大学物理化学下册(第五版傅献彩)知识点分析归纳 (1)

大学物理化学下册(第五版傅献彩)知识点分析归纳 (1)
大学物理化学下册(第五版傅献彩)知识点分析归纳 (1)

第八章电解质溶液

第九章

1.可逆电极有哪些主要类型?每种类型试举一例,并写出该电极的还原反应。对于气体电极和氧化还原电极在书写电极表示式时应注意什么问题?

答:可逆电极有三种类型:

(1)金属气体电极如Zn(s)|Zn2+ (m) Zn2+(m) +2e- = Zn(s)

(2)金属难溶盐和金属难溶氧化物电极如Ag(s)|AgCl(s)|Cl-(m), AgCl(s)+ e- = Ag(s)+Cl-(m)

(3)氧化还原电极如:Pt|Fe3+(m1),Fe2+(m2) Fe3+(m1) +e- = Fe2+(m2)

对于气体电极和氧化还原电极,在书写时要标明电极反应所依附的惰性金属。

2.什么叫电池的电动势?用伏特表侧得的电池的端电压与电池的电动势是否相同?为何在测电动势时要用对消法?

答:正、负两端的电势差叫电动势。不同。当把伏特计与电池接通后,必须有适量的电流通过才能使伏特计显示,这样电池中发生化学反应,溶液浓度发生改变,同时电池有内阻,也会有电压降,所以只能在没有电流通过的情况下才能测量电池的电动势。

3.为什么Weslon标准电池的负极采用含有Cd的质量分数约为0.04~0.12的Cd一Hg齐时,标准电池都有稳定的电动势值?试用Cd一Hg的二元相图说明。标准电池的电动势会随温度而变化吗?

答:在Cd一Hg的二元相图上,Cd的质量分数约为0.04~0.12的Cd一Hg齐落在与Cd一Hg固溶体的两相平衡区,在一定温度下Cd一Hg齐的活度有定值。因为标准电池的电动势在定温下只与Cd一Hg齐的活度有关,所以电动势也有定值,但电动势会随温度而改变。

4.用书面表示电池时有哪些通用符号?为什么电极电势有正、有负?用实验能测到负的电动势吗?

答:用“|”表示不同界面,用“||”表示盐桥。电极电势有正有负是相对于标准氢电极而言的。

不能测到负电势。5.电极电势是否就是电极表面与电解质溶液之间的电势差?单个电极的电势能否测

量?如何用Nernst 方程计算电极的还原电势?

5.电极电势是否就是电极表面与电解质溶液之间的电势差?单个电极的电势能否测量?如何用Nernst 方程计算电极的还原电势?

答:电极电势不是电极表面与电解质溶液之间的电势差。单个电势是无法测量的。用Nernst 方程进行计算:

6.如果规定标准氢电极的电极电势为 1.0V ,则各电极的还原电极电势将如何变化?电池的电动势将如何变化?

答:各电极电势都升高1,但电池的电动势值不变。

7.在公式Δr G m Θ=-zE ΘF 中,Δr G m Θ

是否表示该电池各物都处于标准态时,电池反应的Gibbs 自由能变化值?

答:在公式Δr G m Θ=-zE ΘF 中,Δr G m Θ

表示该电池各物都处于标准态时,在T,p 保持不变的条件下,按电池反应进行1mol 的反应时系统的Gibbs 自由能变化值。

8.有哪些求算标准电动势E Θ

的方法?在公式

中,E Θ是否是电池反应达平衡时的电动势?K Θ

是否是电池中各物质都处于标准态时的平衡常数? 答:求算标准电动势E Θ的方法较多,常用的有: 公式 是由Δr G m Θ联系在一起,但E Θ和K Θ处在不同状态,E Θ

处在标准态,不是

平衡态(在平衡态时所有的电动势都等于零,因为Δr G m Θ等于零)。K Θ

处在平衡态,而不是标准态(在标准态时平衡常数都等于1)。

9.联系电化学与热力学的主要公式是什么?电化学中能用实验测定哪些数据?如何用电动势法测定下述各热力学数据?试写出所设计的电池、应测的数据及计算公式。

答:联系电化学与热力学的主要公式是:Δr G m =-zEF ,Δr G m Θ

=-zE Θ

F

电化学中用实验能测定E ,E Θ,

。用电动势法测定热力学数据的关键是能设计合适的电池,使电池反应就是所要求的反应,显然答案不是唯一的。现提供一个电池作参考。

(1).H 2O(1)的标准摩尔生成Gibbs 自由能Δf G m Θ

(H 2O,1);

电池:Pt|H 2(p H2) | H +或OH -(aq) | O 2(p O2)|Pt

净反应:H 2(p Θ) + 1/2O 2(p Θ

) = H 2O(l)

Δf G m Θ (H 2O,1)=-zE Θ

F

(2).H 2O(1)的离子积常数K Θ

;

电池:Pt|H 2(p H2)|H +(a H+)||OH -(a OH-)|H 2(p H2)|Pt 净反应:H 2O(l) ? H +(a H+) + OH -(a OH-)

(3)Hg 2SO 2(s)的活度积常数K sp Θ; 电池:Hg(l)|Hg 22+(a Hg22+)||SO 42-(a SO42-)|Hg 2SO 4(s)|Hg(l)

净反应:Hg 2SO 4(s) = Hg 22+(a Hg22+)+SO 42-(a SO42-)|

(4)反应Ag(s)+1/2Hg 2Cl 2(s)→AgCl(s)+Hg(1)的标准摩尔反应焓变 Δf H m Θ

电池:Ag(s)|AgCl(s)|Cl -(a Cl -)|Hg 2Cl 2(s)|Hg(l)

(Re )

(Re )ln B

Ox d v B Ox d B

RT a zF ??Θ=-∏

,,ln r m G RT E E E K zF zF ??Θ

ΘΘΘΘΘΘ

+-?=-=-=ln RT

E K z

F ΘΘ=exp W zE F K RT Θ

Θ

??= ?

??exp sp zE F K RT ΘΘ

??= ???p E T ??? ????

净反应:Ag(s)+1/2Hg 2Cl 2(s)→AgCl(s)+Hg(1)

Δr G m

Θ =-ZE Θ

F=Δr H m

Θ-T Δr S m Θ

(5).稀的HCI 水溶液中,HCl 的平均活度因子Y ±;

电池:Pt|H 2(p Θ

)|HCl(m)|AgCl(s)|Ag(s)

净反应:H 2(p Θ) + AgCl(s) = H +(a H +)+Cl -(a Cl -) +Ag(s)

(6)Ag 2O(s)的标准摩尔生成焓Δf H m Θ

和分解压。

电池:Ag(s)+Ag 2O(s)|OH-(a OH -)|O 2(p Θ

)|Pt

净反应:Ag 2O(s)→1/2O 2(p Θ

)+2Ag(s)

(7).反应Hg 2Cl 2(s)+H 2(g)→2HCl(aq)+2Hg(l)的标准平衡常数K a Θ

电池:Pt|H 2(p Θ

)|HCl(a HCl )|Hg 2Cl 2(s)|Hg(l)

(8).醋酸的解离平衡常数。

电池:Pt|H 2(p Θ)|HAc(mHAc),Ac -(m Ac -),Cl -(a Cl -)|AgCl(s)|Ag(s)

净反应:AgCl(s)+H 2(p Θ)→H +(a H +)+Cl -(a Cl -) +Ag(s)

10.当组成电极的气体为非理想气体时,公式Δr G m =-zEF 是否成立?Nernst 方程能否使用?其电动

势E 应如何计算?

答:因为是非理想气体,所以先计算电池反应的Δr G m , ,公式中代人

非理想气体的状态方程。然后根据Δr G m 与电动势的关系,计算电动势Δr G m =-zEF 公式和Nernst 方程能使用。

11.什么叫液接电势?它是怎样产生的?如何从液接电势的测定计算离子的迁移数?如何消除液接电势?用盐桥能否完全消除液接电势?

答:在两种含有不同溶质的溶液界面上,或者两种溶质相同而浓度不同的溶液界面上,存

r m

H =-zE F+zFT p

E T ΘΘ

Θ

??

?? ?

???212ln ln H Cl a a RT RT m E E E zF zF m a γ+-Θ

Θ±Θ????? ?=-=-? ?

?????

()221

2

,exp r m p f m r m

O p

E H zE

F zFT T H Ag O s H p zE F K

p RT ΘΘΘ

ΘΘ

ΘΘ

Θ????=-+ ?

????=-?????== ? ?

??

??

exp a

zE F K

RT ΘΘ??= ?

??

212

_

ln H Cl

H H

H H Ac a HAc

a a RT E E zF a m a m HAc H Ac a a K a +-+

++-

Θ

Θ+

Θ?

?? ?=- ??

?

=+?=

21r m G = p p Vdp

??

在着微小的电位差, 称为液体接界电势。产生的原因是由于离子迁移速率的不同而引起的。用盐桥只能使液接电势降到可以忽略不计,但不能完全消除。

12.根据公式 ,如果 为负值,则表示化学反应的等

压热效应一部分转变成电功(-zEF),而余下部分仍以热的形式放

出 。这就表明在相同的始终态条件下,化学反

应的Δr H m 按电池反应进行的焓变值大(指绝对值),这种说法对不对?为什么?

答:不对,H 是状态函数Δr H m 的值只和反应的始终态有关,而和反应的途径无关,不管反应经历的

是化学反应还是电池反应,始终态相同时Δr H m 值是相同的。但两种反应的热效应是不一样的。

第十章 电解与极化作用

r m

p

E H zE

F zFT T ΘΘΘ

??

??=-+ ????p E T ??? ?

???[0]

R p E zF T S Q T ???=?=< ????因为

第十一章

1.请根据质量作用定律写出下列基元反应的反应速率表示式(试用各种物质分别表示)。 (1)A+B=2P (2)2A+B=2P (3)A+2B=P+2S (4)2Cl+M=Cl 2+M

()[][][][][]1

2112d A d B d P r k A B dt dt dt

=-=-==()[][][][][]

22311222d A d B d P

r k A B dt dt dt

=-=-==()[][][][][][]2

3311322d A d B d P d S r k A B dt dt dt dt =-=-===()[][][][][][]2

243142d Cl d M d Cl d M r k Cl M dt dt dt dt =-

=-===

2.零级反应是否是基元反应?具有简单级数的反应是否一定是基元反应?反应Pb(C 2H 5)4= Pb+4C 2H 5,是否可能为基元反应?

零级反应不可能是基元反应,因为没有零分子反应。一般是由于总反应机理中的决速步与反应物的浓度无关,所以对反应物呈现零级反应的特点。零级反应一般出现在表面催化反应中,决速步是被吸附分子在表面上发生反应,与反应物的浓度无关,反应物通常总是过量的。

基元反应一定具有简单反应级数,但具有简单级数的反应不一定是基元反应,如H 2(g)+I 2(g)=2HI(g)是二级反应,但是一个复杂反应。

Pb(C 2H 5)4= Pb+4C 2H 5,不可能是基元反应。根据微观可逆性原理,正、逆反应必须遵循相同的途径。基元反应最多只有三分子反应,现在逆反应有五个分子,所以逆反应不可能是基元反应,则正反应也不可能是基元反应。

3.在气相反应动力学中,往往可以用压力来代替浓度,若反应aA →P 为n 级反应。式中k p 是以压

力表示的反应速率常数,p A 是A 的分压。所有气体可看作理想气体时,请证明k p =k c (RT)1-n

4.对于一级反应,列式表示当反应物反应掉1/n 所需要的时间t 是多少?试证明一级反应的转化率分别达到50%,75%,87.5%所需的时间分别为t 1/2,2t 1/2,3t 1/2。

5.对反应A 一P ,当A 反应掉3/4所需时间为A 反应掉1/2所需时间的3倍,该反应是几级反应?若当A 反应掉3/4所需时间为A 反应掉1/2所需时间的5倍,该反应是几级反应?请用计算式说

明。

aA P →[][]1n

c c

d A r k A a dt

==1n A p p A dp r k p a dt ==A 若为理想气体,则有[]A p A RT =[]1A d A dp dt RT dt

=[]111n A A c d A dp p k a dt a RT dt RT ??-=-= ???

1n

n

A A c p A dp p k RT k p a dt RT ??-== ?

??()1n p c k k RT -∴=对于一级反应,其定积分的一种形式为111

ln 1t k y

=-1=n 现在y ,则需要时间的表示式为111111ln ln 111n n n t k k n n

-==--

0.5y =当时,1211

112ln 2

ln =121t k k =-0.75y =当时,3412

11134ln 4

ln 2341t t k k ===-0.875y =当时,7812

11178ln8ln 3781t t k k ===-()()

111n

n a x a t k n ----=-1341,23,4a b a a =对于二级反应,当x=时,时间为t 当x=时,时间为t 代入上式()1212111221a a a t k ka

--??-- ???==

-

所以,对a=b 的二级反应,t 3/4 =3 t 1/2。同理,对a=b=c 的三级反应t 3/4 =5t 1/2。

6.某一反应进行完全所需时间是有限的,且等于c 0/k(c 0为反应物起始浓度),则该反应是几级反应? 零级

7.请总结零级反应、一级反应和二级反应各有哪些特征?平行反应、对峙反应和连续反应又有哪些特征?

零级反应:c A ~t 作图为直线,斜率为k 0,k 0的量纲为[浓度][时间]-1

,t 1/2=a/2k 0.

一级反应:lnc A ~t 作图为直线,斜率为-k 1, k 1的量纲为[时间]-1

,t 1/2=ln2//k 1.

二级反应:1/c A ~t 作图为直线,斜率为k 2, k 2的量纲为[浓度]-1 [时间]-1

, t 1/2= 1/ k 2a

8.某总包反应速率常数k 与各基元反应速率常数的关系为k=k 2(k 1/2k 4)1/2

,则该反应的表观活化能E a 和指前因子与各基元反应活化能和指前因子的关系如何?

9.某定容基元反应的热效应为100 kJ 2mol -1

,则该正反应的实验活化能E a 的数值将大于、等于

还是小于100 kJ 2mol -1,或是不能确定?如果反应热效应为-100 kJ2mol -1

,则E a 的数值又将如何?

对于吸热反应,E a 大于等于100 kJ 2mol -1

;对于放热反应,E a 值无法确定。

10.某反应的E a 值为190kJ2mol -1,加入催化剂后活化能降为136kJ2mol -1

。设加入催化剂前后指前因子A 值保持不变,则在773K 时,加入催化剂后的反应速率常数是原来的多少倍?

根据Arrhenius 经验式k=Ae (-Ea/RT)

,设加了催化剂的速率常数为k 2,未加催化剂的速率常数为k 1,代人相应的数据后相比,得

可见,加入催化剂可以明显地提高反应速率

11.根据van't Hoff 经验规则:"温度每增加10K ,反应速率增加2~4倍"。在298~308K 的温度区间内,服从此规则的化学反应之活化能值E a 的范围为多少?为什么有的反应温度升高,速率反而下降?

因为活化能的定义可表示为 E a =RT 2

(dlnk/dT)

当取温度的平均值为303K ,dlnk/dT=0.2时,E a =152.7kJ2mol -1

。同理,当dlnk/dT=0.4时,E=

305.3kJ2mol -1

。活化能大约处于这范围之内。

对于复杂反应,如果有一步放出很多热,大于决速步的活化能,或激发态分子发生反应,生成处于基态的生成物,表观上活化能是负值,所以有负温度系数效应,反应温度升高,速率反而下降。这种反应不多,一般与NO 氧化反应有关。

12.某温度时,有一气相一级反应A(g)→2B(g)+C(g),在恒温、恒容条件下进行。设反应开始时,各物质的浓度分别为a,b,c ,气体总压力为p 0,经t 时间及当A 完全分解时的总压力分别为p t 和p ∞,试推证该分解反应的速率常数为 ()12

1234

33421a a a t k ka

--?

?-- ???

==

-()1313

122

132312a a a t k ka --??-- ???==-()131334

23154312a a a t k ka --??-- ???==-()

,2,1,412a a a a E E E E =+-121242A A A A ??= ???()

(),2,121136190ln 8.4a a E E k k RT RT --=-=-=2

1

4458k k =0

1ln t

p p k t p p

∞∞-=-

A(g) → 2B(g) + C(g)

t=0 p 0 0 0 p 总= p 0 t=t p A =p 0-p 2p p p t =p 0+2p t=∞ 0 2p 0 p 0 p ∞=3p 0

r=-dp A /dt=k p p A

p A =p 0-p=1/3p ∞-1/2(p t -p 0)=1/3P ∞-1/2(p t -1/3p ∞) =1/2(p ∞-p t )

代入速率方程,进行定积分

式中k=1/2k p ,是表观速率常数。

13.已知平行反应A →B 和A→C 的活化能分别为E a,1、E a,2,且E a,1>E a,2,为提高B 的产量,应采取什么措施?

措施一:选择合适的催化剂,减小活化能E a,1,加快生成B 的反应;

措施二:提高反应温度,使k 1的增加量大于k 2的增加量,使B 的含量提高。

14.从反应机理推导速率方程时通常有哪几种近似方法?各有什么适用条件?

从反应机理推导速率方程时通常有稳定态法,控速步近似和平衡态假设。稳态法适用于反应历程涉及中间态产物反应活性高,在反应系统中的浓度很小的情况,控速步近似适用于当反应涉及几个步骤时,其中一步的速率比其它各步的速率小得多的场合,而平衡假设适用于其中一步比其它各步速率大,该反应涉及的物质的浓度可以认为是处于的平衡的浓度。

第十三章

1.比表面有哪能几种表示方法?表面张力与表面Gibbs 自由能有哪些异同点? 答:A 0= As/m 或A 0= As/V ;

表面张力又可称为表面Gibbs 自由能,二者数值一样。

但一个是从能量角度研究表面现象,另一个是从力的角度研究表面现象;故二者物理意义不同;单位不同。

2.为什么气泡、小液滴、肥皂泡等都呈圆形?玻璃管口加热后会变得光滑并缩小(俗称圆口),这些现象的本是什么?用同一滴管滴出相同体积的苯。水和NaCl 溶液,所得的液滴数是否相同 弯曲液面有附加压力,其最终会将不规则的液面变为圆形或球形; 球形表面积最小,表面自由能最低,最稳定; 不相同。

3.用学到的关于界面现角的知识解释以下几种做法或现象的基体原理:①人工降雨;②有机蒸馏中加沸石;③多孔固体吸附蒸气时的毛细凝聚; ④过饱和溶液,过饱和蒸气,过冷液体等过饱和现象; ⑤重量分析中的“陈化” 过程;⑥喷洒农药时,为何常常在农药中加入少量表面活性剂 这些现象都可以用开尔文公式说明,①、 ②、 ④、 ⑤是新相刚形面时的体积小,曲率半径小,对与之平衡的旧相有更加苛刻的条件要求。③多孔固体吸附蒸气时,被吸附的气体的液相对毛细管是润湿的,其曲率半径小零,当气体的分压小于其饱和蒸气压时,就可以发生凝聚。⑥喷洒农药时,在农药中加入少量表面活性剂,可以降低药液的表面张力,使药液在叶面上铺展。

4.在三通活塞的两端涂上肥皂液,关断右端通路,在左端吹一个大泡,然后关闭左端,在右端吹一个小泡,最后让左右两端相通。试问当将两管接通后,两泡的大小有何变化?到何时达到平衡?讲出变化的原因及平衡时两泡的曲率半径的比值。

0012t p p t A p p p A dp k dt

p ∞∞---=??

01ln t p p k t p p ∞∞-=-

小球更小,大球更大;

最后小泡变成一个与大泡曲率半径相同的弧;

由于小泡的附加压力大,所以大泡变大,小泡变小,最后使两泡的曲率半径相同

5.因系统的Gibbs自由能越低,系统越稳定,所以物体总有降低本身表面Giibs自由能的趋势。请说说纯液体、溶液、固体是如何降低自己的表面Gibbs自由能的。

纯液体:缩小液体表面积;

溶液:表面与本相中溶质的浓度不同;

固体:吸附作用。

6.为什么小晶粒的熔点比大块固体的熔点低,而溶解度却比大晶粒大?

根据开尔文公式

由于表面张力的存在,小晶粒的附加压力大,它的化学势相对较高,所以小晶粒的熔点比大块固体的熔点低,而溶解度却比大晶粒大。

7.若用CaCO3(s)进行热分解,问细粒CaCO3(s)的分解压(p1)与大块的CaCO3(s)分解压(p2)原相比,两者大小如何?试说明为什么?

答:小颗粒的CaCO3分解压大。因为小粒的附加压力大,化学势高。

8.设有内径一样大的a、b、c、d、 e、 f管及内径比较大的g管一起插入水中(如图所示),除f内壁涂有石蜡外,其余全是洁净的玻璃管,若a管内液面升高为h,试估计其余管内的水面高度?若先将水在各管内(c, d管除外)都灌到h的高度,再让其自动下降,结果又如何?

b 管垂直高度为 h,

c 管调整表面曲率半径但不溢出,

d 管不溢出,

e 管高度为到扩大部分为止,但上去后不会下降仍然为 h

f 管将下降为凸液面,

g 管为 1/n倍h。

9.把大小不等的液滴(或萘粒)密封在一玻璃罩内,隔相当长时间后,估计会出现什么现象?

小液滴消失,大液滴更大。弯曲液面所产生的附加压力将使液体在以小液滴形式分散存在时比大量聚集存在时具有更大的饱和蒸气压。

10.为什么泉水和井水都有较大的表面张力?当将泉水小心注入干燥杯子时,水面会高出杯面,这是为什么?如果在液面上滴一滴肥皂液,会出现什么现象?

因为泉水和井水溶有较多的离子,根据溶质对表面张力的影响规律,有较大的表面张力;当将泉水小心注入干燥杯子时,水面会高出杯面,这是因为水的表面张力的收缩作用。如果在液面上滴一滴肥皂液,液面将降低。

11.为什么在相同的风力下,和海面的浪比湖面大?用泡沫护海堤的原理是什么?

(1)海水中有大量盐类,表面张力比湖水大,可以形成较大的浪花(如较大的表面张力液滴大)。(2)形成泡沫的物质可以使水的表面张力降低,水的凝聚力减小,对堤坝的冲击力降低。

12.如果某固体的大粒子(半径为R1')在水中形成饱和溶液的浓度为c1,微小粒子(半径为R2')在水中形成饱和溶液的浓度为c2,固—液界面张力为γs-l .试证明饱和溶液浓度与曲率半径的关系式为

式中M 为该固体的摩尔质量, 为其密度

大粒子与其溶液成平衡时 小粒子与其溶液成平衡时

两溶液的化学势之差

两粒子的化学势之差

13.什么叫表面压?如何测定它?它与通常的气体压力有何不同?

表面压为纯水的表面张力与膜表面张力之差。可以用膜天平进行测定;与通常的气体压力不同的是它是二维压力。

14.接触角的定义是什么?它的大小受哪些因素影响?如何用接触角的大小来判断液对固体的润湿情况?

接触角为在气液固三相交接处,气-液界面与固-液界面 之间的夹角,其大小由三种界面张力的相对大小决定;

接触角为零 ,液体在固体表面 铺展 , 小于 90°液体能润湿固体, 大于 90°,不能润湿。

15.表面活性剂的效率和能力有何不同?表面活性剂有哪些主要作用?

表面活性剂的效率:使水的表面张力下降到一定值时所需表面活性剂浓度。 表面活性剂的能力:表面活性剂能使水的表面张力下降的程度(又称有效值),两种数值常常相反。 表面活性剂有润湿、气泡、乳化、增溶、洗涤作用。

16.什么叫吸附作用?物理吸附与化学吸附有何异同点?两者的根本区别是什么? 固体的表面有剩余的力场,使气体分子可以在固体的表面相对的浓集,这种作用中吸附作用。P369。 二者的根本区别在于吸附力的不同。

17.为什么气体吸附在固体表面一般是放热的?而确有一些气-固吸附是吸热的(H 2(g)如在玻璃上的吸附),如何解释现象?

由于吸附总是自发过程,故△G <0,气体在固体表面被吸附,固体不变,体系△S <0,在等温下,由△H = △G +T △S ,可推△H <0,故吸附一般放热。当有气体原子解离发生时有化学键的改变,使有些化学吸附的熵变大于零,这样吸热吸附的情况下,也可以使ΔG 小于零。 18.试说明同一个气固相催化反应,为何在不同的压力下表现出不同的反应级数?请在符合Langmuir 吸附假设的前提下,从反应物和产物分子的吸附性,解释下列实验事实:① NH 3(g)在金属钨表面的分解呈零级数反应的特点;②N 2O(g)在金表面的分解是一级反应; ③H 原子在金表面的复合是二级反应;④ NH 3(g)在金属钼的分解速率由于N 2(g)的吸附而显著降低,但尽管表面被N 2(g)所饱和,但速率不为零。

由于系统压力大小决定反应物在催化剂 表面的吸附快慢与强弱,因而决定反应速度,体现在速率方程上,就是反应级数不同。

?

???

??-=-'1'2

12112ln R R RT M c c l s ρ

γ()

()θ

θ

μμc c RT p T s p T s 1,,1ln ,,+=()

()θθ

μμc c RT p T s p T s 2,,2ln ,,+=1

2

ln c c RT '

2R M

l g ργ-???

? ??-=-'1'212112ln R R RT M c c l s ργ

①由于反应物在表面的吸附很强,在分压很小时,达到饱和吸附,反应速率与分压无关;②N2O(g)在金表面的吸附较弱,其分解呈一级反应;③H原子在金表面的吸附为弱吸附,复合时被吸附H的和气相H的反应而复合,是二级反应;④ N2(g) 在在金属钼表面的吸附为强吸附,可以形成饱和吸附,但即是饱和吸附时,仍有NH3的吸附,NH3分解速率不为零

19.为什么用吸附法测定固体比表面时,被吸附蒸气的比压要控制在0.05~0.35之间?BET吸附公式与Langmuir吸附公式有何不同?试证明BET公式在压力很小时(即时p<

因为压力过小时,建立不起来多层吸附平衡,在压力过大时,可能产生毛细管凝聚,吸附量不代表多层吸附平衡时固体表面所对应的吸附量。BET吸附公式与Langmuir吸附公式都是理想的吸附公式,而Langmuir吸附公式是单层吸附公式,BET公式是多层吸附公式。

20.如何从吸附的角度来衡量催化剂的好坏?为什么金属镍既是好的加氢催化剂,又是好的脱氢催化剂?

良好的催化剂应该具有适中的吸附与脱附性能。催化剂的活性与反应物在固体表面的吸附强度有关,只有合适的吸附强度,其催化活性才大。催化剂即可以加速正向反应,又能加速逆向反应,所以金属镍既是好的加氢催化剂,又是好的脱氢催化剂

第十四章

1.用As

2S

3

与略过量的H

2

S制成的硫化砷As

2

S

3

溶胶,试写出其胶团的结构式。用FeCl

3

在热水中水解来制备Fe(OH)

3溶胶,试写出Fe(OH)

3

溶胶的胶团结构。

H

2

S是弱酸,考虑它做一级电离:

[(As2S3)m2nHS-2(n-x)H+]x-2xH+ {[Fe(OH)3]m2nFeO+2(n-xCl-)}x+2xCl-

2.在以KI和AgNO

3为原料制备溶胶时,或者使KI过量,或者使AgNO

3

过量,两种情况制

得的AgI溶胶的胶团结构有何不同?胶核吸附稳定离子时有何规律?

使KI过量时,胶团带负电,AgNO

3

过量时,胶团带正电。按照法杨斯规则,能和胶核形中离子成不溶物的离子优先被吸咐。

3.胶粒发生Brown运动的本质是什么?这对溶胶的稳定性有何影响?

胶粒发生Brown运动的本质是溶剂分子的无规则运动和溶剂分子对胶粒的不断碰撞。 Brown运动一方面可以使溶胶稳定,另一方面过于剧烈或过于缓慢的Brown运动会使溶胶聚沉。

4.Tyndall效应是由光的什么作用引起的?其强度与入射光的波长有什么关系?粒子大小范围在什么区间内可以观察到Tyndall效应?为什么危险信号要用红灯显示?为什么早霞、晚霞的色彩特别鲜艳?

Tyndall效应是由光的散射作用引起的,其强度与入射光波长的四次方成反比。当粒子的尺度落在胶粒的范围内时,可以观察到Tyndall效应。危险信号要用红灯显示是因为红光的波长长,不易被空气中的尘粒子反射,早晨和晚上时,空气中的湿度大,水蒸气的液珠对阳光的红光产生了散射作用。

5.电泳和电渗有何异同点?流动电势与沉降电势有何不同?这些现象有什么应用?

电泳是在电场的作用下,胶粒相对于介质移动,而电渗是在电场作用下,介质相对于胶粒移动。流动电势是介质相对于胶粒移动产生电场,而沉降电势是由于胶粒相对于介质移动产生电场。这些现象在实践中有重要应用(可参考相关书籍)

6.在由等体积的0.08 mol2dm-3的KCl和0.10 mol2dm-3的AgNO3溶液制成的AgI溶胶

中,分别加入浓度相同的下述电解质溶液,请由大到小排出其聚沉能力的大小的次序。

(1)NaCl; (2)Na

2SO

4

; (3)MgSO

4

; (4)K

3

[Fe(CN)

6

]

(4)>(2)>(3)>(1)

7.在两个充有0.001mol2dm-3KCl溶液的容器之间放一个AgCl晶体组成的多孔塞,其细孔道中也充满了KCl溶液,在多孔塞两侧入两个接直流电源的电极,问通电时,溶液将向哪一方向移动?若改用0.01mol2dm-3 KCl的溶液,在相同外加电场中,溶液流动速度是变快还是变慢?若用AgNO

3

溶液代替原来的KCl溶液,情形又将如何?

充以KCl溶液,AgCI晶体吸附Cl-离子,介质带正电,介质向负极移动。若改用0.01mol2dm-3KCl的溶液,ζ电势下降,介质移动速度变慢。改用AgNO3溶液,移动方向相反,但增加AgNO3,溶液浓度也使运动速度变慢。

8.大分子溶液和(憎液)溶胶有哪些异同点?对外加电解质的敏感程度有何不同?

本题答案P454

9.大分子化合物有哪几种常用的平均摩尔质量?这些量之间的大小关系如何?如何利用渗透压法较准确地测定蛋白质(不在等电点时)的平均摩尔质量?

大分子化合物的平均摩尔质量有:数均摩尔质量,质均摩尔质量,Z均摩尔质量。一般来说,大分子化合物的分子大小不均匀,三种平均值的大小为:P458可以利用渗透压公式P459(14.28)

10.试解释①江河入海处,为什么常形成三角洲?②加明矾为何能使混浊的水澄清?③使用不同型号的墨水,为什么有时会使钢笔堵塞而写不出来?④重金属离子中毒的病人,为什么喝了牛奶可使症状减轻?⑤做豆腐时“点浆”的原理是什么?哪些盐溶液可以用来点浆?⑥常用的微球形硅胶和做填充料的玻璃珠是如何制备的?用了胶体和表面化学的哪此原理?请尽可能多地列举出日常生活中遇到的有关胶体的现象及其应用。

①因为江河水中常含有较多的泥砂,入海口处,和含有大量盐份的海水混合而沉淀,日积月累,形在三角洲。②加明矾到水中,会形成氢氧化铝溶胶,它正电,而由泥土形成的溶胶带负电,不同电性的溶胶混合,会相互聚沉,使混浊的水澄清。③不同型号的墨水,有时会带有不同的电荷,相互混合会发生聚沉作用。④重金属离子对金属离子有聚沉作用,这样,重金属离子和牛奶中的蛋白质颗粒结合形成沉淀,中毒的病人,为什么喝了牛奶可使症状减轻?⑤做豆腐时“点浆”的原理是加入电解质使豆浆中的蛋白质颗粒相互聚沉而制成豆腐,哪些对人体无不良作用的,并不会产生特殊味道的盐溶液可以用来点浆。

11.憎液溶胶是热力学上的不稳定系统,但它能在相当长的时间内稳定存在,试解释原因?

憎液溶胶是热力学上的不稳定系统,但由于胶粒的布朗运动和胶粒之间产生的双电层斥力,使胶粒之间难以结合而产生聚沉,这就是溶胶稳定性的原因。Brown运动、ζ电势和离子化膜等主要因素。

12.试从胶体化学的观点解释,在进行重量分析时为了使沉淀完全,通常要加入相当数量的电解质(非反应物)或将溶液适当加热。

加入过量的电解质,可以使胶粒的电动电位降低,使溶胶易于聚沉;加热使胶粒的热运动更加剧烈,使胶粒碰撞时可以克服它们之间的热垒,从而结合而聚沉。

13.何谓乳状液?有哪此类型?乳化剂为什么能使乳状液稳定存在?通常鉴别乳状液类型有哪些方法?其根据是什么?何谓破乳,何谓破乳剂?有哪些常用的破乳方法?

将一种液体分散到另一种与之不相溶的液体之中形成的系统;乳状液分为水(O/W)和油包水(W/O)两种类型;乳化剂可以增大两个液珠相互聚合的阻力,可以使乳状液稳定存在;根据连续相可以和同类的液体相溶合的性质,可以用稀释法,染色法等鉴别乳状液的类型;使乳状液破坏的过程称为破乳;少量即可以使乳状液破坏的物质称为破

乳剂;常用的破乳方法有加热法,过滤法和破乳剂破乳法等

14.凝胶中分散相和颗粒相互联结形成骨架,按其作用力不同可同分为哪几种?各种的稳定性如何?什么是触变现象?

按其作用力不同,凝胶可以分为弹性凝胶和刚性凝胶,弹性凝胶分散介质的脱除和吸收具有可逆性,刚性凝胶则没有可逆性。触变现象是溶胶与凝胶相互转化的现象。

北京理工大学物理化学A(南大版)上册知识点总结

物理化学上册公式总结 第一章.气体 一、理想气体适用 ①波义耳定律:定温下,一定量的气体,其体积与压力成反比 pV=C ②盖·吕萨克定律:对定量气体,定压下,体积与T成正比 V t=C`T ③阿伏伽德罗定律:同温同压下,同体积的各种气体所含分子数相同。 ④理想气体状态方程式 pV=nRT 推导:气体体积随压力温度和气体分子数量改变,即: V=f(p,T,N) 对于一定量气体,N为常数dN=0,所以 dV=(?V/?p)T,N dp+(?V/?T)p,N dT 根据波义耳定律,有V=C/P,∴(?V/?p)T,N=-C/p2=-V/p 根据盖·吕萨克定律,V=C`T,有(?V/?T)p,N=C`=V/T 代入上式,得到 dV/V=-dp/p+dT/T 积分得 lnV+lnp=lnT+常数

若所取气体为1mol,则体积为V m,常数记作lnR,即得 pV m=RT 上式两边同时乘以物质的量n,则得 pV=nRT ⑤道尔顿分压定律:混合气体的总压等于各气体分压之和。 ⑥阿马格分体积定律:在一定温度压力下,混合气体的体积等于组成该气体的各组分分体积之和。 ⑦气体分子在重力场的分布 设在高度h处的压力为p,高度h+dh的压力为p-dp,则压力差为 dp=-ρgdh 假定气体符合理想气体状态方程,则ρ=Mp/RT,代入上式, -dp/p=Mgdh/RT 对上式积分,得lnp/p0=-Mgh/RT ∴p=p0exp(-Mgh/RT) ρ=ρ0exp(-Mgh/RT)或n=n0exp(-Mgh/RT) 二、实际气体适用 ①压缩因子Z Z=pV m/RT 对于理想气体,Z=1,对实际气体,当Z大于1,表明同温度同压力下,实际气体体积大于理想气体方程计算所得结果,即实际气体的可压缩性比理想气体小。当Z小于1,情况则相反。 ②范德华方程式

天津大学版物理化学复习提纲

物理化学复习提纲 一、 热力学第一定律 1. 热力学第一定律:ΔU = Q -W (dU=δQ -δW ,封闭体系、静止、无 外场作用) *热Q,习惯上以系统吸热为正值,而以系统放热为负值;功W ,习惯上以系统对环境作功为正值,而以环境对系统作功为负值。 **体积功 δW=(f 外dl =p 外·Adl )=p 外dV=nRT ?21/V V V dV =nRTlnV 2/V 1=nRTlnp 1/p 2 2. 焓:定义为H ≡U+pV ;U ,H 与Q ,W 区别(状态函数与否?) 对于封闭体系,Δ H= Qp, ΔU= Qv, ΔU= -W (绝热过程) 3. Q 、W 、ΔU 、ΔH 的计算 a. ΔU=T nCv.md T T ?21= nCv.m(T 2-T 1) b. ΔH=T nCp.md T T ?21= nCp.m(T 2-T 1) c. Q :Qp=T nCp.md T T ?21;Qv=T nCv.md T T ?2 1 d. T ,P 衡定的相变过程:W=p (V 2-V 1);Qp=ΔH=n ΔH m ;ΔU=ΔH -p(V 2-V 1) 4. 热化学 a. 化学反应的热效应,ΔH=∑H(产物)-∑H (反应物)=ΔU+p ΔV (定压反应) b. 生成热及燃烧热,Δf H 0m (标准热);Δr H 0m (反应热)

c. 盖斯定律及基尔戈夫方程 [G .R.Kirchhoff, (?ΔH/?T)=C p(B) -C p(A)= ΔCp] 二、 热力学第二定律 1. 卡诺循环与卡诺定理:η=W/Q 2=Q 2+Q 1/Q 2=T 2-T 1/T 2,及是 (Q 1/T 1+Q 2/T 2=0)卡诺热机在两个热源T 1及T 2之间工作时,两个热源的“热温商”之和等于零。 2. 熵的定义:dS=δQr/T, dS ≠δQir/T (克劳修斯Clausius 不等式, dS ≥δQ/T ;对于孤立体系dS ≥0,及孤立系统中所发生任意过程总是向着熵增大的方向进行)。 熵的统计意义:熵是系统混乱度的度量。有序性高的状态 所对应的微观状态数少,混乱度高的状态所对应的微观状态数多,有S=kln Ω, 定义:S 0K =0, 有 ΔS=S (T)-S 0K =dT T Cp T ??/0 3. P 、V 、T 衡时熵的计算: a. ΔS=nRlnP 1/P 2=nRlnV 2/V 1(理气,T 衡过程) b. ΔS=n T T nCp.md T T /21?(P 衡,T 变) c. ΔS=n T T nCv.md T T /21?(V 衡,T 变) d. ΔS=nC v.m lnT 2/T 1+ nC p.m lnV 2/V 1(理气P 、T 、V 均有变化时) 4. T 、P 衡相变过程:ΔS=ΔH 相变/T 相变 5. 判据: a. ΔS 孤{不能实现可逆,平衡不可逆,自发 00 0?=? (ΔS 孤=ΔS 体+ΔS 环, ΔS 环=-Q 体/T 环)

大学物理化学下册(第五版傅献彩)知识点分析归纳-(1)

第八章电解质溶液

、 第九章 1.可逆电极有哪些主要类型每种类型试举一例,并写出该电极的还原反应。对于气体电极和氧化还原电极在书写电极表示式时应注意什么问题 答:可逆电极有三种类型: (1)金属气体电极如Zn(s)|Zn2+ (m) Zn2+(m) +2e- = Zn(s) (2)金属难溶盐和金属难溶氧化物电极如Ag(s)|AgCl(s)|Cl-(m),AgCl(s)+ e- = Ag(s)+Cl-(m) (3)氧化还原电极如:Pt|Fe3+(m1),Fe2+(m2) Fe3+(m1) +e- = Fe2+(m2) 对于气体电极和氧化还原电极,在书写时要标明电极反应所依附的惰性金属。 》 2.什么叫电池的电动势用伏特表侧得的电池的端电压与电池的电动势是否相同为何在测电动势时要用对消法 答:正、负两端的电势差叫电动势。不同。当把伏特计与电池接通后,必须有适量的电流通过才能使伏特计显示,这样电池中发生化学反应,溶液浓度发生改变,同时电池有内阻,也会有电压降,所以只能在没有电流通过的情况下才能测量电池的电动势。 3.为什么Weslon标准电池的负极采用含有Cd的质量分数约为~的Cd一Hg齐时,标准电池都有稳定的电动势值试用Cd一Hg的二元相图说明。标准电池的电动势会随温度而变化吗答:在Cd一Hg的二元相图上,Cd的质量分数约为~的Cd一Hg齐落在与Cd一Hg固溶体的两相平衡区,在一定温度下Cd一Hg齐的活度有定值。因为标准电池的电动势在定温下只与Cd一Hg 齐的活度有关,所以电动势也有定值,但电动势会随温度而改变。 4.用书面表示电池时有哪些通用符号为什么电极电势有正、有负用实验能测到负的电动势吗

大学物理化学知识点归纳只是分享

大学物理化学知识点 归纳

第一章 气体的pvT 关系 一、 理想气体状态方程 pV=(m/M )RT=nRT (1.1) 或pV m =p (V/n )=RT (1.2) 式中p 、V 、T 及n 的单位分别为P a 、m 3、K 及mol 。V m =V/n 称为气体的摩尔体积,其单位为m 3·mol 。R=8.314510J ·mol -1 ·K -1称为摩尔气体常数。 此式适用于理想,近似于地适用 于低压下的真实气体。 二、理想气体混合物 1.理想气体混合物的状态方程 (1.3) pV=nRT=(∑B B n )RT pV=mRT/M mix (1.4) 式中M mix 为混合物的摩尔质量,其可表示为 M mix def ∑B B y M B (1.5) M mix =m/n= ∑B B m /∑B B n (1.6) 式中M B 为混合物中某一种组分B 的摩尔质量。以上两式既适用于各种混合气体,也适用于液态或固态等均匀相混合系统平均摩尔质量的计算。 2.道尔顿定律 p B =n B RT/V=y B p (1.7) P=∑B B p (1.8) 理想气体混合物中某一种组分B 的分压等于该组分单独存在于混合气体的温度T 及总体积V 的条件下所具有的压力。而混合气体的总压即等于各组分单独存在于混合气体的温度、体积条件下产生压力的总和。以上两

式适用于理想气体混合系统,也近似适用于低压混合系统。 3.阿马加定律 V B * =n B RT/p=y B V (1.9) V=∑V B * (1.10) V B *表示理想气体混合物中物质B 的分体积,等于纯气体B 在混合物的温度及总压条件下所占有的体积。理想气体混合物的体积具有加和性,在相同温度、压力下,混合后的总体积等于混合前各组分的体积之和。以上两式适用于理想气体混合系统,也近似适用于低压混合系统。 三、临界参数 每种液体都存在有一个特殊的温度,在该温度以上,无论加多大压力,都不可能使气体液化,我们把这个温度称为临界温度,以T c 或t c 表示。我们将临界温度T c 时的饱和蒸气 压称为临界压力,以p c 表示。在临界温度和临界压力下,物质的摩尔体积称为临界摩尔体积,以V m,c 表示。临 界温度、临界压力下的状态称为临界 状态。 四、真实气体状态方程 1.范德华方程 (p+a/V m 2)(V m -b)=RT (1.11) 或(p+an 2/V 2)(V-nb)=nRT (1.12) 上述两式中的a 和b 可视为仅与气体种类有关而与温度无关的常数,称为范德华常数。a 的单位为Pa ·m 6 ·mol ,b 的单位是m 3mol.-1。该 方程适用于几个兆帕气压范围内实际气体p 、V 、T 的计算。 2.维里方程 Z(p ,T)=1+Bp+Cp+Dp+… (1.13) 或Z(V m, ,T)=1+B/V m +C /

物理化学第五版(傅献彩)课后习题答案

第九章可逆电池的电动势及其应用 L写出下列电池中各电极的反应和电池反应* (I)PtI ?( P fh) I HCKa)ICb (Ao2)IPtJ ⑵Pt∣?(?1)∣H+?H+)ll ?+(α?÷)∣?(s)F ¢3)AgCS)I AgKS)Ir Ca I) |! CΓ(αcl-) !AgClCs) I AgCs) t (4)Pb(s) SPbSO. (S) I SOrs喊-)IleV+ (‰2+ ) !Cu(s)l ⑸PrIHF 5? ) I N a OHC C) ∣ HgCX S)∣ Hg⑴丰 (6)Ptl H2(p ti2)∣H 十(aq) ∣S?O?(s)∣ Sb(S)( (7)Pt∣F√+U1),Fe2+?) H Ag+ωA r+) IAg(S)J (5)Na(Hg) (?fti)∣ N才(业十))1 OH- (Om- ) I HgO(S) J Hg(I). 解:⑴负极已@屯)一*2HtaH十>+滋— 正极α(∕>α2)÷2e-—2CΓ) 电池反应?( P Hf)÷Cl3)≡≡2HCKaq). (2)负极H2<∕>H3*2H+G H+)÷2e^ 正扱 2Ag+CΛAS÷)÷2e~-2A e(S) 电池反应 HI P H2 ) + 2?+¢^+ )—2AgCs)+2H+C AH÷}. (3)负极Ag(s)÷I-(αc )— AgKs) +e- 正极 AgCKS)+ e-→A ft(s)+Cr Ca Q-) 电池反应AgCKS)+ Γ(如亠)一AgKS)+ CΓ(απ-)4 (4)负极 Pb(s)+SOJ- (dsoj- )—>PbS(Λ (s)÷2^ 正极 Cu2^," (acu?+ )+2e-—CU(S) 电池反应 Pb(s) ÷Cu3+ GI c?+ ) + SC?^ Cαst?- )=PbSCΛ (s)+Cu∞. (5)负极H2C^R P÷2□H'C?IH- )—→2H s O(D + 2e- ' 正极 HgCXS)+ H2O(I)÷2e~—20H" + 6H÷>÷6e^— 2Sb(s) +3H2Od) 电池反应3H√ P H2) ÷S?C? (S)—2Sb(S) ÷3H s O(I)i (C负扱 Fp (直)一 F尹 3)十L 正极 Ag- (d j?+ ) + e-'― Ag(S) 电池反应 Fe2+ (fl≡) + Ag+(α?r+I=F旷(÷ Ag(s)r 住)负扱 2N?(Hg)(flβπι)-→2Na+ (?泌)+ 2HgU)÷2e~ 正极 HgCxS) ÷H2OCD+ Se^—HgCl)+ 2OH^ <αO H- > 电池反应 2Na(Hg)Cd,m) + HgOCS)÷H20

大学物理化学知识点归纳

第一章气体的pvT关系 一、理想气体状态方程 pV=(m/M)RT=nRT (1.1) 或pV m =p(V/n)=RT (1.2) 式中p、V、T及n的单位分别为 P a 、m3、K及mol。V m =V/n称为气 体的摩尔体积,其单位为m3·mol。R=8.314510J·mol-1·K-1称为摩尔气体常数。 此式适用于理想,近似于地适用于低压下的真实气体。 二、理想气体混合物 1.理想气体混合物的状态方程(1.3) pV=nRT=(∑ B B n)RT pV=mRT/M mix (1.4) 式中M mix 为混合物的摩尔质量,其可表示为 M mix def ∑ B B y M B (1.5) M mix =m/n=∑ B B m/∑ B B n (1.6) 式中M B 为混合物中某一种组分B 的摩尔质量。以上两式既适用于各种 混合气体,也适用于液态或固态等均 匀相混合系统平均摩尔质量的计算。 2.道尔顿定律 p B =n B RT/V=y B p (1.7) P=∑ B B p (1.8) 理想气体混合物中某一种组分B 的分压等于该组分单独存在于混合气 体的温度T及总体积V的条件下所具 有的压力。而混合气体的总压即等于 各组分单独存在于混合气体的温度、 体积条件下产生压力的总和。以上两 式适用于理想气体混合系统,也近似 适用于低压混合系统。

3.阿马加定律 V B *=n B RT/p=y B V (1.9) V=∑V B * (1.10) V B *表示理想气体混合物中物质B 的分体积,等于纯气体B在混合物的温度及总压条件下所占有的体积。理想气体混合物的体积具有加和性,在相同温度、压力下,混合后的总体积等于混合前各组分的体积之和。以上两式适用于理想气体混合系统,也近似适用于低压混合系统。 三、临界参数 每种液体都存在有一个特殊的温度,在该温度以上,无论加多大压力,都不可能使气体液化,我们把 这个温度称为临界温度,以T c 或t c 表 示。我们将临界温度T c 时的饱和蒸气 压称为临界压力,以p c 表示。在临界温度和临界压力下,物质的摩尔体积 称为临界摩尔体积,以V m,c 表示。临 界温度、临界压力下的状态称为临界 状态。 四、真实气体状态方程 1.范德华方程 (p+a/V m 2)(V m -b)=RT (1.11) 或(p+an2/V2)(V-nb)=nRT (1.12) 上述两式中的a和b可视为仅与 气体种类有关而与温度无关的常数, 称为范德华常数。a的单位为Pa·m 6·mol,b的单位是m3mol.-1。该方 程适用于几个兆帕气压范围内实际气 体p、V、T的计算。 2.维里方程 Z(p,T)=1+Bp+Cp+Dp+… (1.13) 或Z(V m, ,T)=1+B/V m +C / V m 2 +D/ V m 3 +… (1.14)

物理化学傅献彩下册第五版课后习题答案

物理化学傅献彩下册第五版课后习题答案 第九章可逆电池的电动势及其应用 1.写出下列电池申各电极的反应和电池反应. ⑴Pt] H2(如)| HCKa) ICfc 伽)1 Ph ⑵Pt I H(P H2) I H十(亦)|| Ag+g )iAg(s)( (3)Ag(s) | AgKs) I r (m> I Cl^ Cflo- )! AgCUQI Ag(ah (4)Pb(s) |PbSO4(s>ISOJ- ) || Crf+(心+)|Cu? ⑸Ft IH,〔见)| NaOH(^) \ HgO(s) | HgtD ;(€)Pt|Hj(^)|H+(aq)|SbiQ t(s)|Sb(s)v (7}Pi|Fe3+(ai)t Fe z+(G2)|| Ag+也屮} | A飢小(8)Na(Hg)(a^)|Na^(^+)l| 0^(^- 解:d)负极H’(p吗)—2H+Sf )+2h 正极Ct (pcu > + 2e~ —2Cr ) 电池反应Hi(卫%}+CU如—2HCl(aq). H3(M I2)一2H+(a H+ )十2厂正极2Ag^ (心>+2e_—2Ag(s) 电池反应 H;( pH2)+ 2A fi*(o^)—2Ag(5)+2H+(fl H* 1 (3〉负极Ag(s)+P (ar )― Agl(s)+e- 正极Afi€l(s) + ^― A H QI+CI—(他-)

电池反应AgCKB)+ r< ar >—Agl(s)+ cr (财- (4)负极Fb(Q + SOT a错- )一-PbS(^— *2H f CKD+2e" ' jE极HgOC S) + H£0(D + 3e-― 2OH-(a tyH-) + Hg(l> 电池反应出(他^+HgO?—Hg⑴+ HtCKB (6)负极3H r(^ )― 6H+〔耐+ )+6丁 正扱Sb s Oi(s) + 6H+(a H* ) + 6e_—^2Sb(s)+3H20( 1) 电池反应3Hj( p li?)O(s)—2Sb(s) +30( 1). ― 2Na+) + 2Hg(L)+2e' 正极HgO(3) + H i O(D+Z< 一Hg(D+2OH- ) 电池反应2Na( Hg)(a….) + HgO( s) + H a0(D—2Na+ (a^+ )-h20H~ - J + 3Hg(D. 2+试将下述化学反应设卄成电池. (1)AgCKs)—Ag l(QA.+ ) + Cl-(aa~ )t (2)AgCl(s) + r—t(s)+2Cr(=^H+@n+)+OH- (aw-)申 ⑻ MQ +扣? + H$O(D—Mg(0H)t } Cr (jacr)I AgCl<3)| Ag | Ag(s) (5)Pt|Ht|H+(oH+ >ia(?>|Pt (s) | r Car) II Cl (如r > | Ct (g) | Pt 3.从就和WeMon电池的电动勢与温度的关系式.试求在Z98.15 K.当电池可逆地产生2 mol电子的电荷秋时■电池反应的氏44砒,和已知谏关系为 E/V-L018 45-4. 05X10^(77K-298L 15)f 5X 10_f (T/K-293.15)1 H;由E的芜蔡式求岀(需)/冉求出观15 K时 E的值. 伺为;dG? = —=EF;氏Hm=ArGt+T ?'久*

华南理工大学物理化学复习提纲I.doc

物理化学复习提纲(I) (华南理工大学物理化学教研室) 第1章热力学第一定律与热化学 第2章热力学第二定律 第5章多组分系统热力学 第3章化学平衡 第六章相平衡 第七-十二章 第1章热力学第一定律与热化学 一、重要概念 系统与环境,隔离系统,封闭系统,(敞开系统),广延量(加和性:V,U,H,S,A,G),强度量(摩尔量,T,p),功,热,内能,焓,热容,状态与状态函数,平衡态,过程函数(Q,W),可逆过程,节流过程,真空膨胀过程,标准态,标准反应焓,标准生成焓,标准燃烧焓 二、重要公式与定义式 1. 体积功:δW= -p外dV 2. 热力学第一定律:?U = Q+W,d U =δQ +δW 3.焓的定义:H=U + pV 4.热容:定容摩尔热容C V,m = δQ V /dT = (?U m/?T )V 定压摩尔热容C p,m = δQ p /dT = (?H m/?T )P 理性气体:C p,m- C V,m=R;凝聚态:C p,m- C V,m≈0 理想单原子气体C V,m =3R/2,C p,m= C V,m+R=5R/2 5. 标准摩尔反应焓:由标准生成焓?f H Bθ (T)或标准燃烧焓?c H Bθ (T)计算 ?r H mθ = ∑v B?f H Bθ (T) = -∑v B?c H Bθ (T) 6. 基希霍夫公式(适用于相变和化学反应过程) ?r H mθ(T2)= ?r H mθ(T1)+?2 1 T T?r C p,m d T

7. 恒压摩尔反应热与恒容摩尔反应热的关系式 Q p-Q V = ?r H m(T) -?r U m(T) =∑v B(g)RT 8. 理想气体的可逆绝热过程方程: p1V1?= p2V2? ,p1V1/T1 = p2V2/T2,?=C p,m/C V,m 三、各种过程Q、W、?U、?H的计算 1.解题时可能要用到的内容 (1) 对于气体,题目没有特别声明,一般可认为是理想气体,如N2,O2,H2等。 恒温过程d T=0,?U=?H=0,Q=W 非恒温过程,?U = n C V,m ?T,?H = n C p,m ?T 单原子气体C V,m =3R/2,C p,m = C V,m+R = 5R/2 (2) 对于凝聚相,状态函数通常近似认为只与温度有关,而与压力或体积无关,即 ?U≈?H= n C p,m ?T 2.恒压过程:p外=p=常数,无其他功W'=0 (1) W= -p外(V2-V1),?H = Q p =?2 1 T T n C p,m d T,?U =?H-?(pV),Q=?U-W (2) 真空膨胀过程p外=0,W=0,Q=?U 理想气体(Joule实验)结果:d T=0,W=0,Q=?U=0,?H=0 (3) 恒外压过程: 例1:1mol 理想气体于27℃、101325Pa状态下受某恒定外压恒温压缩到平衡,再由该状态恒容升温到97 ℃,则压力升到1013.25kPa。求整个过程的W、Q、?U及?H。已知该气体的C V,m恒定为20.92J mol-1 K-1。 解题思路:需先利用理想气体状态方程计算有关状态: (T1=27℃, p1=101325Pa,V1)→(T2=27℃, p2=p外=?,V2=?)→(T3=97℃, p3=1013.25kPa,V3= V2) 首先计算功W,然后计算?U,再计算Q,?H。 3. 恒容过程:d V=0 W=0,Q V =?U =?2 1 T T n C V,m d T,?H=?U+V?p 4.绝热过程:Q=0 (1) 绝热可逆过程W=?2 1 T T-p d V = ?U = ?2 1 T T n C V,m d T,?H=?U+?pV 理想气体:p1V ? = p2V ?, p1V T1= p2V T2

物理化学公式集(傅献彩_南京大学第5版)

热力学第一定律 功:δW=δW e +δW f (1)膨胀功δW e =p 外 dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f =xdy 非膨胀功为广义力乘以广义位移。如δW(机械功)=fdL,δW(电功)=EdQ,δW(表面功)=rdA。 热 Q:体系吸热为正,放热为负。 热力学第一定律:△U=Q—W 焓 H=U+pV 理想气体的内能和焓只是温度的单值函数。 热容 C=δQ/dT (1)等压热容:C p =δQ p /dT=(?H/?T) p (2)等容热容:C v =δQ v /dT=(?U/?T) v 常温下单原子分子:C v,m =C v,m t=3R/2 常温下双原子分子:C v,m =C v,m t+C v,m r=5R/2 等压热容与等容热容之差: (1)任意体系 C p —C v =[p+(?U/?V) T ](?V/?T) p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程: pVγ=常数 TVγ-1=常数 p1-γTγ=常数γ=C p / C v

理想气体绝热功:W =C v (T 1—T 2)= 1 1 -γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1 nR -δ(T 1—T 2) 热机效率:η= 2 1 2T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β= 1 21 T T T - 焦汤系数: μJ -T =H p T ???? ????=-()p T C p H ?? 实际气体的ΔH 和ΔU : ΔU =dT T U V ??? ????+dV V U T ??? ???? ΔH =dT T H P ??? ????+dp p H T ???? ???? 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑B B γRT 化学反应热效应与温度的关系:()()()dT B C T H T H 2 1 T T m p B 1m r 2m r ? ∑??,+=γ 热力学第二定律 Clausius 不等式:0T Q S B A B A ≥?∑ →δ— 熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式: (1) 组成恒定、不作非膨胀功的封闭体系的热力学基本方程: dU =TdS -pdV dH =TdS +Vdp

大学物理化学下册(第五版傅献彩)知识点分析归纳-(1)讲解学习

大学物理化学下册(第五版傅献彩)知识点分析归纳-(1)

第八章电解质溶液

第九章 1.可逆电极有哪些主要类型?每种类型试举一例,并写出该电极的还原反应。对于气体电极和氧化还原电极在书写电极表示式时应注意什么问题? 答:可逆电极有三种类型: (1)金属气体电极如Zn(s)|Zn2+ (m) Zn2+(m) +2e- = Zn(s) (2)金属难溶盐和金属难溶氧化物电极如Ag(s)|AgCl(s)|Cl-(m), AgCl(s)+ e- = Ag(s)+Cl-(m) (3)氧化还原电极如: Pt|Fe3+(m1),Fe2+(m2) Fe3+(m1) +e- = Fe2+(m2) 对于气体电极和氧化还原电极,在书写时要标明电极反应所依附的惰性金属。 2.什么叫电池的电动势?用伏特表侧得的电池的端电压与电池的电动势是否相同?为何在测电动势时要用对消法?

答:正、负两端的电势差叫电动势。不同。当把伏特计与电池接通后,必须有适量的电流通过才能使伏特计显示, 这样电池中发生化学反应, 溶液浓度发生改变, 同时电池有内阻,也会有电压降,所以只能在没有电流通过的情况下才能测量电池的电动势。 3.为什么Weslon 标准电池的负极采用含有Cd 的质量分数约为0.04~0.12的Cd 一Hg 齐时,标准电池都有稳定的电动势值?试用Cd 一Hg 的二元相图说明。标准电池的电动势会随温度而变化吗? 答:在Cd 一Hg 的二元相图上,Cd 的质量分数约为0.04~0.12的Cd 一Hg 齐落在与Cd 一Hg 固溶体的两相平衡区,在一定温度下Cd 一Hg 齐的活度有定值。因为标准电池的电动势在定温下只与Cd 一Hg 齐的活度有关,所以电动势也有定值,但电动势会随温度而改变。 4.用书面表示电池时有哪些通用符号?为什么电极电势有正、有负?用实验能测到负的电动势吗? 答:用“|”表示不同界面,用“||”表示盐桥。电极电势有正有负是相对于标准氢电极而言的。不能测到负电势。5.电极电势是否就是电极表面与电解质溶液之间的电势差?单个电极的电势能否测量?如何用Nernst 方程计算电极的还原电势? 5.电极电势是否就是电极表面与电解质溶液之间的电势差?单个电极的电势能否测量?如何用Nernst 方程计算电极的还原电势? 答:电极电势不是电极表面与电解质溶液之间的电势差。单个电势是无法测量 的。用Nernst 方程进行计算: (Re ) (Re )ln B Ox d v B Ox d B RT a zF ??Θ=- ∏

天津大学物理化学下册知识点归纳

第七章电化学 一、法拉第定律 Q=Zfξ 通过电极的电量正比于电极反应的反应进度与电极反应电荷数的乘 积。其中F=L e ,为法拉第常数,一般取F=96485C〃mol 近似数为965000C〃mol。 二、离子迁移数及电迁移率 电解质溶液导电是依靠电解质溶液中正、负离子的定向运动而导电,即正、负离子分别承担导电的任务。但是,溶液中正、负离子导电的能力是不同的。为此,采用正(负)离子所迁移的电量占通过电解质溶液总电量的分数来表示正(负)离子导电能 力,并称之为迁移数,用t + ( t - ) 表示, 即 正离子迁移数 t +=Q + /(Q + +Q-)=v + /(v + +v-)=u + /( u + +u - ) 负离子迁移数 t _ =Q - /(Q + +Q-)=v - /(v + +v-)=u - /( u + +u - ) 上述两式适用于温度及外电场一 定而且只含有一种正离子和一种负离 子的电解质溶液。式子表明,正(负) 离子迁移电量与在同一电场下正、负 离子运动速率v + 与v-有关。式中的 u + 与u - 称为电迁移率,它表示在一 定溶液中,当电势梯度为1V〃m-1时 正、负离子的运动速率。 其电解质溶液中含有两种以上正 (负)离子时,则其中某一种离子B 的迁移数计算式为 t Bz+ = B B B Q Q 三、电导、电导率、摩尔电导率 1.电导 电阻的倒数称为电导,单位为S

(西门子)。 G=1/R 2.电导率 电极面积为1 ,电极间距为1 时溶液的电导,称为电导率,单位为 G=1/R=S A κ/l 3.摩尔电导率 在相距为单位长度的两平行电极之间,放置有1 电解质溶液时的电导,称为摩尔电导率,单位是S 〃m 2 〃mol -1 。 m Λ=c /κ 4摩尔电导率与电解质溶液浓度的关系式 (1)柯尔劳施(Kohlrausch )公式 m Λ=∞Λm —A c 式中∞ Λm 是在无限稀释条件下溶 质的摩尔电导率;c 是电解质的体积摩尔浓度。在一定温度下对于指定的溶 液,式中A 和∞Λm 皆为常数。此式中适用与强电解质的稀溶液。 (2)柯尔劳施离子独立运动定律 ∞Λm =v +∞+Λ,m +v -∞ -Λ,m 式v + 及v - 分别为正、负离子的 计量系数;∞+Λ,m 及∞ -Λ,m 分别为在无限 稀释条件下正、负离子的摩尔电导率。此式适用与一定温度下的指定溶剂中,强电解质或弱电解质在无限稀释时摩尔电导率的计算。 四、电解质的平均离子活度、平均离子活度因子及德拜—休克尔极限 公式 1.平均离子活度 α±def (- -++ v v αα) 2.平均离子活度因子 ±γdef (v v v /1)(--++γγ 3.平均离子质量摩尔浓度 b ±def (b + +v b --v ) 1/v 4.离子活度

无机非金属材料物理化学知识点整理

无机非金属材料物理化学知识点整理无机非金属材料为北航材料学院2009年考研新加科目,考试内容包括大三金属方向限选课《无机非金属材料物理化学》(60%左右)和大四金属方向限选课《特种陶瓷材料》(40%左右)。参考书:陆佩文主编《无机材料科学基础》,武汉理工大学出版社,1996年。本资料由陆晨整理录入。祝愿大家考出好成绩。 第一章无机非金属材料的晶体结构 第一节:概述 一、晶体定义:晶体是内部质点在三维空间呈周期性重复排列的固体。 二、晶体结构=空间点阵+结构单元 三、晶体的基本性质: 1、均一性 2、各向异性 3、自限性 4、对称性 5、稳定性 四、对称性、对称元素、七大晶系、十四种布拉菲格子 结晶符号1、晶面符号——米勒指数(hkl) 2、晶棱符号[ uvw] PS:其实只要看了金属学,这些就都会了,懒得写了… 第二节:晶体化学 一、离子键、共价键、金属键、分子间力、氢键定义、特点(大家都知道的东西…) 二、离子极化: 三、鲍林规则(重点): 鲍林第一规则──配位多面体规则,其内容是:“在离子晶体中,在正离子周围形成一个负离子多面体,正负离子之间的距离取决于离子半径之和,正离子的配位数取决于离子半径比”。 鲍林第二规则──电价规则指出:“在一个稳定的离子晶体结构中,每一个负离子电荷数等于或近似等于相邻正离子分配给这个负离子的静电键强度的总和,其偏差≤1/4价”。静电键强度S=正离子数Z+/正离子配位数n ,则负离子电荷数Z=∑Si=∑(Zi+/ni)。 鲍林第三规则──多面体共顶、共棱、共面规则,其内容是:“在一个配位结构中,共用棱,特别是共用面的存在会降低这个结构的稳定性。其中高电价,低配位的正离子的这种效应更为明显”。

《物理化学》第五版(傅献彩)上总复习

中南民族大学 物理化学(上册)总复习 期未考试试卷题型: 一.名词解释:(每词4分,共16分) 封闭体系隔离体系(孤立系统) 敞开体系 广度性质(又称容量性质或广延性质或广延量) 强度性质 热力学平衡状态函数状态方程 反应进度可逆过程标准摩尔反应焓标准摩尔生成焓热力学第二定律(克劳修斯说法、开尔文说法)赫斯(Hess)定律卡诺定理熵增加原理 饱和蒸气压理想液体混合物稀溶液的依数性拉乌尔定律亨利定律理想稀溶液 相图相律组分数 自由度标准平衡常数化学平衡 平衡转化率(理论转化率或最大转化率) 平衡产率(理论产率或最大产率) 二.填空或选择填空:(共15题,共30分) 与期中考试题型相似,涉及上册章节内容 三.识图题:(一题,计13分) 二组分相图的识别及步冷曲线绘制 四.计算题:(共3题,共41分) (1).热力学第一定律,第二定律有关计算 (2).拉乌尔定律、亨利定律及稀溶液的依数性应用 (3).化学反应热力学函数与平衡常数、转化率与平衡常数的关系及计算

重要的公式: (1).热力学第一定律: 微分式: W Q dU δδ+= 积分式: W Q U +=? (2).焓的定义: pV U H += 全微分: Vdp pdV dU pV d dU dH ++≈+=)( (3).热机效率: 卡诺热机:H L H L H T T Q Q Q W - =+ =-= 11η 任意热机: H L H Q Q Q W + =-= 1η (4).克劳修斯不等式: T Q dS δ≥ (5).基本公式 pdV TdS dU -= Vdp TdS dH += pdV SdT dF --= Vdp SdT dG +-= (6).麦克斯韦关系式: S V T V p S )()(??-=?? S p T p V S )()(??=?? V T T p V S )()(??=?? p T T V p S )()(??-=?? (7).内能与体积的关系: p T p T V U V T -??=??)( )( (8).焓与压力的关系: p T T V T V p H )()(??-=?? (9).熵与温度的关系 A .T C T S p p = ??)( 或 T C T S m p p m ,)(=?? B .T C T S V V = ??)( 或 T C T S m V V m ,)( = ?? (10). (11).2 ])( [ T U T T F V ??-= ?? (12). A.克拉贝龙方程式: V T H V S dT dp β αβ αβ αβ α????= = 适用于任意两相平衡体系

大学物理知识点的总结归纳

大学物理知识点的总结归纳 一、理论基础 力学 1、运动学 参照系。质点运动的位移和路程,速度,加速度。相对速度。 矢量和标量。矢量的合成和分解。 匀速及匀速直线运动及其图象。运动的合成。抛体运动。圆周运动。 刚体的平动和绕定轴的转动。 2、牛顿运动定律 力学中常见的几种力 牛顿第一、二、三运动定律。惯性参照系的概念。 摩擦力。 弹性力。胡克定律。 万有引力定律。均匀球壳对壳内和壳外质点的引力公式(不要求导出)。开普勒定律。行星和人造卫星的运动。 3、物体的平衡 共点力作用下物体的平衡。力矩。刚体的平衡。重心。 物体平衡的种类。 4、动量 冲量。动量。动量定理。

动量守恒定律。 反冲运动及火箭。 5、机械能 功和功率。动能和动能定理。 重力势能。引力势能。质点及均匀球壳壳内和壳外的引力势能公式(不要求导出)。弹簧的弹性势能。 功能原理。机械能守恒定律。 碰撞。 6、流体静力学 静止流体中的压强。 浮力。 7、振动 简揩振动。振幅。频率和周期。位相。 振动的图象。 参考圆。振动的速度和加速度。 由动力学方程确定简谐振动的频率。 阻尼振动。受迫振动和共振(定性了解)。 8、波和声 横波和纵波。波长、频率和波速的关系。波的图象。 波的干涉和衍射(定性)。 声波。声音的响度、音调和音品。声音的共鸣。乐音和噪声。 热学

1、分子动理论 原子和分子的量级。 分子的热运动。布朗运动。温度的微观意义。 分子力。 分子的动能和分子间的势能。物体的内能。 2、热力学第一定律 热力学第一定律。 3、气体的性质 热力学温标。 理想气体状态方程。普适气体恒量。 理想气体状态方程的微观解释(定性)。 理想气体的内能。 理想气体的等容、等压、等温和绝热过程(不要求用微积分运算)。 4、液体的性质 流体分子运动的特点。 表面张力系数。 浸润现象和毛细现象(定性)。 5、固体的性质 晶体和非晶体。空间点阵。 固体分子运动的特点。 6、物态变化 熔解和凝固。熔点。熔解热。

《物理化学》第五版(傅献彩)上总复习

《物理化学》第五版 (傅献彩)上总复习 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

物理化学(上册)总复习 期未考试试卷题型: 一.名词解释:(每词4分,共16分) 封闭体系隔离体系(孤立系统) 敞开体系 广度性质(又称容量性质或广延性质或广延量) 强度性质 热力学平衡状态函数状态方程 反应进度可逆过程标准摩尔反应焓标准摩尔生成焓热力学第二定律(克劳修斯说法、开尔文说法)赫斯(Hess)定律卡诺定理熵增加原理 饱和蒸气压理想液体混合物稀溶液的依数性拉乌尔定律亨利定律理想稀溶液 相图相律组分数 自由度标准平衡常数化学平衡 平衡转化率(理论转化率或最大转化率) 平衡产率(理论产率或最大产率) 二.填空或选择填空:(共15题,共30分) 与期中考试题型相似,涉及上册章节内容 三.识图题:(一题,计13分) 二组分相图的识别及步冷曲线绘制 四.计算题:(共3题,共41分) (1).热力学第一定律,第二定律有关计算 (2).拉乌尔定律、亨利定律及稀溶液的依数性应用 (3).化学反应热力学函数与平衡常数、转化率与平衡常数的关系及计算

重要的公式: (1).热力学第一定律: 微分式: W Q dU δδ+= 积分式: W Q U +=? (2).焓的定义: pV U H += 全微分: Vdp pdV dU pV d dU dH ++≈+=)( (3).热机效率: 卡诺热机:H L H L H T T Q Q Q W -=+=-= 11η 任意热机: H L H Q Q Q W +=-=1η (4).克劳修斯不等式: T Q dS δ≥ (5).基本公式 pdV TdS dU -= Vdp TdS dH += pdV SdT dF --= Vdp SdT dG +-= (6).麦克斯韦关系式: S V T V p S )()( ??-=?? S p T p V S )()(??=?? V T T p V S )()(??=?? p T T V p S )( )(??-=?? (7).内能与体积的关系: p T p T V U V T -??=??)()( (8).焓与压力的关系: p T T V T V p H )()(??-=?? (9).熵与温度的关系 A .T C T S p p =??)( 或 T C T S m p p m ,)(=?? B .T C T S V V =??)( 或 T C T S m V V m ,)(=?? (10).熵的计算: (11).2]) ( [T U T T F V ??-=?? (12).

大学物理化学下册(第五版傅献彩)知识点分析归纳-(1)

大学物理化学下册(第五版傅献彩)知识点分 析归纳-(1) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第八章电解质溶液

第九章 1.可逆电极有哪些主要类型每种类型试举一例,并写出该电极的还原反应。对于气体电极和氧化还原电极在书写电极表示式时应注意什么问题 答:可逆电极有三种类型: (1)金属气体电极如Zn(s)|Zn2+ (m) Zn2+(m) +2e- = Zn(s) (2)金属难溶盐和金属难溶氧化物电极如Ag(s)|AgCl(s)|Cl-(m), AgCl(s)+ e- = Ag(s)+Cl-(m) (3)氧化还原电极如: Pt|Fe3+(m1),Fe2+(m2) Fe3+(m1) +e- = Fe2+(m2) 对于气体电极和氧化还原电极,在书写时要标明电极反应所依附的惰性金属。 2.什么叫电池的电动势用伏特表侧得的电池的端电压与电池的电动势是否相同为何在测电动势时要用对消法 答:正、负两端的电势差叫电动势。不同。当把伏特计与电池接通后,必须有适量的电流通过才能使伏特计显示,这样电池中发生化学反应,溶液浓度发生改变,同时电池有内阻,也会有电压降,所以只能在没有电流通过的情况下才能测量电池的电动势。

3.为什么Weslon 标准电池的负极采用含有Cd 的质量分数约为0.04~0.12的Cd 一Hg 齐时,标准电池都有稳定的电动势值试用Cd 一Hg 的二元相图说明。标准电池的电动势会随温度而变化吗 答:在Cd 一Hg 的二元相图上,Cd 的质量分数约为0.04~0.12的Cd 一Hg 齐落在与Cd 一Hg 固溶体的两相平衡区,在一定温度下Cd 一Hg 齐的活度有定值。因为标准电池的电动势在定温下只与Cd 一Hg 齐的活度有关,所以电动势也有定值,但电动势会随温度而改变。 4.用书面表示电池时有哪些通用符号?为什么电极电势有正、有负用实验能测到负的电动势吗 答:用“|”表示不同界面,用“||”表示盐桥。电极电势有正有负是相对于标准氢电极而言的。不能测到负电势。5.电极电势是否就是电极表面与电解质溶液之间的电势差单个电极的电势能否测量如何用Nernst 方程计算电极的还原电势? 5.电极电势是否就是电极表面与电解质溶液之间的电势差单个电极的电势能否测量如何用Nernst 方程计算电极的还原电势? 答:电极电势不是电极表面与电解质溶液之间的电势差。单个电势是无法测量 的。用Nernst 方程进行计算: 6.如果规定标准氢电极的电极电势为1.0V ,则各电极的还原电极电势将如何变化电池的电动势将如何变化 答:各电极电势都升高1,但电池的电动势值不变。 (Re ) (Re )ln B Ox d v B Ox d B RT a zF ??Θ=- ∏

相关文档
最新文档