德国Posital绝对值编码器样本

德国Posital绝对值编码器样本
德国Posital绝对值编码器样本

ABSOLUTE

ENCODER

ANALOG

High-resolution absolute encoder based on magnetic technology. Singleturn sensing based on 360° Hall effect technology. Multiturn sensing based on magnetic pulse counter. No batteries used.

Main Features

- Compact Industrial Design

- Interface: Analog – Current, Voltage - Housing:

36,5 mm - Shaft:

6 mm

- Blind Hollow / Hub Shaft:

6 mm

- 12 Bit Total Resolution

- Max Turns (Default) : 16 Turns (0 To 5760°) - Inputs for User Defined Measuring Range

- Over Range and Under Range Deadband - EMC:

EN 61000-6-2, EN 61000-6-4

Mechanical Structure - Aluminum Flange - Coated Steel Housing - Stainless Steel Shaft - Precision Ball Bearings

Suitable for Applications Requiring: - Sensing of Angles or Distances of Rotating Shafts

- Straightforward Communication - Potentiometer Replacement - Robustness with High IP Rating - Minimum Wiring

Electrical Features

- Reverse Voltage Protection

- Over-Voltage Protection

- Programmable Measurement Range

ABSOLUTE ENCODER

ANALOG

Technical Data

Electrical Data

Interface Specific

0.15% / Accuracy at 4mA = ±10μA; at 20mA = ± 50 μA

15-30 V DC (absolute maximum ratings)

14.8 V / 3.6 mA

* Supply voltage according to EN 50 178 (safety extra-low voltage)

> 10 k with 12V DC

0.15% / Accuracy at 5V = ±15mV: at 10V = ± 25mV

12-30 V DC (absolute maximum ratings)

11.8 V / 0 V

* Supply voltage according to EN 50 178 (safety extra-low voltage)

General Data

ABSOLUTE ENCODER

ANALOG

Sensor Data

Singleturn Technology Magnetic 2 axis Hall sensor

Resolution of Output* Max 12 bits over entire measuring range

Minimum Measurement Range 0 to 22.5 o

Singleturn Accuracy Calibrated ± 0.35°

Multiturn Technology Self supplied magnetic pulse counter

Multiturn Range 16 turns (default setting) User can use the scaling functionality to

measure up to 65,536 turns

Signal Sense (Default) Counterclockwise shaft movement (front view on shaft) means

increasing output value

* Fractional Turns - Resolution decreases less than 12 bits when measurement range is less than 90 degrees Mechanical Data

20 gcm

2 Ncm (2.8 oz-in)

Max. 12,000 RPM

100 g ( half sine, 6 ms XYZ )

200 g ( half sine, 3 ms XYZ )

10 g ( half sine, 16 ms XYZ )

30 g ( half sine, 11 ms XYZ )

10 g ( 10 Hz ... 1,000 Hz, XYZ )

4.2 g ( 5 Hz … 500 Hz XYZ )

150 g (0.33 lbs), including cable

Flange Synchro (S) Hub shaft (B)

Shaft Diameter 6 mm (~0.236 in) 6 mm (~0.236 in)

Shaft Length 11,5 mm (~0.453 in)*

* Mating Shaft: min: 8 mm (~0.315 in) / max: 18 mm (~0.709 in)

ABSOLUTE ENCODER

ANALOG

Minimum Mechanical Lifetime

Environmental Conditions

* Higher temperatures (up to 125°C (257 °F) for Singleturn) possible on request. See Operating Temperature: Cables ** Higher IP ratings (up to 69K) on request.

Cable (*)

Operating Temperature Cable Flexing -5°C to +70°C (+23 … +158 °F)

Static -30°C to +70°C ( -22 … +158 °F)

Minimum Bend Radius Flexing 10x cable diameter

Static 5x cable diameter

Cable Approx 6 mm (~0.236 in) / type : LIYCY 4x2x0.14 (~AWG 26) (*) Valid for types: MCD-…-CAW, MCD-…-GAW, MCD-…-CRW

ABSOLUTE

ENCODER

ANALOG

Interface

Electrical Connection (Front View)

5 Pin M12 (male)

Pinning RJ45

Scaling Functionality

Using the Set 1 and Set 2 Input Signals the measuring range (min range of 22.5o) with the analog output range can be scaled

- Turn the shaft to the min position (One end of the measuring range) - Connect Set 1 signal to high level for 1 second.

- Turn the encoder shaft to the max position (Other end of the measuring range) - Connect Set 2 signal to high level for 1 second. - Analog Output is scaled to the new measuring range.

*The default measuring range is restored. Output value corresponds to midpoint of scale (e.g. 2.5V for …-AV003-..and ..-AV001-..; 5V for …-AV002-..and ..-AV004-…, 12mA for …-AC005-.and 10mA for …-AC006-..)

1 (Input 12V / Input U 1 (Input 12V / Input U 0 (Input = N.C. or GND)

1 (Input 12V / Input U 1 (Input 12V / Input U

ABSOLUTE ENCODER

ANALOG

Output Characteristics

n is any integer between 0 and 16

* Refer to “Models / Ordering Description” for detailed information

ABSOLUTE

ENCODER

ANALOG

Mechanical Models

For detailed drawings please refer our website or directly contact us. Also available as IGES Drawing and STEP 3D Model. Axial Cable Exit

MCD-XXXX-XXXX-XXXX-CAW

M12 Connector

MCD-XXXX-XXXX-XXXX-PAM

MCD-XXXX-XXXX-B060-XXX

Clamp Flange

MCD-XXXX-XXXX-C100-XXX

Axial Cable Exit with Gland MCD-XXXX-XXXX-XXXX-GAW

Radial Cable Exit

MCD-XXXX-XXXX-XXXX-CRW

绝对值编码器的工作原理

******************************************************************************* 从编码器使用的计数来分类,有二进制编码、二进制循环编码(葛莱码)、二-十进制吗等编码器。 从结构原理来分类,有接触式、光电式和电磁式等几种。最常用的是光电式二进制循环码编码器。码盘上有许多同心圆,它代表某种计数制的一位,每个同心圆上有透光与不透光的部分,透光部分为1,不透光部分为0,这样组成了不同的图案。每一径向,若干同心圆组成的图案带标了某一绝对计数值。二进制码盘每转一个角度,计数图案的改变按二进制规律变化。葛莱码的计数图案的切换每次只改变一位,误差可以控制在一个单位内。精度受到最低位分段宽度的限制。要求更大计数长度,可采用粗精测量组合码盘。 接触式码盘可以做到9位二进制,它的优点是简单、体积小输出信号强,不需要放大;缺点是电刷摩擦是、寿命低、转速不能太高。 光电式码盘没有接触磨损寿命长,转速高,最外层每片宽度可以做得更小,因而精度高。每个码盘可以做到18位进制。缺点是结构复杂价格高。 电磁码盘是在导磁性好的软铁和坡莫合金原盘上,用腐蚀的办法作成相位码制的凹凸图形,当磁通通过码盘时,由于磁导大小不一样,其感应电势也不同,因而可区分0和1,到达测量的目的。该种码盘是一种无接触式码盘,具有寿命长‘转速高等优点。它是一种发展前途的直接编码式测量元件。 工作原理,接触式码盘,每个码道上有一个电刷与之接触,最里面一层有一导电公用区,与各码道到点部分连在一起,而与绝缘部分分开。导电公用区接到电源负极。当被测对象带动码盘一起转动时,与电刷串联的电阻上将会出现电流流过或没有电流流过两种情况,带标二进制的1或0.若码盘顺时针转动,就可依次得到按规定编码的数字信输出。如果电刷安装不准就会照成误差。葛莱码没转换一个数字编码,只改变一位,故照成的误差不会超过一个单位。 *******************************************************************************

编码器内部PNP-NPN详解说明-有图示

编码器输出信号类型 一般情况下,从编码器的光电检测器件获取的信号电平较低,波形也不规则,不能直接用于控制、信号处理和远距离传输,所以在编码器内还需要对信号进行放大、整形等处理。经过处理的输出信号一般近似于正弦波或矩形波,因为矩形波输出信号容易进行数字处理,所以在控制系统中使用比较广泛。 增量式光电编码器的信号输出有集电极开路输出、电压输出、线驱动输出和推挽式输出等多种信号形式。 1集电极开路输出 集电极开路输出是以输出电路的晶体管发射极作为公共端,并且集电极悬空的输出电路。根据使用的晶体管类型不同,可以分为NPN集电极开路输出(也称作漏型输出,当逻辑1时输出电压为0V,如图2-1所示)和PNP集电极开路输出(也称作源型输出,当逻辑1时,输出电压为电源电压,如图2-2所示)两种形式。在编码器供电电压和信号接受装置的电压不一致的情况下可以使用这种类型的输出电路。 图2-1 NPN集电极开路输出 图2-2 PNP集电极开路输出 对于PNP型的集电极开路输出的编码器信号,可以接入到漏型输入的模块中,具体的接线原理如图2-3所示。 注意:PNP型的集电极开路输出的编码器信号不能直接接入源型输入的模块中。

图2-3 PNP型输出的接线原理 对于NPN型的集电极开路输出的编码器信号,可以接入到源型输入的模块中,具体的接线原理如图2-4所示。 注意:NPN型的集电极开路输出的编码器信号不能直接接入漏型输入的模块中。 图2-4 NPN型输出的接线原理 2.2电压输出型 电压输出是在集电极开路输出电路的基础上,在电源和集电极之间接了一个上拉电阻,这样就使得集电极和电源之间能有了一个稳定的电压状态,如图2-5。一般在编码器供电电压和信号接受装置的电压一致的情况下使用这种类型的输出电路。

数控机床编码器的选型及各类编码的特点及调试

一:增量旋转编码器选型有哪些注意:1.械安装尺寸,包括定位止口,轴径,安装孔位;电缆出线方式;安装空间体积;工作环境防护等级是否满足要求。 2.分辨率,即编码器工作时每圈输出的脉冲数,是否满足设计使用精度要求。 3.电气接口,编码器输出方式常见有推拉输出(F型HTL格式),电压输出(E),集电极开路(C,常见C为NPN型管输出,C2为PNP型管输出),长线驱动器输出。其输出方式应和其控制系统的接口电路相匹配。 二如何使用增量编码器?1,增量型旋转编码器有分辨率的差异,使用每圈产生的脉冲数来计量,数目从6到5400或更高,脉冲数越多,分辨率越高;这是选型的重要依据之一。 2,增量型编码器通常有三路信号输出(差分有六路信号):A,B和Z,一般采用TTL电平,A脉冲在前,B脉冲在后,A,B脉冲相差90度,每圈发出一个Z脉冲,可作为参考机械零位。一般利用A超前B 或B超前A进行判向,我公司增量型编码器定义为轴端看编码器顺时针旋转为正转,A超前B为90°,反之逆时针旋转为反转B超前A为90°。也有不相同的,要看产品说明。 3,使用PLC采集数据,可选用高速计数模块;使用工控机采集数据,可选用高速计数板卡;使用单片机采集数据,建议选用带光电耦合器的输入端口。 4,建议B脉冲做顺向(前向)脉冲,A脉冲做逆向(后向)脉冲,Z原点零位脉冲。 5,在电子装置中设立计数栈 三:从接近开关、光电开关到旋转编码器:工业控制中的定位,接近开关、光电开关的应用已经相当成熟了,而且很好用。可是,随着工控的不断发展,又有了新的要求,这样,选用旋转编码器的应用优点就突出了: 信息化:除了定位,控制室还可知道其具体位置; 柔性化:定位可以在控制室柔性调整; 现场安装的方便和安全、长寿:拳头大小的一个旋转编码器,可以测量从几个μ到几十、几百米的距离,n个工位,只要解决一个旋转编码器的安全安装问题,可以避免诸多接近开关、光电开关在现场机械安装麻烦,容易被撞坏和遭高温、水气困扰等问题。由于是光电码盘,无机械损耗,只要安装位置准确,其使用寿命往往很长。 多功能化:除了定位,还可以远传当前位置,换算运动速度,对于变频器,步进电机等的应用尤为重要。 经济化:对于多个控制工位,只需一个旋转编码器的成本,以及更主要的安装、维护、损耗成本降低,使用寿命增长,其经济化逐渐突显出来。 四:电源供应及编码器和PLC连接:一般编码器的工作电源有三种:5Vdc、5-13Vdc或11-26Vdc。如果

多圈绝对值编码器工作原理

2010-04-30 08:14 传统的绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16线。。。。。。编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由光电码盘的机械位置决定的,它不受停电、干扰的影响。 绝对编码器由机械位置决定的每个位置是唯一的,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。 单圈绝对值编码 多圈绝对值编码器 旋转单圈绝对值编码器,以转动中测量光电码盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝对编码唯一的原则,这样的编码只能用于旋转范围360度以内的测量,称为单圈绝对值编码器。 如果要测量旋转超过360度范围,就要用到多圈绝对值编码器。 编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位置确定编码,每个位置编码唯一不重复,而无需记忆。 多圈编码器另一个优点是由于测量范围大,实际使用往往富裕较多,这样在安装时不必要费劲找零点,将某一中间位置作为起始点就可以了,而大大简化了安装调试难度. 绝对值多圈有电子增量计圈与机械绝对计圈等多种,(还有其他几圈方式,但不多见)。机械绝对计圈,无论是每圈位置是绝对的,而且圈数也是绝对值的,但是,这样的话,圈数就有个范围,例如现在较多的4096圈和65536圈两种。这样,就有人提出来,超过圈数还算不算绝对的在一次加工中不超过圈数,或停电移动不超过1/2圈数,当然是绝对的。 电子增量计圈,通过电池记忆圈数,实际上是单圈绝对,多圈增量,好处是省掉了一组机械齿轮,经济、体积小且没有圈数限制,似乎也不错,但是他毕竟是多圈增量的,不能算真正意义上的绝对值,什么是真正意义上的绝对值就是不依赖于前次历史的直接读数。它在停电后,由于电池低功耗的要求,移动的速度与范围其实是有限制的,另外加上电池的因数,可靠性方面还是要有疑问的。尤其是如果计圈的失误,反而无法找到原来的绝对位置。 事实上,很多人理解用绝对值,都是停电后移动的问题,却不了解德国人在运动控制中用机械真多圈绝对值的真正用意,由于真正的绝对值是不依赖于前次历史

绝对值编码器 选型

@Q发表于:2013/10/14 16:50:08 标签(TAG):编码器绝对值编码器选型 (绝对值编码器问答集节选) 本人正在编写一部《绝对值编码器问答集》的小册子,以下是部分节选。——根据实际使用要求判断是否需要选用绝对值编码器,根据已有的设备信号接口选择选什么样的编码器 1,使用绝对值编码器一定会比用增量式编码器贵吗? 没有!从编码器器件成本上说增量编码器内部器件少,成本价格确实低,但是从编码器的如何使用并产生效果的角度说,绝对值编码器如果选型得当,其使用的效果带来的综合成本,会低于选用增量值编码器,为使用者大大节省成本。2,什么情况下要选绝对值编码器? a.停电移动、惯性滑动的数据安全可靠性问题,对于一些需要高度、长度测量的安全性设备、较大型设备、起重类工程类设备,安全性是很重要的因素,为确保编码器数据的稳定可靠性,必须选用全行程绝对值编码器。这类应用如果发生编码器数据错误可能引起的损失远远超过了编码器成本本身。例如水闸、工程机械、起重机、电梯、门机等等的高度、长度测量。 b.信号抗干扰问题,有时所化的人工成本远远大于一个编码器成本,增量信号较易受到各种干扰,数据采集不稳定,对于各种现场不可预知的干扰会花很多精力去排查,并要设法避开干扰,此情况下应考虑更换绝对值编码器。例如各种自动化工程项目,对于现场的变频器、开关电源、接地状况不明的情抗下,无从判断干扰情况,选用绝对值编码器可以确保应对各种工况条件。 c.后续设备节省资源,增量编码器需要高速计数不停的计数,耗费CPU资源,有时多个编码器连接没有更多的高速计数口,此时选用绝对值编码器的串行输出(如RS485)或总线型输出,其实是节省了后续设备的资源而节省费用。例如需要多个编码器比较的同步纠偏、多个编码器联动操作的流水线、加工机械等。 d.环境较恶劣的选择,增量编码器绝大部分是光学式的,易受水气灰尘及振动影响而损坏,选用磁电式绝对值编码器(单圈或真多圈)的可以避免这种损坏,而大大提高产品使用的寿命,而得到综合效果更佳,使用成本更低。例如户外使用的港口矿山机械、工厂的快速开门机等。 e.节省综合成本,在一些不便于停机修正、更换、维修,或停机修正、更换、维修成本很高的场合下,用绝对值编码器,因其数据的可靠性、产品的耐用性,可以大大减少售后服务人工成本,产品可长时间的使用效果,直接的是产品使用的综合成本大大的节省了。例如一些高速运转的流水线、较远地区的管网系统(电动执行器)。 。。。。。 3.按绝对值编码器输出信号接口有哪些信号输出可选? 选择使用绝对值编码器,首先要根据自身所有的后续接受设备(例如PLC)有什么样的信号接口,根据已有的信号接口选择编码器:

绝对值编码器工作原理

从增量值编码器到绝对值编码器 旋转增量值编码器以转动时输出脉冲,通过计数设备来计算其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计 数设备计算并记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。 解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。 这样的方法对有些工控项目比较麻烦,甚至不允许开机找零(开机后就要知道准确位置),于是就有了绝对编码器的出现。 绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16线。。。。。。编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一 组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由光电码盘的机械位置决定的,它不受停电、干扰的影响。 绝对编码器由机械位置决定的每个位置是唯一的,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。 从单圈绝对值编码器到多圈绝对值编码器 旋转单圈绝对值编码器,以转动中测量光电码盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝对编码唯一的原则,这样的编码只能用于旋转范围360度以内的测量,称为单圈绝对值编码器。 如果要测量旋转超过360度范围,就要用到多圈绝对值编码器。 编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编 码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位置确定编码,每个位置编码唯一不重复,而无需记忆。

绝对值编码器原理.doc

从增量值编码器到绝对值编码器旋转增量值编码器以转 动时输出脉冲,通过计数设备来计算其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备计算并记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。 解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。 这样的方法对有些工控项目比较麻烦,甚至不允许开机找零(开机后就要知道准确位置),于是就有了绝对编码器的出现。 绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16线。。。。。。编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由光电码盘的机械位置决定的,它不受停电、干扰的影响。 绝对编码器由机械位置决定的每个位置是唯一的,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。 从单圈绝对值编码器到多圈绝对值编码器 旋转单圈绝对值编码器,以转动中测量光电码盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝对编码唯一的原则,这样的编码只能用于旋转范围360度以内的测量,称为单圈绝对值编码器。 如果要测量旋转超过360度范围,就要用到多圈绝对值编码器。 编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位置确定编码,每个位置编码唯一不重复,而无需记忆。 多圈编码器另一个优点是由于测量范围大,实际使用往往富裕较多,这样在安装时不必要费劲找零点,将某一中间位置作为起始点就可以了,而大大简化了安装调试难度。

编码器的选型及技术解答

编码器的选型及技术解答 一、问:增量旋转编码器选型有哪些注意事项? 应注意三方面的参数: 1.机械安装尺寸,包括定位止口,轴径,安装孔位;电缆出线方式;安装空间体积;工作环境防护等级是否满足要求。 2.分辨率,即编码器工作时每圈输出的脉冲数,是否满足设计使用精度要求。 3.电气接口,编码器输出方式常见有推拉输出(F型HTL格式),电压输出(E),集电极开路(C,常见C为NPN型管输出,C2为PNP型管输出),长线驱动器输出。其输出方式应和其控制系统的接口电路相匹配。 二、问:请教如何使用增量编码器? 1,增量型旋转编码器有分辨率的差异,使用每圈产生的脉冲数来计量,数目从6到5400或更高,脉冲数越多,分辨率越高;这是选型的重要依据之一。 2,增量型编码器通常有三路信号输出(差分有六路信号):A,B和Z,一般采用TTL电平,A脉冲在前,B 脉冲在后,A,B脉冲相差90度,每圈发出一个Z脉冲,可作为参考机械零位。一般利用A超前B或B超前A进行判向,增量型编码器定义为轴端看编码器顺时针旋转为正转,A超前B为90°,反之逆时针旋转为反转B超前A为90°。也有不相同的,要看产品说明。 3,使用PLC采集数据,可选用高速计数模块;使用工控机采集数据,可选用高速计数板卡;使用单片机采集数据,建议选用带光电耦合器的输入端口。 4,建议B脉冲做顺向(前向)脉冲,A脉冲做逆向(后向)脉冲,Z原点零位脉冲。 5,在电子装臵中设立计数栈。 增量型编码器与绝对型编码器的区分:编码器如以信号原理来分,有增量型编码器,绝对型编码器。 增量型编码器(旋转型)工作原理:由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。编码器码盘的材料有玻璃、金属、塑料;玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高。金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级。塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率:编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 信号输出:信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。 信号连接:编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。如单相联接,用于单方向计数,单方向测速。A.B两相联接,用于正反向计数、判断正反向和测速。A、B、Z三相联接,用于带参考位修正的位臵测量。A、A-,B、B-,Z、Z-连接,

绝对值旋转编码器程序

绝对值旋转编码器程序 #include // 寄存器头文件包含 #include // 寄存器头文件包含 #include // 空操作函数,移位函数头文件包含 #define uchar unsigned char #define uint unsigned int /* sbit SH_CP = P1^1; //移位时钟脉冲端口 sbit DS = P1^2; // 串行数据输入端口 sbit ST_CP = P3^7; //锁存端口 */ int inc_data=0; //每刷新一次的增量值 int jms=0; //累计增量 int m_iPrvSSI = 0; int m_bIsSPI = 0; uchar uPrvState = 0; sbit AA = P3^3;// sbit BB = P3^4;//这个是时钟 sbit ZZ = P3^5;//这个是数据 sbit BEEP=P1^5; //正反判断 bit t_bFang = 1; int a; int iSSI = 0;

int temp,num,j; uchar led_buf[12]; /*定义LED显示缓冲区*/ uchar code table[]="0123456789"; void delay (int t) { int i,j; for(i=1;i for (j=1;j } void GetSSI(void) { uchar ix = 0; // uchar uState = 0; //状态位数据 int iSSI = 0;//当前的角度数据(0-1023) bit bCrc = 0; // 奇数或偶数标志位 int ire = 0; //增量数据,表示上次正确读的数据,和这次正确读的位置差 AA = 0; //CSN _nop_();_nop_(); BB = 0;//CLK _nop_();_nop_(); BB = 1;//CLK _nop_();_nop_(); for(ix = 0; ix { BB = 0;//CLK

绝对值编码器说明

绝对值型的特点 对应旋转角度以格雷码形式并行输出绝对位置值,而且无需计数器。在通电状态下常时输出旋转角度,因为不用计数,可以在有电气噪声、振动的环境下使用。 而且在掉电和上电时都能正确读出旋转角度,不必回归原点,提高系统的速度。 格雷二进制码是为了弥补二进制码的缺陷而产生的代码。 在二进制码中当从某一个数到下一个数变化时,可能同时有2个以上的数据位发生变化,由于对各位读取的时序上的差异,可能造成读出错误。 为了解决此问题,设计一种代码,使其在从任一数到下一数变化时,只有一个数据位变化,以避免读取错误,这样的代码即格雷二进制码。输出码的转换 使用格雷码时,按以下方式进行二进制,BCD码转换。

输出脉冲数/转 旋转编码器的轴转一圈所输出的脉冲数。对于光学式旋转编码器,通常与旋转编码器内部的光栅的槽相同。(也可在电气上使用输出脉冲数增加到槽数的2倍、4倍。) 增量型 在转动时,可连续输出与旋转角度对应的脉冲数。静止状态不输出。因此,只要对脉部进行计数,就可知旋转的位置。 增量型旋转编码器可任选基准位置。根据在一圈内只输出一次的Z 相信号,可调整基准位置。 绝对值型 与旋转的有无没有关系,可并行输出与旋转角度对应的角度信号,可确认绝对位置。 分辩率 分辩率表示旋转编码器的主轴旋转一周,读出位置数据的最大等分数,绝对值型不以脉冲形式输出,而以代码形式表示当前主轴位置(角度),与增量型不同,相当于增量型的“输出脉冲/转”。 光栅 光学式旋转编码器,其光栅有金属和玻璃两种。如是金属制的开有通光孔(槽)。如是玻璃制的,是在玻璃表面涂了一层遮光膜,在此上面没有透明线条(槽)。槽数少的场合,可在金属圆盘上用冲压加工或腐蚀法开槽,在耐冲击型编码器上使用了金属的光栅。

绝对值编码器简介

绝对值编码器概述 工作原理 绝对值编码器与增量编码器工作原理非常相似。它是一个带有若干个透明和不透明窗口的转动圆盘,用光接收器来收集间断的光束,光脉冲转换成电脉冲后, 由电子输出电路进行 处理,并将电脉冲发送出去。 绝对值代码 绝对值编码器和增量编码器之间主要的差别在于位置是怎么样来确定的:增量编码器的位置是从零位标记开始计算的脉冲数量来确定的,而绝对值编码器的位置是由输出代码的读数来确定的,在一转内每个位置的读数是唯一的。因此,

当电源断开或码盘移位时,绝对值编码器不会丢失实际位 置。 然而,当绝对值编码器的电源一旦重启位置值就会立即替代旧值,而一个增量编码器则需要设置零位标记。 输出代码用于指定绝对位置。很明显首选会是二进制码,因为它可以很容易被外部设备所处理,但是,二进制码是直接从旋转码盘上取得的,由于同时改变的编码状态位数超过一位,所以要求同步输出代码很难。 例如,两个连续的二进制码编码7(0111)变到8(1000),可以注意到所有位的状态都发生了变化。因此,如果你试着读在特定时刻的编码,要保证读数的正确性是很困难的,因为在数据改变的一瞬间同时就有超过一位的状态变化。因此,格雷码在二个连续编码之间(甚至于从最后一个到第一个)只有一位二进码状态变化。 格雷码通过一个简单的组合电路就可以很容易被转换为二进制码。(见如下表单)

格雷余码 当定义位置的个数不是2的幂次方时,从最后一个位置变到最前一个位置,即使是格雷码,同时改变的编码状态也会超过一位。 例如,假设一个每转12个位置的绝对型编码器,其格雷码如右侧所示,显而易见在位置11和0之间变化时,3位二进制码位同时改变状态,可能会引起读数出错,这是不允许的。试用格雷余码,3位二进制就可以维护编码仅仅只有一位状态变化,使得位置0与N值一一对应,这就得到格雷余码。其中,N是这样一个数,从转换成二进制码的格雷余码中减去N,就得到正确的位置值。 超差值N的计算: N=(2n-IMP)/2 式中:IMP IMP是每转的位置数(只能是 偶数)

绝对值SSI编码器

工业级SSI信号GEX58011K1R4096/4096-S(出轴型/盲孔型) 可靠的和专利的 ●具有安全锁(Sa fety-Lock TM)式设计的坚固轴承结构, 可以提供更高的抗振动性和防安装误差性 ●IP68防护等级和宽广的工作温度范围-40℃ (85) ●专利化机械齿轮技术,具有永久断电记忆功能 性能优化 ●高精度,位置数据的数据刷新率≤4us ●通过RS422实现高分辨率反馈 ●控制周期短。时钟频率最快可达1MHz ●国际标准SSI信号格式 机械参数电气参数 最大转速6000转/分工作电压10-30Vdc (5Vdc可定制) 主轴负载轴向40N,径向100N 消耗电流< 50mA (24Vdc)空载 抗冲击1000m/s2(6ms),等于100g 输出信号25位SSI同步串行信号(格雷码和纯二进制可选) 抗振动200m/s2(10-2000Hz),等于20g 线性分辨率1/4096FS和1/8192FS 允许轴向窜动±1.5mm 最大工作圈数4096圈(256圈/64圈可选) 允许径向跳动±0.2mm 重复定位精度小于2Bit 外形结构60mm外径,实心轴,盲孔轴工作温度-40℃~85℃ 连接形式8芯屏蔽电缆或航空插头储存温度-40℃~85℃ SSI协议说明: SSI为同步串联信号,实际的两对RS422,一对时钟触发,一对数据发送。 如右图所示,编码器的绝对位置值由接收设备的时钟信号触发,从格雷码高位(MSB)开始,输出与时钟信号同步的串行信号。时钟信号从接收设备发出,以编码器的总位数输出N个中断的脉冲,当不传送信号时,时钟和数据位均是高位,在时钟信号的第一个下降沿,当前值开始贮存,从时钟信号上升沿开始,数据信号开始传送,一个时钟脉冲同步一位数据。 其中:t3为恢复信号,等待下次传送;N=13;16;25;28。根据编码器总位数。 T=4—11us; t1=1—5.5us; t2≤1us; t3=11—15.5us (Clock-及Date-省略未画)。 实际使用中,为保证信号的稳定与较远的传输距离,推荐参数如下: T=8us(125KHz); t1=4us; t2′(实际读数延迟时间)=3~4us; t3=15us。 具有专利化机械齿轮计圈式多圈编码器,不含电池, 具有永久断电记忆功能。100%抗磁场干扰性,欧标 安装尺寸,盲孔孔径可选8-15mm孔。

增量值编码器和绝对值编码器原理三篇

增量值编码器和绝对值编码器原理 三篇 篇一;从增量值编码器到绝对值编码器 旋转增量值编码器以转动时输出脉冲,通过计数设备来计算其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备计算并记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。 解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准 确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。

这样的方法对有些工控项目比较麻烦,甚至不允许开机找零(开机后就要知道准确位置),于是就有了绝对编码器的出现。 绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16线。。。。。。编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由光电码盘的机械位置决定的,它不受停电、干扰的影响。 绝对编码器由机械位置决定的每个位置是唯一的,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。

从单圈绝对值编码器到多圈绝对值编码器 旋转单圈绝对值编码器,以转动中测量光电码盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝对编码唯一的原则,这样的编码 只能用于旋转范围360度以内的测量,称为单圈绝对值编码器。 如果要测量旋转超过360度范围,就要用到多圈绝对值编码器。 编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位置确定编码,每个位置编码唯一不重复,而无需记忆。 多圈编码器另一个优点是由于测量范围大,实际使用往往富裕

绝对值编码器调试说明书

绝对值编码器调试说明书 编辑人:章晶 一.绝对值编码器调试安全注意事项 1. 电池装上后不能拔下或松掉,特别是绝对值原点设定后,否则会造成绝对值编码器的读数乱掉,造成撞机等事故。 2. 绝对值原点设置前,必须松开联轴器进行定位和重复定位测试,观察电池记忆绝对值坐标的稳定性。 3. 绝对值编码器装机后,必须测试电机运转的正反向及编码器的读数方向,防止撞机事件。 4. 设置完绝对值原点后,由于绝对值方案没有硬限位,必须先设定好各轴软限位保护,防止工作台飞出,造成人员伤亡。 二.绝对值编码器调试步骤 1. 开启绝对值编码器模式 先设置X轴系统参数->DspB0->DspB0-50->将261参数设置为0,如图1所示。 图1 再设置Y轴系统参数->DspB0->DspB0-51->将381参数设置为0,如图2所示。

图2 最后设置Z轴系统参数->DspB0->DspB0-52->将501参数设置为0,如图3示。 图3 2. 绝对值编码器的初始化 1). 先在伺服驱动器端编码器位置装上电池,然后松开X、Y、Z轴联轴器。 2). 第一次设定绝对值编码器出现A.810报警,连接SigmaWin软件,选择安装->绝对值编码器设定->绝对值编码器复位->然后一直按确定,直到完成,如图4所示。依此初始化X、Y、Z轴,然后断电重启伺服驱动器,此时报警清除。

图4 3. 绝对值编码器机床坐标值的定位测试与重复定位测试 1). 系统与伺服都上电,记录此时的机床坐标,然后将伺服断电,等候5~10分钟,再上电,记录此时的机床坐标,对比上次的机床坐标看有无变化。如此重复3~5次。 2). 伺服断电,将X、Y、Z轴手动正向转动,伺服上电,记录此时的机床坐标是否往正方向运动了。然后伺服断电,等候5~10分钟,再上电,记录此时的机床坐标,对比上次的机床坐标看有无变化。再伺服断电,将X、Y、Z轴手动正向转动,伺服上电,记录此时的机床坐标是否往正方向运动了,如此重复3~5次。 3). 伺服断电,将X、Y、Z轴手动反向转动,伺服上电,记录此时的机床坐标是否往反方向运动了。然后伺服断电,等候5~10分钟,再上电,记录此时的机床坐标,对比上次的机床坐标看有无变化。再伺服断电,将X、Y、Z轴手动反向转动,伺服上电,记录此时的机床坐标是否往反方向运动了,如此重复3~5次。 4. 绝对值编码器机床坐标值的装机测试 1). 连上联轴器,将X、Y、Z轴往正方向、反方向手动移动,观察X、Y、Z各轴移动方向是否正确。 2). 观察编码器读数方向是否正确,如读数方向反了,则设置DSP系统参数修改。X轴参数->DspB0->DspB0-1->将06参数设置为0改为1或者1改为0。Y轴参数->DspB0->DspB0-1->将07参数设置为0改为1或者1改为0。Z轴参数->DspB0->DspB0-1->将08参数设置为0改为1或者1改为0。5.绝对值原点的设置 1). 先将X、Y、Z各轴软限位设定范围改大,保证各轴移动到两端时不出现超软限位报警。 2). 将X、Y、Z移动到一端,绝对坐标清零,然后移动到另一端,分别记录X、Y、Z的最大可用行程。 3). 将X、Y、Z移动到机床坐标最大值端,然后移动到需要设定的机床坐标零点位置,记录此时的X、Y、Z各轴机床坐标,将其值置反,去掉小数点后分别输入到X轴如图5所示的DspB0-50中参数359、Y轴如图6所示的DspB0-51中参数479、Z轴如图7所示的DspB0-52中参数599.

绝对值编码器(终审稿)

绝对值编码器 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

增量型编码器与绝对型编码器的区分 编码器如以信号原理来分,有增量型编码器,绝对型编码器。 增量型编码器 (旋转型) 工作原理: 由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。 由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。 编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 信号输出: 信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口

应与编码器对应。 信号连接—编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。 如单相联接,用于单方向计数,单方向测速。 A.B两相联接,用于正反向计数、判断正反向和测速。 A、B、Z三相联接,用于带参考位修正的位置测量。 A、A-, B、B-,Z、Z-连接,由于带有对称负信号的连接,电流对于电缆贡献的电磁场为0,衰减最小,抗干扰最佳,可传输较远的距离。 对于TTL的带有对称负信号输出的编码器,信号传输距离可达150米。 对于HTL的带有对称负信号输出的编码器,信号传输距离可达300米。 增量式编码器的问题: 增量型编码器存在零点累计误差,抗干扰较差,接收设备的停机需断电记忆,开机应找零或参考位等问题,这些问题如选用绝对型编码器可以解决。 增量型编码器的一般应用: 测速,测转动方向,测移动角度、距离(相对)。 绝对型编码器(旋转型) 绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16 线。。。。。。编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的

德国Posital绝对值编码器样本

ABSOLUTE ENCODER ANALOG High-resolution absolute encoder based on magnetic technology. Singleturn sensing based on 360° Hall effect technology. Multiturn sensing based on magnetic pulse counter. No batteries used. Main Features - Compact Industrial Design - Interface: Analog – Current, Voltage - Housing: 36,5 mm - Shaft: 6 mm - Blind Hollow / Hub Shaft: 6 mm - 12 Bit Total Resolution - Max Turns (Default) : 16 Turns (0 To 5760°) - Inputs for User Defined Measuring Range - Over Range and Under Range Deadband - EMC: EN 61000-6-2, EN 61000-6-4 Mechanical Structure - Aluminum Flange - Coated Steel Housing - Stainless Steel Shaft - Precision Ball Bearings Suitable for Applications Requiring: - Sensing of Angles or Distances of Rotating Shafts - Straightforward Communication - Potentiometer Replacement - Robustness with High IP Rating - Minimum Wiring Electrical Features - Reverse Voltage Protection - Over-Voltage Protection - Programmable Measurement Range

绝对值编码器的工作原理

绝对值编码器的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

从编码器使用的计数来分类,有二进制编码、二进制循环编码(葛莱码)、二-十进制吗等编码器。 从结构原理来分类,有接触式、光电式和电磁式等几种。最常用的是光电式二进制循环码编码器。码盘上有许多同心圆,它代表某种计数制的一位,每个同心圆上有透光与不透光的部分,透光部分为1,不透光部分为0,这样组成了不同的图案。每一径向,若干同心圆组成的图案带标了某一绝对计数值。二进制码盘每转一个角度,计数图案的改变按二进制规律变化。葛莱码的计数图案的切换每次只改变一位,误差可以控制在一个单位内。精度受到最低位分段宽度的限制。要求更大计数长度,可采用粗精测量组合码盘。 接触式码盘可以做到9位二进制,它的优点是简单、体积小输出信号强,不需要放大;缺点是电刷摩擦是、寿命低、转速不能太高。 光电式码盘没有接触磨损寿命长,转速高,最外层每片宽度可以做得更小,因而精度高。每个码盘可以做到18位进制。缺点是结构复杂价格高。 电磁码盘是在导磁性好的软铁和坡莫合金原盘上,用腐蚀的办法作成相位码制的凹凸图形,当磁通通过码盘时,由于磁导大小不一样,其感应电势也不同,因而可区分0和1,到达测量的目的。该种码盘是一种无接触式码盘,具有寿命长‘转速高等优点。它是一种发展前途的直接编码式测量元件。 工作原理,接触式码盘,每个码道上有一个电刷与之接触,最里面一层有一导电公用区,与各码道到点部分连在一起,而与绝缘部分分开。导电公用区接到电源负极。当被测对象带动码盘一起转动时,与电刷串联的电阻上将会出现电流流过或没有电流流过两种情况,带标二进制的1或0.若码盘顺时针转动,就可依次得到按规定编码的数字信输出。如果电刷安装不准就会照成误差。葛莱码没转换一个数字编码,只改变一位,故照成的误差不会超过一个单位。 2

绝对值编码器的信号输出及与PLC的连接

绝对值编码器的信号输出 绝对值编码器信号输出有并行输出、串行输出、总线型输出、变送一体型输出。 1.并行输出: 绝对值编码器输出的是多位数码(格雷码或纯二进制码),并行输出就是在接口上有多点高低电平输出,以代表数码的1或0,对于位数不高的绝对编码器,一般就直接以此形式输出数码,可直接进入PLC或上位机的I/O接口,输出即时,连接简单。但是并行输出有如下问题: 1、必须是格雷码,因为如是纯二进制码,在数据刷新时可能有多位变化,读数会在短时间里造成错码。 2、所有接口必须确保连接好,因为如有个别连接不良点,该点电位始终是0,造成错码而无法判断。 3、传输距离不能远,一般在一两米,对于复杂环境,最好有隔离。 4、对于位数较多,要许多芯电缆,并要确保连接优良,由此带来工程难度,同样,对于编码器,要同时有许多节点输出,增加编码器的故障损坏率。 2.串行SSI输出: 串行输出就是通过约定,在时间上有先后的数据输出,这种约定称为通讯规约,其连接的物理形式有RS232、RS422(TTL)、RS485等。 由于绝对值编码器好的厂家都是在德国,所以串行输出大部分是与德国的西门子配套的,如SSI同步串行输出。 SSI接口(RS422模式),以两根数据线、两根时钟线连接,由接收设备向编码器发出中断的时钟脉冲,绝对的位置值由编码器与时钟脉冲同步输出至接收设备。由接收设备发出时钟信号触发,编码器从高位(MSB)开始输出与时钟信号同步的串行信号. 串行输出连接线少,传输距离远,对于编码器的保护和可靠性就大大提高了。 一般高位数的绝对编码器都是用串行输出的。 3.现场总线型输出 现场总线型编码器是多个编码器各以一对信号线连接在一起,通过设定地址,用通讯方式传输信号,信号的接收设备只需一个接口,就可以读多个编码器信号。总线型编码器信号遵循RS485的物理格式,其信号的编排方式称为通讯规约,目前全世界有多个通讯规约,各有优点,还未统一,编码器常用的通讯规约有如下几种: PROFIBUS-DP;CAN;DeviceNet;Interbus等 总线型编码器可以节省连接线缆、接收设备接口,传输距离远,在多个编码器集中控制的情况下还可以大大节省成本。 4.变送一体型输出 连接绝对编码器的电气二次设备: 连接绝对值编码器的设备可以是可编程控制器PLC、上位机,也可以是专用显示信号转换仪表,由仪表再输出信号给PLC或上位机。 1.直接进入PLC或上位机:

绝对值编码器的“绝对”的定义

什么是绝对值编码器的“绝对式”的定义 旋转编码器是工业中重要的机械位置角度、长度、速度反馈并参与控制的传感器,旋转编码器分增量 值编码器、绝对值编码器、绝对值多圈编码器。 从外部接收的设备上讲(如伺服控制器、PLC),增量值是指一种相对的位置信息的变化,从A点变 化到B点的信号的增加与减少的计算,也称为“相对值”,它需要后续设备的不间断的计数,由于每次的数据并不是独立的,而是依赖于前面的读数,对于前面数据受停电与干扰所产生的误差无法判断,从而造 成误差累计;而“绝对式工作模式”是指在设备初始化后,确定一个原点,以后所有的位置信息是与这个“原点”的绝对位置,它无需后续设备的不间断的计数,而是直接读取当前位置值,对于停电与干扰所可 能产生的误差,由于每次读数都是独立不受前面的影响,从而不会造成误差累计,这种称为接收设备的 “绝对式”工作模式。 而对于绝对值编码器的内部的“绝对值”的定义,是指编码器内部的所有位置值,在编码器生产出厂后,其量程内所有的位置已经“绝对”地确定在编码器内,在初始化原点后,每一个位置独立并具有唯一性,它的内部及外部每一次数据刷新读取,都不依赖于前次的数据读取,无论是编码器内部还是编码器外部,都不应存在“计数”与前次读数的累加计算,因为这样的数据就不是“独立”“唯一”“量程内所有 位置已经预先绝对确立”了,也就不符合“绝对”这个词的含义了。 所以,真正的绝对编码器的定义,是指量程内所有位置的预先与原点位置的绝对对应,其不依赖于 内部及外部的计数累加而独立、唯一的绝对编码。 关于“绝对式”编码器的概念的“故意混淆”与认识的误区 关于绝对值编码器,很多人的认识还是停留在“停电”的位置保存这个概念,这个是片面而有局限性的,“绝对值”编码器不仅仅是停电的问题,对于接收设备,真正的“绝对值”的意义在于其数据刷新与 读取无论在编码器内部还是外部,每一个位置的独立性、唯一性、不依赖于前次读数的“绝对编码”,对 于这个“绝对”的定义市场上还是模糊不清的,为此有些商家就会对于此概念的“故意混淆”: 混淆一:将接收设备的“绝对式工作模式”与绝对值编码器的“绝对式”的混淆。接收设备的“绝对式” 是指接收设备的无需不间断计数累加,所有位置对于设备原点的“绝对”工作模式,事实上这种 模式通过增量编码器+自身的计数累加装置+电池记忆,一样可以提供给设备“绝对式”的位置信 息,它与绝对值编码器的“绝对编码”完全不是一个概念,它存在计数的误差及累加误差的可能 性、计数装置供电故障可能性、高速时计数无法响应等可能性。 混淆二:将绝对值单圈编码器+内部及外部的计数累加装置与真正意义的绝对值真多圈编码器的混淆。绝对值单圈+计圈计数装置,它在360度以内是绝对值的,但是超过360度以后,它的位置就不是 “独立”“唯一”了,它是依靠内部或外部的计数来判断多少圈内的单圈绝对位置信息的,这种 内部或外部的“计数装置”,与增量编码器+计数装置+电池记忆的性质是一样的,任何计数上的 误差,或者计数装置工作时电源的瞬间故障,都会造成误差而累计而无法判断,造成欺骗性假绝 对化信息。而真正的绝对值多圈编码器,除了360度内的位置都是绝对唯一的以外,在超过360 度后继续有齿轮机械带动的绝对值码盘,仍然提供“独立”“唯一”、不依赖于前次数据刷新读 取累加的绝对编码。实际上从“绝对”这个定义上讲,前面的那种单圈绝对+计数累加装置的 “假多圈绝对值编码器”,它就不能再叫“绝对值多圈编码器”了,尽管在360度以内是绝对的,但是超过360度的工作量程,就不再是“绝对值编码”了。

相关文档
最新文档