平行) (不平行) (三)母子型 A B C D C A D (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:

(五)一线三直角型: 三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下: 当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 (六)双垂型: C A D 二:相似三角形判定的变化模型 旋转型:由A字型旋转得到8字型拓展 C B E D A 共享性 一线三等角的变形 G A B C E F

一线三直角的变形 2:相似三角形典型例题 (1)母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2 ; (2)DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延 A C D E B

数学期望的性质

知识点4.2 数学期望的性质

1. 随机变量函数的数学期望 定理1设Y 是随机变量X 的函数:Y =g(X)(g 是连续函数). (1)设离散型随机变量X 的分布律为 p k =P{X =x k },k =1,2,?. 若?k=1+∞g x k p k <+∞,则有E Y =E g X =?k=1 +∞g x k p k .

(2)设连续型随机变量X 的密度函数为f(x),若 ? ?∞+∞ g(x)f(x)dx <+∞, 则有 E(Y)=E g X =? ?∞+∞g(x)f(x)dx.

定理2设Z 是随机变量X,Y 的函数:Z =g(X,Y)(g 是连续函数). (1) 设离散型随机变量(X,Y)的分布律为 p ij =P(X =x i ,Y =y j ),(i,j =1,2,?), 若?j=1+∞?i=1+∞ g(x i ,y j )p ij <+∞, 则有 E(Z)=E g X,Y =?j=1+∞?i=1 +∞g x i ,y j p ij .

(2) 设连续型随机变量(X,Y)的密度函数为f(x,y), 若 ? ?∞+∞??∞+∞ g(x,y)f(x,y)dxdy <+∞, 则有 E(Z)=E g X,Y =? ?∞+∞??∞+∞ g(x,y)f(x,y)dxdy.

2. 数学期望的性质 (1)设C是常数,则有E(C)=C. (2)设X是一个随机变量, C是常数,则有E(CX)=CE(X).(3)设X,Y是两个随机变量,则有E(X+Y)=E(X)+E(Y).(4)设X,Y是两个相互独立的随机变量,则有E(XY)=E(X)E(Y). 性质3和4可以推广到有限个随机变量的和及积的情况.

相似三角形经典题型

相似三角形知识点与经典题型 知识点1 有关相似形的概念 (1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形. (2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数). 知识点2 比例线段的相关概念 (1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是 n m b a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。 (2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段. 注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:a d c b =. ②()a c a b c d b d ==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、 d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。 (3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =?,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 2 1 5-=≈0.618AB .即 512AC BC AB AC -== 简记为:51 2 -长短==全长 注:黄金三角形:顶角是360的等腰三角形。黄金矩形:宽与长的比等于黄金数的矩形 知识点3 比例的性质(注意性质立的条件:分母不能为0) (1) 基本性质: ①bc ad d c b a =?=::;②2::a b b c b a c =?=?. 注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除 了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=. (2) 更比性质(交换比例的内项或外项):()() ()a b c d a c d c b d b a d b c a ?=?? ?=?=?? ?=?? , 交换内项,交换外项. 同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b d a c =?=.

九年级相似三角形知识点总结及例题讲解

相似三角形基本知识 知识点一:放缩与相似 1.图形的放大或缩小,称为图形的放缩运动。 2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。 注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。 ⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。 ⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形. 3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。 注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1. 知识点二:比例线段有关概念及性质 (1)有关概念 1、比:选用同一长度单位量得两条线段。a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a :b =m : n (或 n m b a =) 2、比的前项,比的后项:两条线段的比a :b 中。a 叫做比的前项,b 叫做比的后项。 说明:求两条线段的比时,对这两条线段要用同一单位长度。 3、比例:两个比相等的式子叫做比例,如d c b a = 4、比例外项:在比例 d c b a =(或a :b =c :d )中a 、d 叫做比例外项。 5、比例项:在比例d c b a = (或a :b =c :d )中b 、c 叫做比例项。 6、第四比例项:在比例 d c b a =(或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。 7、比例中项:如果比例中两个比例项相等,即比例为 a b b a =(或a:b =b: c 时,我们把b 叫做a 和 d 的比例 中项。

数学期望的性质

梁烨 0417

数学期望的性质 . )(,.1c c E c =则有是常数设). ()(,,.2X cE cX E c X =则有是常数是一个随机变量设). ()()(,,.3Y E X E Y X E Y X +=+则是两个随机变量设).()()(,,.4Y E X E XY E Y X =则是相互独立的随机变量设4证明()(,)d d ()()d d X Y E XY xyf x y x y xyf x f y x y +∞+∞+∞+∞-∞-∞-∞-∞== ??????+∞∞-+∞ ∞-==) ()(d )(d )(Y E X E y y yf x x xf Y X Note:性质3和4可推广到n 个随机变量的情形.

例12 (,),,().X N Y aX b E Y μσ=+设~求:解(), E X μ=()()()E Y E aX b aE X b a b μ=+=+=+所以 Note :正态分布r.v 的线性组合的期望为其期望的线性组合.

2例). (),(~X E p n b X ,求设:解引入计数随机变量 11,2,,0i i A X i n i A ?==?????第次试验中事件发生第次试验中事件不发生其中.)(p A P =则且分布为p X E X i i =-)(,)10(故.1∑==n i i X X ) ()(21n X X X E X E +???++=12()()()n E X E X E X np =++???+=Note :该解法具有一般性,引入计数变量可简化计算:将一复杂变量分解成n 个相互独立的服从(0-1)分布的变量之和.

初三数学相似三角形典型例题(含标准答案)

初三数学相似三角形典型例题(含答案)

————————————————————————————————作者:————————————————————————————————日期:

初三数学相似三角形 (一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。 2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题 本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。 本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。 (二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质:a b c d ad bc =?= ②合比性质:±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0

北师大版九年级数学上相似三角形

一对一教案

三、主要练习: 【知识点】: 相似多边形定义:各角分别相等、各边成比例的两个多边形叫做相似多边形。 相似多边形可以用符号“∽”表示,读作“相似于”。在记两个多边形相似时,要把表示对应顶点的字母写在对应的位置上。 相似多边形对应边的比叫做相似比。 【例题】: 1.以下五个命题:①所有的正方形都相似;②所有的矩形都相似;③所有的三角形都相似;④所有的等腰直角三角形都相似;⑤所有的正五边形都相似.其中正确的命题有_______. 2、若五边形ABCDE∽五边形MNOPQ ,且AB=12,MN=6,AE=7,则MQ= . 3、矩形ABCD 与矩形EFGH 中,AB=4,BC=2,EF=2,FG=1,则矩形ABCD 与矩形EFGH 相似(填“一定”或“不一定”) 4、如图,在□ABCD 中,AB//EF ,若AB = 1,AD = 2,AE= 2 1 AB ,则□ABFE 与□BCDA 相似吗?说明理由. 【课堂练习】: 1.下面图形是相似形的为 ( ) A .所有矩形 B .所有正方形 C .所有菱形 D .所有平行四边形 2.下列说法正确的是 ( ) A . 对应边成比例的多边形都相似 B . 四个角对应相等的梯形都相似 C . 有一个角相等的两个菱形相似 D . 有一个锐角相等的两个等腰三角形相似 3.□ABCD 与□ EFGH 中,AB = 4,BC = 2,EF = 2,FG=1,则□ABCD 与□ EFGH 相似(填“一定”或“不一定”) 4.如图,等腰梯形ABCD 与等腰梯形A′B′C′D′相似,∠A′=65°,A′B′=6 cm, AB=8 cm , AD=5 cm ,试求梯形ABCD 的各角的度数与A′D′, B′C′的长. F E D C B A

相似三角形典型例题精选

相似三角形的判定与性质综合运用经典题型 考点一:相似三角形的判定与性质: 例1、如图,△PCD是等边三角形,A、C、D、B在同一直线上,且∠APB=120°. 求证:⑴△PAC∽△BPD;⑵ CD2 =AC·BD. 例2、如图,在等腰△ABC中, ∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B、C 重合),在AC上取一点E,使∠ADE=45° (1)求证:△ ABD∽△DCE; (2)设BD=x,AE=y,求y关于x函数关系式及自变量x值范围,并求出当x为何值时AE 取得最小值? (3)在AC上是否存在点E,使得△ADE为等腰三角形若存在,求AE的长;若不存在,请说明理由 例3、如图所示,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B: 1)求证:△ADF∽△DEC; 2)若AB=4,3 3 AD,AE=3,求AF的长。 A B C D F

考点二:射影定理: 例4、如图,在RtΔABC中,∠ACB=90°,CD⊥AB于D,CD=4cm,AD=8cm,求AC、BC及BD的长。 例5、如图,已知正方形ABCD,E是AB的中点,F是AD上的一点,且AF= 1 4 AD,EG⊥CF于点G, (1)求证:△AEF∽△BCE;(2)试说明:EG2=CG·FG. 例6、已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连结AF和CE. (1)求证:四边形AFCE是菱形; (2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长; (3)在线段AC上是否存在一点P,使得2AE2=AC·AP若存在,请说明点P的位置,并予以证明;若不存在,请说明理由. A B C D E F G

相似三角形经典题(含答案)

相似三角形经典习题 例1 从下面这些三角形中,选出相似的三角形. 例2 已知:如图, ABCD 中,2:1:=EB AE ,求AEF ?与CDF ?的周长的比,如果2cm 6=?AEF S ,求CDF S ?. 例3 如图,已知ABD ?∽ACE ?,求证:ABC ?∽ADE ?. 例4 下列命题中哪些是正确的,哪些是错误的? (1)所有的直角三角形都相似. (2)所有的等腰三角形都相似. (3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似. 例5 如图,D 点是ABC ?的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ?的边上,并且点D 、点E 和ABC ?的一个顶点组成的小三角形与ABC ?相似.尽可能多地画出满足条件的图形,并说明线段DE 的画法. 例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.

例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,若5.1=AC m ,小明的眼睛离地面的高度为1.6m ,请你帮助小明计算一下楼房的高度(精确到0.1m ). 例8 格点图中的两个三角形是否是相似三角形,说明理由. 例9 根据下列各组条件,判定ABC ?和C B A '''?是否相似,并说明理由: (1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A . (2)?='∠?='∠?=∠?=∠35,44,104,35A C B A . (3)?='∠=''=''?=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB . 例10 如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据. 例11 已知:如图,在ABC ?中,BD A AC AB ,36,?=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ?=2 .

(完整版)初三数学相似三角形典型例题(含答案)

初三数学相似三角形 (一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。 2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题 本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。 本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。 (二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式 ::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2 =AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质: a b c d ad bc =?= ②合比性质: ±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0 3. 平行线分线段成比例定理: ①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。 则 ,,,…AB BC DE EF AB AC DE DF BC AC EF DF ===

经典相似三角形练习题(附参考答案)

相似三角形 一.解答题(共30小题) 1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC. 2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF和AB的延长线交于点G.(1)求证:△CDF∽△BGF; (2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长. 3.如图,点D,E在BC上,且FD∥AB,FE∥AC. 求证:△ABC∽△FDE. 4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD. 5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点. (1)求证:①BE=CD;②△AMN是等腰三角形; (2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN. 6.如图,E是?ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明. 7.如图,在4×3的正方形方格中,△ABC和△DEF 的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC= _________ °,BC= _________ ; (2)判断△ABC和△DEC是否相似,并证明你的结论. 8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm. 某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的? (2)是否存在时刻t,使以A,M,N为顶点的三角形和△ACD相似?若存在,求t 的值;若不存在,请说明理由. 9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形. (1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例) (2)请你任选一组相似三角形,并给出证明. 10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE. (1)写出图中所有相等的线段,并加以证明; (2)图中有无相似三角形?若有,请写出一对; 若没有,请说明理由; (3)求△BEC和△BEA的面积之比. 11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC 的平行线交AC于P,交AB于Q. (1)求四边形AQMP的周长; (2)写出图中的两对相似三角形(不需证明); (3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论. 12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP. 13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10. (1)求梯形ABCD的面积S; (2)动点P从点B出发,以1cm/s的速度,沿B?A?D?C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C?D?A 方向,向点A 运动,过点Q 作QE⊥BC 于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问: ①当点P在B?A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由; ②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形和△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;

最新相似三角形经典例题解析

一、如何证明三角形相似 例1、如图:点G 在平行四边形ABCD 的边DC 的延长线上,AG 交BC 、BD 于点E 、F ,则△AGD ∽ ∽ 。 例2、已知△ABC 中,AB=AC ,∠A=36°,BD 是角平分线,求证:△ABC ∽△BCD 例3:已知,如图,D 为△ABC 内一点连结ED 、AD ,以BC 为边在△ABC 外作∠CBE=∠ABD ,∠BCE=∠BAD 求证:△DBE ∽△ABC 例4、矩形ABCD 中,BC=3AB ,E 、F ,是BC 边的三等分点,连结AE 、AF 、AC ,问图中是否存在非全等的相似三 角形?请证明你的结论。 二、如何应用相似三角形证明比例式和乘积式 例5、△ABC 中,在AC 上截取AD ,在CB 延长线上截取BE ,使AD=BE ,求证:DF ?AC=BC ?FE 例6:已知:如图,在△ABC 中,∠BAC=900 ,M 是BC 的中点,DM ⊥BC 于点E , 交BA 的延 长线于点D 。 求证:(1)MA 2 =MD ?ME ;(2)MD ME AD AE = 22 例7:如图△ABC 中,AD 为中线,CF 为任一直线,CF 交AD 于E ,交AB 于F ,求证:AE :ED=2AF :FB 。 三、如何用相似三角形证明两角相等、两线平行和线段相等。 例8:已知:如图E 、F 分别是正方形ABCD 的边AB 和AD 上的点,且 3 1 ==AD AF AB EB 。求证:∠AEF=∠FBD 例9、在平行四边形ABCD 内,AR 、BR 、CP 、DP 各为四角的平分线, 求证:SQ ∥AB ,RP ∥BC 例10、已知A 、C 、E 和B 、F 、D 分别是∠O 的两边上的点,且AB ∥ED ,BC ∥FE ,求证:AF ∥CD 例11、直角三角形ABC 中,∠ACB=90°,BCDE 是正方形,AE 交BC 于F ,FG ∥AC 交AB 于G ,求证:FC=FG 例12、Rt △ABC 锐角C 的平分线交AB 于E ,交斜边上的高AD 于O ,过O 引BC 的平行线交AB 于F ,求证:AE=BF A B C D E F G A B C D E M 12 A B C D E F G 1 234 A B C D A B C D E F K A B C D E F A B C D S P R Q O A B C D E F A B C D E F O 123 A B C D F G E

九年级下相似三角形复习专题

相似三角形专题复习 教学目标: 1、了解相似比的概念及相似多边形、相似三角形的概念,掌握相似三角形的判定和性质的应用;灵活运用三角形相似的判定定理; 2、利用图形的相似解决实际问题。 教学重点:掌握相似三角形的判定和性质的应用 教学难点:灵活运用相似三角形的判定和性质 一.【知识梳理】 活动1 相似三角形基本图形的回顾: 问题:请同学们结合下列图形添加一个能判定△ADE 与 △ABC 相似的条件,并说明理由 (课件展示) 请两名同学口答,教师点评。 A B C D E A B C D E A B C D E A B C D E A B C

学生说出,教师板书。 (1)DE ∥BC (平行线法) (2) BC DE AC AE AB AD ==(三边法) (3) AC AE AB AD = (两边及夹角法) (4)∠ADE=∠B 或∠AED=∠C (两角法) (1) ∠ADE=∠C 或∠AED=∠B (2) AC AD AB AE = (1)∠ACD=∠B (2)∠ADC=∠ACB (3)AB AC AC AD = (AB AD AC ?=2) 学生归纳总结方法: 相似三角形基本图形的回顾: A B C A B C D D D E A B C D E A D

活动2:如图1中△ADE ∽△ABC ,相似比为2:3 (1)△ADE 和△ABC 对应中线的比_________,对应角平分线的比__________,对应高的比_________. (2)若它们的周长差为10,则△ADE 和△ABC 的周长分别是_____和_______. (3)若它们的面积和为19.5,则△ADE 和△ABC 的面积分别是____和________. (1)、(2)题学生口答,第(3)题请两位同学板演 (投影)总结相似三角形的性质: A D E B C A D E B A B D E B C A D E A B C D E

数学期望的计算方法及其应用概要

数学期望的计算方法及其应用 摘要:在概率论中,数学期望是随机变量一个重要的数字特征,它比较集中的反映了随机变量的某个侧面的平均性,而且随机变量的其他数字特征都是由数学期望来定义的,因此对随机变量的数学期望的计算方法的研究与探讨具有很深的实际意义。本论文着重总结了随机变量的数学期望在离散型随机变量分布与连续型随机变量分布下的一些常用的计算方法,如利用数学期望的定义和性质,利用不同分布的数学期望公式等等,并通过一些具体的例子说明不停的计算方法在不同情况下的应用,以达到计算最简化的目的。本文还通过介绍了一些随机变量数学期望的计算技巧,并探讨了各种简化计算随机变量数学期望的方法,利用一些特殊求和与积分公式,利用数学期望定义的不同形式,利用随机变量分布的对称性、重期望公式以及特征函数等,并通过例题使我们更加了解和掌握这些计算技巧,已达到学习该内容的目的。 关键词:离散型随机变量 连续型随机变量 数学期望 计算方法 ABSTRACT : 第一节 离散型随机变量数学期望的计算方法及应用 1.1 利用数学期望的定义,即定义法[1] 则随机变量X的数学期望E(X)= )(1 i n i i x p x ∑=

学期望不存在 [] 2 例1 某推销人与工厂约定,永川把一箱货物按期无损地运到目的地可得佣金10元,若不按期则扣2元,若货物有损则扣5元,若既不按期又有损坏则扣16元。推销人按他的经验认为,一箱货物按期无损的的运到目的地有60﹪把握,不按期到达占20﹪,货物有损占10﹪,不按期又有损的占10﹪。试问推销人在用船运送货物时,每箱期望得到多少? 按数学期望定义,该推销人每箱期望可得 =)(X E 10×0.6+8×0.2+5×0.1-6×0.1=7.5元 1.2 公式法 对于实际问题中的随机变量,假如我能够判定它服从某重点性分布特征(如二项分布,泊松分布,超几何分布等),则我们就可以直接利用典型分布的数学期望公式来求此随机变量的期望。 (1) 二点分布:X ~??? ? ??-p p 101 ,则()p X E = (2) 二项分布:),(~p n B X ,10 p ,则np X E =)( (3) 几何分布:)(~p G X ,则有p X E 1 )(= (4) 泊松分布:) (~λP X ,有λ=)(X E (5) 超几何分布: ),,(~M N n h X ,有N M n X E =)( 例2 一个实验竞赛考试方式为:参赛者从6道题中一次性随机抽取3道题,按要求独立完成题目.竞赛规定:至少正确完成其中2题者方可通过,已知6道备选题中参赛者甲有4题能正确分别求出甲、乙两参赛者正确完成题数的数学期望. 解 设参赛者甲正确完成的题数为X ,则X 服从超几何分布,其中 6,4,3N M n ===, 设参赛者乙正确完成的题数为Y ,则 )32,3(~B Y ,23 2 3)(=?==np Y E 1.3 性质法

九年级相似三角形知识点总结

九年级相似三角形知识点总结 知识点一 1、相似图形:把具有相同形状的图形称为相似图形。 2、相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边成比例。知识点二:比例线段 1、比例线段:对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d),那么,这四条线段叫做成比例线段,简称比例线段。(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位) 2、比例性质的基本性质: (两外项的积等于两内项积) 3、更比性质(交换比例的内项或外项): 4、合比性质:(分子加(减)分母,分母不变) 5、等比性质:(分子分母分别相加,比值不变、)如果,那么、注意:(1)此性质的证明运用了“设法” ,这种方法是有关比例计算,变形中一种常用方法、 (2)应用等比性质时,要考虑到分母是否为零、知识点三:黄金分割 1、定义:在线段AB上,点C把线段AB分成两条线段AC和BC(AC>BC),如果,即AC2=ABBC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比。其中≈0、618。知识点四:相似三角形

1、相似三角形:两个三角形中,如果三角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形。 如△ABC与△DEF相似,记作△ABC ∽△DEF。 2、相似比:两个相似三角形的对应边的比,叫做这两个三角形的相似比。通常用k来表示。相似比具有顺序性、 3、相似三角形的性质①相似三角形对应角相等、对应边成比例、②相似三角形对应高、对应角平分线、对应中线、周长的比都等于相似比。 ③相似三角形对应面积的比等于相似比的平方、4、三角形相似的判定定理:(1)平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似。(2)两角对应相等,两三角形相似、(3)两边对应成比例且夹角相等,两三角形相似、(4)三边对应成比例,两三角形相似、(5)直角三角形相似判定定理: 、斜边与一条直角边对应成比例的两直角三角形相似。、直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。射影定理:CD=ADBD,AC=ADAB,BC=BDBA知识点五:中位线 1、三角形的中位线:连结三角形两边中点的线段。(3条) 2、三角形的中位线平行于第三边且等于第三边的一半。 3、重心:三角形三条中线相交于一点,这个交点叫做三角形的重心、 4、重心的性质:三角形的重心到一个顶点的距离,

相似三角形知识点及典型例题

相似三角形知识点及典型例题 知识点归纳: 1、三角形相似的判定方法 (1)定义法:对应角相等,对应边成比例的两个三角形相似。 (2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似。 (3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似。简述为:两角对应相等,两三角形相似。 (4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。 (5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。简述为:三边对应成比例,两三角形相似。 (6)判定直角三角形相似的方法: ①以上各种判定均适用。 ②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 那么这两个直角三角形相似。 ③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。 #直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。 每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。 如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高, 则有射影定理如下: (1)(AD)2=BD·DC,(2)(AB)2=BD·BC , (3)(AC)2=CD·BC 。 注:由上述射影定理还可以证明勾股定理。即(AB)2+(AC)2=(BC)2。

典型例题: 例1 如图,已知等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ‖AB ,BG 分别交AD ,AC 于E 、 F ,求证:BE2=EF·EG 证明:如图,连结EC ,∵AB =AC ,AD ⊥BC , ∴∠ABC =∠ACB ,AD 垂直平分BC ∴BE =EC ,∠1=∠2,∴∠ABC-∠1=∠ACB-∠2, 即∠3=∠4,又CG ∥AB ,∴∠G =∠3,∴∠4=∠G 又∵∠CEG =∠CEF ,∴△CEF ∽△GEC ,∴EG CE =CE EF ∴EC 2 =EG· EF,故EB 2 =EF·EG 【解题技巧点拨】 本题必须综合运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的基本图形来得到证明.而其中利用线段的垂直平分线的性质得到BE=EC ,把原来处在同一条直线上的三条线段BE ,EF ,EC 转换到相似三角形的基本图形中是证明本题的关键。 例2 已知:如图,AD 是Rt △ABC 斜BC 上的高,E 是AC 的中点,ED 与AB 的延长线相交于F ,求证:BA FB =AC FD 证法一:如图,在Rt △ABC 中,∵∠BAC =Rt ∠,AD ⊥BC , ∴∠3=∠C ,又E 是Rt △ADC 的斜边AC 上的中点, ∴ED=21 AC =EC ,∴∠2=∠C ,又∠1=∠2,∴∠1=∠3, ∴∠DFB =∠AFD ,∴△DFB ∽△AFD ,∴FD FB =AD BD (1) 又AD 是Rt △ABC 的斜边BC 上的高,∴Rt △ABD ∽Rt △CAD ,∴AD BD =AC BA (2) 由(1)(2)两式得FD FB =AC BA ,故BA FB =AC FD 证法二:过点A 作AG ∥EF 交CB 延长线于点G ,则BA FB =AG FD (1) ∵E 是AC 的中点,ED ∥AC ,∴D 是GC 的中点,又AD ⊥GC ,∴AD 是线段GC 的垂直平分线,∴AG =AC (2) 由(1)(2)两式得:BA FB =AC FD ,证毕。 【解题技巧点拨】 本题证法中,通过连续两次证明三角形相似,得到相应的比例式,然后通过中间比“AD BD ”过渡,使问题得证,证法 二中是运用平行线分线段成比例定理的推论,三角形的中位线的判定,线段的垂直平分线的判定与性质使问题得证.

相关文档
最新文档