(完整版)异步电动机变频调速系统..

(完整版)异步电动机变频调速系统..
(完整版)异步电动机变频调速系统..

《自动控制元件及线路》

课程实习报告

异步电动机变频调速系统

1.4.1 系统原理框图及各部分简介

本文设计的交直交变频器由以下几部分组成,如图1.1所示。

图1.1 系统原理框图

系统各组成部分简介:

供电电源:电源部分因变频器输出功率的大小不同而异,小功率的多用单相220V,中大功率的采用三相380V电源。因为本设计中采用中等容量的电动机,所以采用三相380V电源。

整流电路:整流部分将交流电变为脉动的直流电,必须加以滤波。在本设计中采用三相不可控整流。它可以使电网的功率因数接近1。

滤波电路:因在本设计中采用电压型变频器,所以采用电容滤波,中间的电容除了起滤波作用外,还在整流电路与逆变电路间起到去耦作用,消除干扰。

逆变电路:逆变部分将直流电逆变成我们需要的交流电。在设计中采用三相桥逆变,开关器件选用全控型开关管IGBT。

电流电压检测:一般在中间直流端采集信号,作为过压,欠压,过流保护信号。控制电路:采用8051单片机和SPWM波生成芯片SA4828,控制电路的主要功能是接受各种设定信息和指令,根据这些指令和设定信息形成驱动逆变器工作的信号。这些信号经过光电隔离后去驱动开关管的关断。

1.4.2 变频器主电路方案的选定

变频器最早的形式是用旋转发电机组作为可变频率电源,供给交流电动机。随着电力半导体器件的发展,静止式的变频电源成为了变频器的主要形式。静止式变频器从变换环节分为两大类:交-直-交变频器和交-交变频器。

1.交-交型变频器:它的功能是把一种频率的交流电直接变换成另一种频率可调电压的交流电(转换前后的相数相同),又称直接式变频器。由于中间不经过直流环节,不需换流,故效率很高。因而多用于低速大功率系统中,如回转窑、轧钢机等。但这种控制方式决定了最高输出频率只能达到电源频率的1/3~1/2,所以不能高速运行。

2.交-直-交型变频器:交-直-交变频器是先把工频交流通过整流器变成直流,然后再直流变换成频率电压可调的交流,又称间接变频器,交-直-交变频器是目前广泛应用的通用变频器。它根据直流部分电流、电压的不同形式,又可分为电压型和电流型两种:(1)电流型变频器

电流型变频器的特点是中间直流环节采用大电感器作为储能环节来缓冲无功功率,即扼制电流的变化,使电压波形接近正弦波,由于该直流环节内阻较大,故称电流源型变频器。

(2)电压型变频器

电压型变频器的特点是中间直流环节的储能元件采用大电容器作为储能环节来缓冲无功功率,直流环节电压比较平稳,直流环节内阻较小,相当于电压源,故称电压型变频器。

由于电压型变频器是作为电压源向交流电动机提供交流电功率,所以其主要优点是

运行几乎不受负载的功率因数或换流的影响,它主要适用于中、小容量的交流传动系统。与之相比,电流型变频器施加于负载上的电流值稳定不变,其特性类似于电流源,它主要应用在大容量的电机传动系统以及大容量风机、泵类节能调速中。

由于交-直-交型变频器是目前广泛应用的通用变频器,所以本次设计中选用此种间接变频器,在交-直-交变频器的设计中,虽然电流型变频器可以弥补电压型变频器在再生制动时必须加入附加电阻的缺点,并有着无须附加任何设备即可以实现负载的四象限运行的优点,但是考虑到电压型变频器的通用性及其优点,在本次设计中采用电压型变频器。

2交流异步电动机变频调速原理及方法

2.1 三相异步电机工作的基本原理

2.1.1 异步电机的等效电路

异步电动机的转子能量是通过电磁感应而得来的。定子和转子之间在电路上没有任何联系,其电路可用图2.1来表示[3]。

图2.1异步电动机的定、转子图

图2.1中:其有效值可计算如下:

11114.44N m E f N K =Φ (2-1)

电动机的T 形等效电路图,由于交流异步电动机三相对称,所以现只取A 相进行计算分析。A 相的T 形等效电路如图2.2所示。

图2.2 电动机的T 形等效电路图

2.1.4 异步电机变频调速原理

交流异步电动机是电气传动中使用最为广泛的电动机类型。我国异步电动机的使用容量约占拖动总容量的八成以上,因此了解异步电动机的调速原理十分重要。

交流调速是通过改变电定子绕组的供电的频率来达到调速的目的的,但定子绕组上接入三相交流电时,定子与转子之间的空气隙内产生一个旋转的磁场,它与转子绕组产生感应电动势,出现感应电流,此电流与旋转磁场相互作用,产生电磁转矩。使电动机转起来。电机磁场转速称为同步转速,用0n 表示:

p f

n 600= (2-7)

式中:f 为三相交流电源频率,一般是50Hz ;p 为磁极对数。当p =1是,0n =3000r /min ;p =2时,0n =1500r /min 。

由上式可知磁极对数p 越多,转速0n 就越慢,转子的实际转速n 比磁场的同步转速0n 要慢一点,所以称为异步电动机,这个差别用转差率s 表示: %10000?-=n n n s (2-8)

在加上电源转子尚未转动瞬间,n =0,这时s =1;启动后的极端情况n =0n ,则s =0,即s 在0~1之间变化,一般异步电动机在额定负载下的 s =1%~6%。综合(2-7)和(2-8)式可以得出:

060(1)

(1)f s n n s p -=-= (2-9) 由式(2-9)可以看出,对于成品电机,其极对数p 已经确定,转差率s 的变化不大,则电机的转速n 与电源频率f 成正比,因此改变输入电源的频率就可以改变电机的同步转速,进而达到异步电机调速的目的。

3变频器主电路设计

3.1 主电路的工作原理

变频调速实际上是向交流异步电动机提供一个频率可控的电源。能实现这个功能的装置称为变频器。变频器由两部分组成:主电路和控制电路,其中主电路通常采用交-直-交方式,先将交流电转变为直流电(整流,滤波),再将直流电转变为频率可调的交流电(逆变)。

在本设计中采用图3.1的主电路,这也是变频器常用的格式。

图3.1 电压型交直交变频调速主电路

3.1.1 主电路各部分的设计

1.交直电路设计

选用整流管61VD VD 组成三相整流桥,对三相交流电进行全波整流。整流后的电压为d U =1.35L U =1.35×380V=513V。

滤波电容F C 滤除整流后的电压波纹,并在负载变化时保持电压平稳。

当变频器通电时,滤波电容F C 的充电电流很大,过大的冲击电流可能会损坏三相整流桥中的二极管,为了保护二极管,在电路中串入限流电阻L R ,从而使电容F C 的充电电流限制在允许的范围内。当F C 充电到一定程度,使L S 闭合,将限流电阻短路。

在许多下新型的变频器中,L S 已有晶闸管替代。

电源指示灯HL 除了指示电源通电外,还作为滤波电容放电通路和指示。由于滤波电容的容量较大,放电时间比较长(数分钟),几百伏的电压会威胁人员安全。因此维修时,要等指示灯熄灭后进行。

B R 为制动电阻,在变频器的交流调速中,电动机的减速是通过降低变频器的输出频率而实现的,在电动机减速过程中,当变频器的输出频率下降过快时,电动机将处于发电制动状态,拖动系统的动能要回馈到直流电路中,使直流电路电压(称

泵升电压)不断上升,导致变频器本省过电压保护动作,切断变频器的输出。为了避免出现这一现象,必须将再生到直流电路的能量消耗掉,B R 和B V 的作用就是消耗掉这部分能量。如图3.1所示,当直流中间电路上电压上升到一定值,制动三极管B V 导通,将回馈到直流电路的能量消耗在制动电阻上。

2.直交电路设计

选用逆变开关管61V V -组成三相逆变桥,将直流电逆变成频率可调的交流电,逆变管在这里选用IGBT 。

续流二极管127VD VD -的作用是:当逆变开关管由导通变为截止时,虽然电压突然变为零,但是由于电动机线圈的电感作用,储存在线圈中的电能开始释放,续流二极管提供通道,维持电流在线圈中流动。另外,当电动机制动时,续流二极管为再生电流提供通道,使其回流到直流电源。

电阻0601R R -,电容0601C C -,二极管0601VD VD -组成缓冲电路,来保护逆变管。由于开关管在开通和关断时,要受集电极电流c I 和集电极与发射极间的电压ce V 的冲击,因此要通过缓冲电路进行缓解。当逆变管关断时,ce V 迅速上升,c I 迅速降低,过高增长的电压对逆变管造成危害,所以通过在逆变管两端并联电容(0601C C -)来减小电压增长率。当逆变管开通时,ce V 迅速下降,c I 迅速升高,并联在逆变管两端的电容由于电压降低,将通过逆变管放电,这将加速电流c I 的增长率,造成IGBT 的损坏。所以增加电阻0601R R -,限制电容的放电电流。可是当逆变管关断时,该电阻又会阻止电容的充电,为了解决这个矛盾,在电阻两端并联二极管(0601VD VD -),使电容充电时避开电阻,通过二极管充电。放电时,通过电阻放电,实现缓冲功能。这种缓冲电路的缺点是增加了损耗,所以适用于中小功率变频器。因本次设计所选用的电动机为中容量型,在此选用此种缓冲电路。

3.1.2 变频器主电路设计的基本工作原理

1.整流电路

整流电路是把交流电变换为直流电的电路。本设计中采用了三相桥式不控整流电路,主要优点是电路简单,功率因数接近于1,由于整流电路原理比较简单,设计中不再做详细的介绍。

2.逆变的基本工作原理

将直流电转换为交流电的过程称为逆变。完成逆变功能的装置叫做逆变器,它是变频器的主要组成部分,电压性逆变器的工作原理如下:

(2)三相逆变电路

三相逆变电路的原理图见图3.3所示。

图3-3中,1S ~6S 组成了桥式逆变电路,这6个开关交替地接通、关断就可以在 输出端得到一个相位互相差2π/3的三相交流电压。

当1S 、4S 闭合时,V U u -为正;3S 、2S 闭合时,V U u -为负。

用同样的方法得:当3S 、6S 同时闭合和5S 、4S 同时闭合,得到W V u -,5S ,2S 同时闭合和1S 、6S 同时闭合,得到U W u -。

为了使三相交流电V U u -、W V u -、U W u -在相位上依次相差2π/3;各开关的接通、关断需符合一定的规律,其规律在图3.3b 中已标明。根据该规律可得V U u -、W V u -、U W u -波形如图下图所示。

结构图 开关的通断规律

波形图

观察6个开关的位置及波形图可以发现以下两点:

①各桥臂上的开关始终处于交替打开、关断的状态如1S 、2S 。

②各相的开关顺序以各相的“首端”为准,互差2π/3电角度。如3S 比1S 滞后2π/3,5S 比3S 滞后2π/3。

上述分析说明,通过6个开关的交替工作可以得到一个三相交流电,只要调节开关的通断速度就可调节交流电频率,当然交流电的幅值可通过D U 的大小来调节。

3.2 主电路参数计算

根据前面所给出的原始参数,主电路各部分的计算如下[6]:

1.整流二极管的参数计算

m I (峰值电流)2N I =2×15.6=22.06A

d I (有效值)= /2m I 二极管额定电流值

e I =(1.5~2)Id/1.57=14.91A ~19.88A

额定电压值e U =(2~3)m U =(2~3)×2×380=1074.64V ~1611.96V

2.滤波电容

系统采用三相不控整流,经滤波后d U =1.1×2×380=591.05V 。

3.制动部分 制动电阻粗略计算为N d

B I U R 2=~N d I U =18.94Ω~37.89Ω b V 击穿电压:当线电压为时,根据经验值选1000V 。

B V 集电极最大电流cm I :按照正常电压流经B R 电流的两倍来计算:b d CM R U I 2≥=2×591.05/18.94=62.41A 的选用

峰值电压=(2~2.5)×1.1×2×380=1182.1V ~1477.63V

集电极电流c I =(1.2~2)m I =(1.2~2)×N I ×λ×2=58.23~97.06A

集电极-发射极额定电压≥1.2倍最高峰值电压=1.2×1477.63V=1773.16V

3.3 IGBT 及驱动模块介绍

在设计中采用EXB840,它是一种高速驱动集成电路,最高使用频率为40KHz 驱动150A/600V 或者75A/1200V 的IGBT,驱动电路信号延迟小于1.5s μ,采用单电源20V 供电。

EXB840的功能框图如图3.4所示。

它主要由输入隔离电路,驱动放大电路,过流检测急保护电路以及电源电路组成。其中输入隔离电路由高速光电耦合器组成,可隔离交流2500V 的信号。过流检测及保护电路根据IGBT 栅极驱动电平和集电极电压之间的关系,检测是否有过电流现象存在,如果有过电流,保护电路将迅速关断IGBT,防止过快的关断时而引起因电路中电感产生的感应电动势升高,使IGBT 集电极电压过高而损坏IGBT,电源电路将20V 外部供电电源变成15V 的开栅电压和-5V 的关栅电压。

EXB840引脚定义如下:引脚1用于连接反偏置电源的滤波电容,引脚2和9分别是电源和地,引脚3为驱动输出,引脚4用于连接外部电容器,防止过流保护误动作(一般场合不需要这个电容),引脚5为过流保护输出,引脚6为集电极电压监视端,引脚14和15

3.3.2 采用EXB840的IGBT驱动电路

其中ERA34-10是快速恢复二极管。IGBT的栅极驱动连线应该用双绞线,长度应该小于1m,以防止干扰,如果IGBT的集电极产生大的电压脉冲,可增加IGBT的栅极电阻

R。

G

EXB840组成的IGBT典型集成电路驱动电路

4 控制回路设计

控制回路是为变频器的主电路提供通断信号的电路,其主要任务是完成对逆变器开关元件的开关控制。控制方式有模拟控制和数字控制两种,本设计中采用的是以微处理器为核心的全数字控制,优点是它采用简单的硬件电路,主要依靠软件来完成各种控制功能,以充分发挥微处理器计算能力和软件控制灵活性高的特点来完成许多模拟量难以实现的功能。设计控制电路如下:

4.1 驱动电路设计

驱动电路的作用是逆变器中的逆变电路换流器件提供驱动信号。主电路逆变电路设计中采用的电力电子器件是IGBT,故称为门极驱动电路。以下将介绍SPWM技术工作原理和设计中所选用能产生SPWM波芯片SA4828的基本结构和工作原理。

4.1.1 SPWM调制技术简介

脉宽调制(PWM)技术是利用全控型电力电子器件的导通和关断把直流电压变成一定形状的电压脉冲序列,实现变压、变频控制并消除谐波的技术。

脉宽调制技术在逆变器中的应用,对现代电力电子技术、现代调速系统的发展起到了极大的促进作用。近几年来。由于场控自关断器件的不断涌现。相应高频SPWM(正弦脉宽调制)技术在电机调速中得到了广泛应用,不仅能及时、准确地实现变压变频控制

技术,而且更重要地是抑制逆变器输出电压或输出电流中的谐波分量,从而提高了电机的工作效率,扩大了调速系统的调速范围。实际工程中目前主要采用的PWM技术是正弦PWM(SPWM),这是因为变频器输出的电压或电流波形更接近于正弦波形。

根据电机学原理,交流异步电动机变频调速时,如果按照频率与定子端电压之比为定值的方式进行控制,则机械特性的硬度变化较小,所以在变频的同时,也要相应改变定子的端电压。若采用等脉宽PWM调制技术实现变频与变压,由于输出矩形波中含有较严重的高次谐波,会危害电动机的正常运行。

为减小输出信号中的谐波分量,一种有效的途径是将等脉宽的矩形波变成信号宽度按正弦规律变化的正弦脉宽调制波,即SPWM调制波。

产生SPWM信号的方法是用一组等腰三角波(称为载波)与一个正弦波(称为调制波)进行比较,如图4.1所示,两波形的交点作为逆变开关管的开通与关断时间。当调制波的幅值大于载波的幅值时,开关器件导通,当调制波的幅值小于载波的幅值时,开关器件关断。

虽然正弦脉宽调制波与等脉宽PWM信号相比,谐波成份大大减小,但它毕竟不是正弦波。提高载波(三角波)的频率,是减小SPWM调制波中谐波分量的有效方法。而载波频率的提高,受到逆变开关管最高工作频率的限制。第三代绝缘栅双极型晶体管IGBT 的工作频率可达30KHz,用IGBT作为逆变开关管,载波频率可以大幅度提高,从而使正弦脉宽调制波更接近正弦波。可由模拟电路分别产生等腰三角波与正弦波,并送入电压比较器,输出即为SPWM调制波。

在本设计中选用SA4828。SA4828是MITEL公司推出的一种专用于三相SPWM信号发生和控制的集成芯片,可以和单片机接口,完成对交流电动机的变频调速。

4.1.3 SA4828内部结构及工作原理

SA4828为28引脚的DIP或SOIC封装的控制芯片,内部具有总线控制及译码电路,有多种寄存器和相控逻辑电路。外部时钟输入经分频器分成设定的频率,并生成三角形载波,三角载波与所选定的片内三种调制波形进行比较,自动生成SPWM输出脉冲,然后通过脉冲删除电路删除窄脉冲(如图4.3)

窄脉宽

图4.3 脉冲序列中的窄脉宽

因为这种脉冲不起任何作用,只会增加开关管的损耗。通过脉冲延迟电路生成死区,从而保证桥上的管子不会在状态转换期间导通短路。看门狗定时器用来防止程序跑飞,当条件满足时快速封锁输出。SA4828内部结构原理框图如图4.4所示。

图4.4 SA4828原理框图

SA4828的设置是通过单片机接口将数据送入SA4828芯片内的两个寄存器(初始化寄存器和控制寄存器)来实现的。初始化寄存器用于设定与交流电动机有关的基本参数,这些参数要在PWM输出端允许输出前设定,系统工作以后不允许改变。控制寄存器是在工作过程中控制输出脉宽调制波的状态,从而进一步控制交流电动机的运行状态,通常在工作时,该寄存器的内容常被改写,以实现实时对交流电动机的速度进行控制。

4.2 保护电路

保护电路的主要功能是对检测电路得到的各种信号进行运算处理,以判断变频器本身或系统是否出现异常。当检测到异常时,进行各种必要的处理。

4.2.1 过、欠压保护电路设计

过压、欠压保护是针对电源异常、主回路电压超过或低于一定数值时考虑的。通用变频器输入电源电压允许波动的范围一般是额定输入电压的士10%。通常情况下,主回路直流环节的电压与输入电压保持固定关系。当输入电源电压过高,将使直流侧电压过高。过高的直流电压对IGBT 的安全构成威胁,很可能超过IGBT 的最大耐压值而将其击穿,造成永久性损坏。当输入电压过低时,虽不会对主回路元件构成直接威胁,但太低的输入电压很可能使控制回路工作不正常,而使系统紊乱,导致SA4828输出错误的触发脉冲,造成主回路直通短路而烧坏IGBT 。而且较低的输入电压也使系统的抗干扰能力下降。因此有必要对系统的电压进行保护。图 4.5为本文介绍的变频器过压保护电路。

图4.5 过电压保护电路

它直接对直流侧电压进行检测。其中电压信号的取样是通过电阻1R 和2R 分压得到的,电容1C 起滤波抗干扰作用,防止电路误动作。过压设定值从电位器1W 上取出。运放A U :1接成比较器的形式。当取样电压高于设定值时(异常情况下),比较器输出高电平,光耦器件导通,输出低电平保护信号。其中电阻5R 是正反馈电阻,它的接入使正反馈有一定回差,防止取样信号在给定点附近波动时比较器抖动,这里将过压保护的动作值整定为额定输入电压的110%。

欠压产生的原因有两种:一是输入的交流电压长时间低于标准规定的数值。另一种是瞬时停电或瞬时电压降低。欠电压导致逆变器开关器件驱动功率不足而烧坏开关器件。一般欠压信号从直流端取样,这样既能在欠电压,过电压时检测出信号进行保护,又不会因为短时间因为在欠电压,过电压并未构成危险时而保护误动作。

欠压保护电路的原理与过压保护电路类似。其电压取样与过压取样相同,欠压设定值由2W 上取出。运放B U :1接成比较器的形式。当取样电压高于设定值时(正常情况下),比较器输出高电平,光耦器件不导通,输出高电平。当取样电压低于设定值时(欠压情况下),比较器输出低电平,光耦器件导通,输出低电平保护信号。其电路下图所示。动作值整定为输入电压的85%。

图4.6欠压保护电路

本系统的故障自诊断是指在系统运行前,变频器本身可以对过载、过压、欠压保护电路进行诊断,检测其保护电路是否正常。因此故障自诊断功能就是由单片机控制发出各种等效故障信号,检测对应的保护电路是否动作,若动作则说明保护电路正常,反之说明保护电路本身有故障,应停机对保护电路进行检查,直到显示器显示正常。

故障自诊断电路工作过程如下:单片机控制HSO.2口发出一高电平,经非门整形后输出低电平,光耦器件导通,有电流流过三极管的基极,三极管导通输出低电平,输出的低电平自诊断信号分别送至过压、欠压保护电路。因SA4828的SET TRIP端为高电平有效,所以应加上一个反相器,使其反相后输出高电平。以下的过流信号也是如此.故障自诊断电路如图4.7所示[:

图4.7 故障自诊断电路

4.2.2 过流保护设计

变频器在诸如直流短路、桥臂短路、输出短路、对地短路等情况下,电流变化非常迅速,元件将承受极大的电压和电流,而IGBT器件的内部结构决定了它在足够大的电流下会出现锁定现象,造成管子失控无法关断,以至烧坏,所以过流之前必须使IGBT

di过关断以切断电流,虽然在IGBT的驱动模块EXB840中已经有过流保护,但考虑到dt

大时IGBT还未来得及关断已经发生锁定现象的可能性,必须采取辅助断流措施。这里采用瑞士LEM 公司生产的霍尔效应磁场补偿式电流传感器来进行电流的检测。在此传感器的输出端串电阻R,则R上的压降反应了被测的电流。过流发生时,R上的压降大

于过流保护动作整定值,比较器LEM324输出低电平去封锁IGBT的驱动电路的输入信号,即可使桥臂上的所有IGBT处于截止状态实现过流保护的功能。过流保护的电路示意图如4.8图所示:

图4.8 过流保护电路

4.3 控制系统的实现

模拟量的频率给定通过ADC0809模数转换器读入8051,转化为SA4828的控制字,以控制触发信号的波形。ADC0809是一种8路模拟输入的8位逐次逼近型A/D转换器件,电位器的输出接其输入IN0(当51单片机没有当5l单片机没有外扩RAM和I/O口时,ADC0809就可以在概念上作为一个特殊的唯一的外扩RAM单元。因为它是唯一的,就没有地址编号,也就不需要任何地址线或者地址译码线。只要单片机往外部RAM写入,就是写到ADC0809的地址寄存器中。只要单片机从外部RAM读取数据,就是读取ADC0809的转换结果。)EOC转换结束信号经一非门接8031外部中断1(P3.3)。

8051通过地址线P2.0和读写信号来控制转换器的模拟量输入通道地址锁存,启动允许输出。

图4.10 单片机系统图

因8051的复用总线结构,SA4828的MUX引脚应该接高电平或悬空不接。8051的P0口与SA4828的AD口连接,提供8位数据和低8位地址,SA4828芯片中的地址锁存器可以锁存来自8051的低八位地址,从而将AD口输入的地址和数据分开,SA4828的地址锁存器由8051的ALE引脚控制,同时连接的控制信号还有读,写信号RD,WR.SA4828的片选信号CS用8051的P2.7引脚来控制,这样SA4828的8个寄存器的地址为:寄存器R0~R5的地址:0000H~0005H。

虚拟寄存器R14,R15的地址:000EH,000FH

SA4828的STTRIP引脚接8051的P1.0,使单片机能在异常情况下封锁SA4828的输

INT),测量调试波的频率,用于显示。因8051的出,ZPPR引脚接8051的P3.2(0

复位端为高电平有效,而SA4828为低电平有效,所以在两者中间需要加上反相器。

SA4828的TRIP引脚接一个发光二极管,当SA4828的输出被封锁时,发光二极管亮,用于指示封锁状态。SA4828的六个输出引脚分别通过各自的驱动电路来驱动逆变

桥的六只开关管。

第4章实验与仿真

(1) 运行仿真

打开仿真/参数窗口,选择 ode23tb 算法,将相对误差设置为 1e-3,停止时间设置为 0.1s,单击工具栏中的“开始”按钮开始仿真。仿真结束后双击示波器模块可观测被测量的波形,改变模块参数可得到随之变化的仿真波形。

图4.1 交直交变频调速系统的仿真波形

图4.2 变频前后电压波形(取一相)5.1 流程图软件设计的流程图如图5.1。

图5.1 程序设计流程图

5.2程序设计 由p s f )1(60-可算出调制波频率范围为0~50Hz ,时钟频率为12MHz ,设计载波频率为5kHz ,实际脉冲删除时间为12μs,死区延迟时间为6μs,系统采用高效波形,不使用看门狗功能。我们采用Intel 公司的8051单片机,对SA4828进行设置,进而实现对三相交流电动机进行调速控制[19]。

将程序分成三部分,分别介绍如下

(1)初始化程序设计:

根据上面介绍的公式,计算出SA4828各个初始化参数字。

为了显示调试波频率,必须测量ZPPR 引脚的输出脉冲周期,其周期的倒数就是调制波频率。测量ZPPR 输出脉冲周期的方法是:利用ZPPR 输出脉冲的下降沿触发0INT 中断,这时计算两个ZPPR 输出脉冲下降沿的时间间隔。时间间隔可用定时器T0求得(初始值为00H )。但是因为调制波的频率较低,周期比较长。可能会出现周期大于16位的T0所能定时的最长时间。因此,还要利用定时器T0的溢出中断。在T0每次中断时,给一个指示器加1,加1的结果存入RAM 某个单元中,所以,本程序要用两个中断,程序如下:

ORG 0000H

LJMP START

ORG 0003H

LJMP WZD

ORG 000BH

LJMP JA1

START :…

SETB IT0 ;脉冲下降沿触发外中断

MOV TMOD,#10H ;T0工作在定时。方式1

SETB EX0 ;开外中断

SETB ET0 ;开定时中断

SETB EA ;开总控制中断

下面计算SA4828初始化参数字。

① 载波频率设定字

由式(5-1)可得: 69.4512

10510125122361=???=?=-Hz Hz f f CARR CLK n 取12-n =4,所以n =3。载波频率设定字为001。

反算载波频率为:

KHz Hz f f n CLK CARR

86.52

51210122512261=??=?=- ②调制波频率范围设定字

由式(5-2)可得:

28.35860503843842=?=?=Hz

Hz f f CARR RANGE m 取42=m ,所以m=2。调制波频率范围设定字为010。

反算调制波频率范围为:

RANGE f =Hz Hz f m CARR 61384

2586038422

=?=? 所以寄存器R0的值应为010XXO11B ,即43H 。

③最小删除脉宽设定字

最小删除脉宽等于实际最小删除脉宽加上延迟时间,所us us us t PDT 18612=+=。 由式(5-3)得:

PDT t =127-512H Hz s f t CARR PDT 4973586010185121276==???-=??-

所以最小删除脉冲设定字为49H ,R1寄存器的值为49H 。

④脉冲延迟时间的设定字

由式(5-4)得:

DH Hz s f t n CARR PDY PDY 245586010651263512636==???-=??-=-

所以,脉冲延迟时间设定字为2DH ,即寄存器R2中的值是2DH 。

⑤波形选择字和AC 设定

选用高效波形,选择字是10;红相控制幅值,AC=0。所以,寄存器R3中的值为02H 。 ⑥看门狗设定

不用看门狗,所以寄存器R4,R5的值均为00H 。

SA4828初始化子程序:

MOV A ,#43H ;R0=43H

MOV DPTR ,#0000H ;指向R0的地址

MOVX @DPTR ,A ;43H 装入R0

INC DPTR ;指向R1的地址

MOV A ,#49H

MOVX @DPTR ,A ;49H 装入R1

INC DPTR ;指向R2的地址

MOV A ,#2DH

MOVX @DPTR ,A ;2DH 装入R2

INC DPTR ;指向R2的地址

MOV A ,#02H

MOVX @DPTR ,A ;02H 装入R3

INC DPTR ;指向R4的地址

MOV A ,#00H

MOVX @DPTR ,A ;00H 装入R4

INC DPTR ;指向R5的地址

MOVX @DPTR ,A ;00H 装入R5

MOV DPTR ,#000EH ;指向R14的地址

MOVX @DPTR ,A ;将六个寄存器的值写入

;SA4828初始化寄存器

(2)调速子程序计算:

假定用户由键盘输入的电动机转速,通过键处理程序进行转换,变成调制波频率值f POWER ,并将它存入内部RAM30H ;通过查U/F 曲线表,可以得到与调制波频率比相对

应的调压比A POWER ,并将它存入31H 中;其他控制参数如:正反转,输出锁存,看门

狗,相计数器复位,软复位,这些变量存入位操作区20H ,以便通过位操作来改变它们的值。

调制波频率字计算可由(5-6)式得:

PES n =f f RANGE POWER

?65536=

61

65536POWER f ?=1074POWER f 式中POWER f 和RANGE f 的点位相同,因此,PPS n 是无因次量。1074POWER f 可以看成一个双字节的无符号数于一个单字节无符号数的相乘,其积是一个双字节的无符号数。

调制波幅值控制字计算可由(5-7)式得:

A n =100255A POWER

?

这是2个单字节数相乘,再除以一个单字节的数,其结果是一个单字节数。 调速子程序就是要计算出A n 和PFS n 字,并将它送入SA4828的控制寄存器。 SPEED : MOV R2,#04H ;做乘法准备,求PFS n 字

MOV R3,#32H ;将1074(0432H )作为被乘数

MOV R6,#00H

MOV R7,#30H ;乘数为POWER f

LCALL QMUL ;调用乘法子程序

交流异步电动机变频调速原理

在异步电动机调速系统中,调速性能最好、应用最广的系统是变压变频调速系统。在这种系统中,要调节电动机的转速,须同时调节定子供电电源的电压和频率,可以使机械特性平滑地上下移动,并获得很高的运行效率。但是,这种系统需要一台专用的变压变频电源,增加了系统的成本。近来,由于交流调速日益普及,对变压变频器的需求量不断增长,加上市场竞争的因素,其售价逐渐走低,使得变压变频调速系统的应用与日俱增。下面首先叙述异步电动机的变压变频调速原理。 交流异步电动机变频调速原理: 变频器是利用电力半导体器件的通断作用把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。 现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。 变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。 交-直部分 整流电路:由VD1-VD6六个整流二极管组成不可控全波整流桥。对于380V的额定电源,一般二极管反向耐压值应选1200V,二极管的正向电流为电机额定电流的1.414-2倍。(二)变频器元件作用 电容C1: 是吸收电容,整流电路输出是脉动的直流电压,必须加以滤波, 变压器是一种常见的电气设备,可用来把某种数值的交变电压变换为同频率的另一数值的交变电压,也可以改变交流电的数值及变换阻抗或改变相位。 压敏电阻: 有三个作用,一过电压保护,二耐雷击要求,三安规测试需要. 热敏电阻:过热保护 霍尔: 安装在UVW的其中二相,用于检测输出电流值。选用时额定电流约为电机额定电流的2倍左右。 充电电阻: 作用是防止开机上电瞬间电容对地短路,烧坏储能电容开机前电容二端的电压为0V;所以在上电(开机)的瞬间电容对地为短路状态。如果不加充电电阻在整流桥与电解电容之间,则相当于380V电源直接对地短路,瞬间整流桥通过无穷大的电流导致整流桥炸掉。一般而言变频器的功率越大,充电电阻越小。充电电阻的选择范围一般为:10-300Ω。 储能电容: 又叫电解电容,在充电电路中主要作用为储能和滤波。PN端的电压电压工作范围一般在430VDC~700VDC 之间,而一般的高压电容都在400VDC左右,为了满足耐压需要就必须是二个400VDC的电容串起来作800VDC。容量选择≥60uf/A 均压电阻:防止由于储能电容电压的不均烧坏储能电容;因为二个电解电容不可能做成完全一致,这样每个电容上所承受的电压就可能不同,承受电压高的发热严重(电容里面有等效串联电阻)或超过耐压值而损坏。

基于PLC的交流电机变频调速系统

目录 1 绪论 (1) 1.1课题的背景 (1) 1.1.1 电机的起源和发展............................. 错误!未定义书签。 1.1.2 变频调速技术的发展和应用..................... 错误!未定义书签。 1.2本文设计的主要内容............................... 错误!未定义书签。 2 变频调速系统的方案确定 (4) 2.1变频调速系统 (4) 2.1.1 三相交流异步电动机的结构和工作原理 (4) 2.1.2 变频调速原理 (4) 2.1.3 变频调速的基本控制方式 (5) 2.2系统的控制要求 (6) 2.3方案的确定 (6) 2.3.1 电动机的选择 (6) 2.3.2 开环控制的选择 (7) 2.3.3 变频器的选择 (7) 4 变频调速系统的硬件设计 (8) 4.1S7-200PLC (8) 4.2M ICRO M ASTER420变频器 (8) 4.3外部电路设计 (9) 4.3.1 变频开环调速 (9) 4.3.2 数字量方式多段速控制 (11) 4.3.3 PLC、触摸屏及变频器通信控制 (12) 5 变频调速系统的软件设计 (14) 5.1编程软件的介绍 (14)

5.2变频调速系统程序设计 (15) 6 触摸屏的设计 (23) 6.1触摸屏的介绍 (23) 6.2MT500系列触摸屏 (25) 6.3触摸屏的设计过程 (26) 6.3.1 计算机和触摸屏的通信 (26) 6.3.2 窗口界面的设计 (27) 6.3.3 触摸屏工程的下载 (31) 7 PLC系统的抗干扰设计 (33) 7.1 变频器的干扰源 (33) 7.2干扰信号的传播方式 (33) 7.3 主要抗干扰措施 (34) 7.3.1 电源抗干扰措施 (34) 7.3.2 硬件滤波及软件抗干扰措施 (34) 7.3.3 接地抗干扰措施 (34) 结论 (36) 致谢 ................................................ 错误!未定义书签。参考文献 .. (37)

交流异步电动机变频调速系统设计样本

中南大学 《工程训练》 ——设计报告 设计题目:异步电机变频调速 指引教师:黎群辉 设计人:冯露 学号: 专业班级:自动化0906班 设计日期:9月

交流异步电动机变频调速系统设计 摘要 近年来,交流电机变频调速及其有关技术研究己成为当代电气传动领域一种重要课题,并且随着新电力电子器件和微解决器推出以及交流电机控制理论发展,交流变频调速技术还将会获得巨大进步。 本文对变频调速理论,逆变技术,SPWM产生原理进行了研究,在此基本上设计了一种新型数字化三相SPWM变频调速系统,以8051控制专用集成芯片 SA4828为控制核心,采用IGBT作为主功率器件,同步采用EXB840构成IGBT驱动电路,整流电路采用二极管,可使功率因数接近1,并且只用一级可控功率环节,电路构造比较简朴。 V控制,同步,软件程序使得参数输入和变频器运营方式变本文在控制上采用恒 f 化极为以便,新型集成元件采用也使得它开发周期短。 此外,本文对SA4828三相SPWM波发生器使用和编程进行了详细简介,完毕了整个系统控制某些软硬件设计。 V控制,SA4828波形发生器 核心字:变频调速,正弦脉宽调制, f

目录 摘要................................................ 错误!未定义书签。 1.1 研究目与意义 (1) 1.2本次设计方案简介 (2) 1.2.1 变频器主电路方案选定 (2) 1.2.2 系统原理框图及各某些简介 (3) 1.2.3 选用电动机原始参数 (4) 2交流异步电动机变频调速原理及办法 (5) 2.1 异步电机变频调速原理 (5) 2.2 变频调速控制方式及选定 (6) V比恒定控制 (6) 2.2.1 f 2.2.2 其他控制方式................................ 错误!未定义书签。3变频器主电路设计. (13) 3.1 主电路工作原理 (13) 3.2 主电路各某些设计 (13) 3.3. 采用EXB840IGBT驱动电路 (15) 4控制回路设计 (16) 4.1 驱动电路设计 (16) 4.2 保护电路......................................... 错误!未定义书签。 4.2.1 过、欠压保护电路设计........................ 错误!未定义书签。 4.2.2 过流保护设计................................ 错误!未定义书签。 4.3 控制系统实现 (19) 5变频器软件设计....................................... 错误!未定义书签。 5.1 流程图 (22)

交直交变频器详细说明书

交直交变频器 一变频器开发基础 三相交流异步电动机发明于1881年,一经问世,便以起结构简单,坚固,价格低廉二迅速的在电力拖动领域成为拖动系统中"骄子"。但正式由于其结构,在调速性能上使其失去欢颜。从异步电动机的转速公式n=60f/p(1-s) ,可知。除变频{f}调速以外,异步电机调速基本途径有:1改变极对数{p}。2改变转差率{s}。显然其调速缺点为调速范围低,工作效率下降,负载能力不一致,消耗电能多,机械特性较软,控制电路较复杂。科技的进步,社会的发展,要求生产机械对电动机进行无级调速满足工艺要求是多么的迫切。 随着20世纪60年代功率晶闸管{SCR},70年代功率晶体管{GTR},可关断晶闸管{GTO},80年代绝缘栅双极晶体管{IGBT}的相继开发,把变频器由希望,推广,发展到今天的普及阶段。 二变频器基本结构 目前应用的最广泛的是交直交变频器,其基本结构如图所示: 其工作过程是先将三相{或单相}不可调工频电源经过整流桥整流成直流电,再经过逆变桥把直流电逆变成频率任意可调的交流电,以实现无级调速。 逆变器的原理框图 三功率部分 交直交变频器的主电路如图所示,变频器调速过程中出现的许多现象都应通过主电路来进行分析,因此,熟悉主电路的结构,透彻了解各部分的原理,具有十分重要的意义。 1 交-直变换电路 ⑴图I(VD1-VD6)为交直变换全波整流电路,在中小容量变频器中,整流器件采用不可控整流二极管或二极管模块。(2)图中(CF1 CF2)为滤波电容器,由于交流电被整流出的直流电中会有交流含量,为了获取平稳的直流电而设置滤波电容。(3)因为电解电容器的电容量有较大的离散性,故电容器组CF1 和CF2的电容量常不能完全相等,这将导致各自压降不相等。为了使其压降相等,在CF1 CF2旁各并联一个阻值相等的均压电阻RC1和RC2。(4)(RH HL)为电源指示电路,除此之外HL也具有提示保护的作用,当变频器

第一节 交流异步电动机变频调速原理

第一节 交流异步电动机变频调速原理 根据电机学原理,交流异步电动机的转速可表示为: )1(**60s p f n -= (2-1-1) 式中: n 一 电动机转速/分钟,单位:r/min ; p 一 电动机磁极对数; f 一 电源频率,单位:Hz ; s 一 转差率,10<

I 一 定子绕组的相电流; r 一 定子绕组电阻与转子绕组电阻折算到定子侧的电阻之和。 交流异步电动机的定子绕组的感应电动势是定于绕组切割旋转磁场磁力线的结果, 其 有效值计算如下: E = K * f * Φ (2-1-3) 式中:K 一 与电动机结构有关的常数; f 一 电源频率; Φ 一 磁通量 。 由式(2-1-2)知,加在电机绕组端的电源电压U,一部分产生感应电动势E,另一部 分消耗在电阻 r ( 定子绕组电阻与转子绕组电阻折算到定子侧的电阻之和 )上 。其中定 子绕组的相电流 I 由两部分构成: 21I I I += (2-1-4) 电机的定子电流有一小部分1I 用于建立磁场的主磁通,其余大部分2I 用于产生拖动负 载的电磁力。 由式 (2-1-1)知,调整电源频率f 时,可以调节速度n 。 当电源频率f 下降时,由 式 (2-1-3)知,感应电动势随之比例减小;在相电压U 保持不变的情况下,由式(2-1-2) 知,定子绕组的相电流I 相应增大。在很多情况下,电机的负载是基本恒定的,因此用于产 生电磁力的电流2I 是基本不变的,于是1I 将增大;1I 的增大将直接导致主磁通的增大。由 式 (2-1-3),主磁通的增大,将引起感应电动势E比例增大;由式(2-1-2),感应电动势 E的增大将使定子电流I 减小。不难理解,通过这样的负反馈,电机将最终稳定在一个新的 工作点。 这样的控制方法看起来似乎没有问题。但实际情况是主磁通容量上限与电机的铁芯有 关。电机的铁芯受制于重量、体积、成本等因素的考虑,不可能做的很大。对于电机设计来 说,设计目标之一就是:当电机处于额定工作状态下时,主磁通接近容量上限。上述的变频 调速方法工作在额定频率以下时,将会导致铁心磁饱和,引起电流波形畸变,有效力矩下降; 严重时,将导致电机发热过快,振动和噪音加大;工作在额定频率以上时,铁心处于弱磁状 态,电磁力矩不足,电机的机械特性变软(转差率s 变大),带载能力下降。 结论:通过只调节电源频率来调节速度的方法不可取。

三相异步电动机变频调速

一、三相异步电动机变频调速原理 由于电机转速n 与旋转磁场转速1n 接近,磁场转速1n 改变后,电机转速n 也就随之变化,由公式1 160f n p =可知,改变电源频率1f ,可以调节磁场旋转,从而改变电机转速,这种方法称为变频 调速。 根据三相异步电动机的转速公式为 ()()1 16011f n s n s p = -=- 式中1f 为异步电动机的定子电压供电频率;p 为异步电动机的极对数;s 为异步电动机的转差率。 所以调节三相异步电动机的转速有三种方案。异步电动机的变压变频调速系统一般简称变频调速系统,由于调速时转差功率不变,在各种异步电动机调速系统中效率最高,同时性能最好,是交流调速系统的主要研究和发展方向。 改变异步电动机定子绕组供电电源的频率1f ,可以改变同步转速n ,从而改变转速。如果频率1f 连续可调,则可平滑的调节转速,此为变频调速原理。 三相异步电动机运行时,忽略定子阻抗压降时,定子每相电压为 1111m 4.44m U E f N k φ≈= 式中1E 为气隙磁通在定子每相中的感应电动势;1f 为定子电源频率;1N 为定子每相绕组匝数; m k 为基波绕组系数,m φ为每极气隙磁通量。 如果改变频率1f ,且保持定子电源电压1U 不变,则气隙每极磁通m φ将增大,会引起电动机铁芯磁路饱和,从而导致过大的励磁电流,严重时会因绕组过热而损坏电机,这是不允许的。因此,降低电源频率1f 时,必须同时降低电源电压,已达到控制磁通m φ的目的。 .1、基频以下变频调速 为了防止磁路的饱和,当降低定子电源频率1f 时,保持 1 1 U f 为常数,使气每极磁通m φ为常数,应使电压和频率按比例的配合调节。这时,电动机的电磁转 矩为 ()()2 22 2 11 1 111 2 12222111211222p r r m pU f m U s s T f r r f r x x r x x s s ππ?? ?? ?? ??? ??? ?? ??? ''??= = ?''????'+++'+++ ? ? ? [1][8]

(交流电机变频调速系统设计)

机电传动与控制课程综合训练三 一、综合训练项目任务书 综合训练项目:交流电机变频调速系统 目的和要求:加强对交流变频调速系统及变频器的理解;应用交流变频调速系统及变频器解决交流电机变频调速问题。提高分析和解决实际工程问题的能力。促成“富于探索精神,具有较强的自学能力、开拓创新意识和敏锐的观察事物以及分析处理事物的能力”的目标实现。 成果形式:交流电机变频调速系统设计说明书。 相关参数:参看《机电传动控制》(第五版),冯清秀等编著,华中科技大学出版社,P291~316。 一、综合训练项目设计内容 1.变频调速系统 1.1 三相交流异步电动机的结构和工作原理 三相交流异步电动机是把电能转换成机械能的设备。一般电动机主要由两部分组成:固定部分称为定子,旋转部分称为转子。三相交流异步电动机的工作原理是建立在电磁感应定律、全电流定律、电路定律和电磁力定律等基础上的。当磁极沿顺时针方向旋转,磁极的磁力线切割转子导条,导条中就感应出电动势。电动势的方向由右手定则来确定。因为运动是相对的,假如磁极不动,转子导条沿逆时针方向旋转,则导条中同样也能感应出电动势来。在电动势的作用下,闭合的导条中就产生电流。该电流与旋转磁极的磁场相互作用,而使转子导条受到电磁力,电磁力的方向可用左手定则确定。由电磁力进而产生电磁转矩,转子就转动起来。 1.2 变频调速原理 变频器可以分为四个部分,如图1.1所示。 通用变频器由主电路和控制回路组成。给异步电动机提供调压调频电源的电力变换部分,称为主电路。主电路包括整流器、中间直流环节(又称平波回路)、逆变器。

图1.1 变频器简化结构图 ⑴整流器。它的作用是把工频电源变换成直流电源。 ⑵平波回路(中间直流环节)。由于逆变器的负载为异步电动机,属于感性负载。无论电动机处于电动状态还是发电状态,起始功率因数总不会等于1。因此,在中间直流环节和电动机之间总会有无功功率的交换,这种无功能量要靠中间直流环节的储能元件—电容器或电感器来缓冲,所以中间直流环节实际上是中间储能环节。 ⑶逆变器。与整流器的作用相反,逆变器是将直流功率变换为所要求频率的交流功率。逆变器的结构形式是利用6个半导体开关器件组成的三相桥式逆变器电路。通过有规律的控制逆变器中主开关的导通和断开,可以得到任意频率的三相交流输出波形。 ⑷控制回路。控制回路常由运算电路,检测电路,控制信号的输入、输出电路,驱动电路和制动电路等构成。其主要任务是完成对逆变器的开关控制,对整流器的电压控制,以及完成各种保护功能。控制方式有模拟控制或数字控制。 2.系统的控制模型 本系统的结构如图1.2所示。

(完整版)异步电动机变频调速系统..

《自动控制元件及线路》 课程实习报告 异步电动机变频调速系统 1.4.1 系统原理框图及各部分简介 本文设计的交直交变频器由以下几部分组成,如图1.1所示。

图1.1 系统原理框图 系统各组成部分简介: 供电电源:电源部分因变频器输出功率的大小不同而异,小功率的多用单相220V,中大功率的采用三相380V电源。因为本设计中采用中等容量的电动机,所以采用三相380V电源。 整流电路:整流部分将交流电变为脉动的直流电,必须加以滤波。在本设计中采用三相不可控整流。它可以使电网的功率因数接近1。 滤波电路:因在本设计中采用电压型变频器,所以采用电容滤波,中间的电容除了起滤波作用外,还在整流电路与逆变电路间起到去耦作用,消除干扰。 逆变电路:逆变部分将直流电逆变成我们需要的交流电。在设计中采用三相桥逆变,开关器件选用全控型开关管IGBT。 电流电压检测:一般在中间直流端采集信号,作为过压,欠压,过流保护信号。控制电路:采用8051单片机和SPWM波生成芯片SA4828,控制电路的主要功能是接受各种设定信息和指令,根据这些指令和设定信息形成驱动逆变器工作的信号。这些信号经过光电隔离后去驱动开关管的关断。 1.4.2 变频器主电路方案的选定 变频器最早的形式是用旋转发电机组作为可变频率电源,供给交流电动机。随着电力半导体器件的发展,静止式的变频电源成为了变频器的主要形式。静止式变频器从变换环节分为两大类:交-直-交变频器和交-交变频器。 1.交-交型变频器:它的功能是把一种频率的交流电直接变换成另一种频率可调电压的交流电(转换前后的相数相同),又称直接式变频器。由于中间不经过直流环节,不需换流,故效率很高。因而多用于低速大功率系统中,如回转窑、轧钢机等。但这种控制方式决定了最高输出频率只能达到电源频率的1/3~1/2,所以不能高速运行。 2.交-直-交型变频器:交-直-交变频器是先把工频交流通过整流器变成直流,然后再直流变换成频率电压可调的交流,又称间接变频器,交-直-交变频器是目前广泛应用的通用变频器。它根据直流部分电流、电压的不同形式,又可分为电压型和电流型两种:(1)电流型变频器 电流型变频器的特点是中间直流环节采用大电感器作为储能环节来缓冲无功功率,即扼制电流的变化,使电压波形接近正弦波,由于该直流环节内阻较大,故称电流源型变频器。 (2)电压型变频器 电压型变频器的特点是中间直流环节的储能元件采用大电容器作为储能环节来缓冲无功功率,直流环节电压比较平稳,直流环节内阻较小,相当于电压源,故称电压型变频器。 由于电压型变频器是作为电压源向交流电动机提供交流电功率,所以其主要优点是

交流异步电动机变频调速系统

摘要 现在流行的异步电动机的调速方法可分为两种:变频调速和变压调速,其中异步电动机的变频调速应用较多,它的调速方法可分为两种:变频变压调速和矢量控制法,前者的控制方法相对简单,有二十多年的发展经验。因此应用的比较多,目前市场上出售的变频器多数都是采用这种控制方法。本设计采用恒压变频调速并在MTALAB运行环境下进行仿真设计并运行仿真模型得出结论。 关键词:交流调速系统, 异步电动机, PWM技术MATLAB.....

目录 摘要................................ 错误!未定义书签。第一章前言.......................... 错误!未定义书签。 1.1 设计的目的和意义................. 错误!未定义书签。 1.2变频器调速运行的节能原理......... 错误!未定义书签。第二章交流异步电动机............... 错误!未定义书签。 2.1交流异步电动机变频调速基本原理 ... 错误!未定义书签。 2.2变频变压(VVVF)调速时电动机的机械特性 (6) 2.3变压变频运行时机械特性分折 (7) 第三章变频技术简介和控制方法 (11) 3.1 变频调速技术简介 (11) 3.2变频器工作原理及分类 (12) 3.3 交流调速的基本控制方法 (18) 3.4脉冲宽度调制(PWM)技术 (21) 第四章异步电动机变频调速系统设计的仿真和实现 (24) 4.1 MATLAB的编程环境 (24) 4.2仿真结果 (29) 结论 (30) 致谢.............................. 错误!未定义书签。参考文献............................ 错误!未定义书签。

交流异步电动机变频调速系统设计

湖南工程学院应用技术学院毕业设计说明书 目:题 专业班级:号:学学生姓名: 完成日期: 指导教师: 评阅教师:

2011 年 6 月

院术学学院应用技湖南工程务任书(论文)毕业设计 设计(论文)题目:交流异步电机的调速控制系统设计 姓名专业班级学号 指导老师职称教研室主任 一、基本任务及要求: 主要设计完成可控硅交流调压调速系统的设计,主要完成: (1)交流调压调速的原理和调压调速的静、动态性能分析; (2)系统组成与工作原理; (3)主电路与控制电路设计; (4)元器件选型及参数计算; (5)软件设计; (6)系统应用与调试说明。 二、进度安排及完成时间: (1)第一至第三周:查阅资料,撰写文献综述和开题报告。 (2)第四周至第五周:毕业实习。 (3)第六周至第七周:交流调压调速的原理和调压调速的静、动态性能分析。 (4)第八周至第九周:系统组成与工作原理;主电路与控制电路设计。

(5)第十周至第十二周:元器件选型及参数计算;软件设计;系统应用与调试说明。 (6)第十三周至第十五周:撰写毕业设计论文。 (7)第十六周:毕业设计答辩 目录 摘 要 .................................................................. .... I ABSTRACT ............................................................ ..... II 第1章绪 论 (1) 1.1 变频调速技术简介 ................................................. 1 1.2 变频器的发展现状和趋 势 (2) 1.2.1 变频器的发展现状 ............................................. 2 1.2.2 变频器技术的发展趋势 ......................................... 2 1.2 研究的目的与意义 ................................................. 3 1.3 本次设计方案简 介 (4) 1.3.1 变频器主电路方案的选定 ....................................... 4 1.3.2 系统原理框图及各部分简介 ..................................... 5 1.3.3 选用电动机原始参数 ........................................... 6 第2章交流异步电动机变频调速原理及方 法 (7)

三相异步电动机变频调速的课程设计

课程报告 课程名称:三相异步电动机变频调速的实现学生姓名:刘佐威王一哲王宇洋赵馨雨专业班级: 12级电气一班 2016 年 1月 4日

摘要 变频调速是一种典型的交流电动机调速方法,交流电动机采用变频调速技术不仅能够实现无级调速,而且可以根据负载的不同,通过适当调节电压和频率的关系,使电机始终在高效率区运行,并且保证良好的动态性能,因而被广泛使用。 目前,世界上有60%左右的发电量是通过电动机消耗的。据统计,我国各类电动机的装机容量已超过4亿kW,其中异步电动机约占90%,拖动风机、水泵及压缩机类机械的电动机约1.3亿kW。在目前4亿kW的电动机负载中,约有50%的负载是变动的,其中的30%可以使用电动机调速。虽然,有专门为变频调速系统而设计的变频调速电机,但是由于变频调速电机价格较贵,所以在大多数有调速要求的系统中都是变频器和普通交流异步电机组成的调速系统[4]。但是,在实际生产中,还只是凭借经验确定交流异步电机运行的频率范围,而对普通交流异步电机在频率改变时,电机的各项性能指标的大小和变化情况还没有定量研究。在本文中,我们以Y100L1-4普通三相交流异步电机和松下VF-8X变频器组成的变频调速系统为测试对象,测试普通交流异步电机在频率改变时的各项性能指标,以这些实验数据为依据,进而分析确定普通交流异步电机变频调速的最佳调速范围。在测试中所有的实验均按照国标中三相异步电机型式实验的相关规定进行。 课程目的 笼式三相异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。正由于此,通过此课程设计,实现三相异步电动机的变频调速控制与应用。 课程意义 这次课程设计可以使我们在学校学的理论知识用到实践中,使我们在学习中起到主导地位,是我们在实践中掌握相关知识,能够培养我们的职业技能,课程设计是以任务引领,以工作过程为导向,以活动为载体,给我们提供了一个真实的过程,通过设计和运行,反复调试、训练、便于我们掌握规范系统的电机方面的知识,同时也提高了我们的动手能力。 课程内容 在这次课程设计中,我们的主要工作在于 1. 电机的结构与工作原理 2. 变频器的结构与原理 3. 变频器的调速方法及工作过程

7、交流电动机调速及变频原理

交流电动机调速及变频原理 一、交流异步电动机调速的基本类型 交流调速系统的主要类型 交流电机主要分为异步电机(即感应电机)和同步电机两大类,每类电机又 有不同类型的调速系统。现有文献中介绍的异步电机调速系统种类繁多,可按照不同的角度进行分类。 1、交流异步电动机调速的基本类型 由异步电动机的转速公式:min)/)(1(60r s p f n -= 可知,异步电动机有下列三种基本调速方法: (1)改变定子极对数p 调速。 (2)改变电源频率1f 调速。 (3)改变转差率s 调速。 异步电动机的调速方式: 1.1 变频调速 交流变频调速技术的原理是把工频50Hz 的交流电转换成频率和电压可调的交流电,通过改变交流异步电动机定子绕组的供电频率,在改变频率的同时也改变电压,从而达到调节电动机转速的目的。

它与直流调速系统相比具有以下显著优点: (1)变频调速装置的大容量化。 (2)变频调速系统调速范围宽,能平滑调速,其调速静态精度及动态品质好。 (3)变频调速系统可以直接在线起动,起动转矩大,起动电流小,减小了对电网和设备的冲击,并具有转矩提升功能,节省软起动装置。 (4)变频器内置功能多,可满足不同工艺要求;保护功能完善,能自诊断显示故障所在,维护简便;具有通用的外部接口端子,可同计算机、PLC 联机,便于实现自动控制。 (5)变频调速系统在节约能源方面有着很大的优势,是目前世界公认的交流电动机的最理想、最有前途的调速技术。其中以风机、泵类负载的节能效果最为显著,节电率可达到20%~60%。 1.2变极调速 磁极对数 p 的改变,取决于电动机定子绕组的结构和接线。通过改变定子绕组的接线,就可以改变电动机的磁极对数。 1.3 变转差率调速 1.3.1、改变定子电压调速 ??交流调压调速 异步电动机的机械特性方程式: ])()/[(/32'21212' 211' 221l l e L L s R R s R pU T +++=ωω

交流变频调速电机原理

交流变频调速基本原理 一.异步电动机概述 1.异步电动机旋转原理 异步电动机的电磁转矩是由定子主磁通和转子电流相互作用产生的。 ⑴磁场以n0转速顺时针旋转,转子绕组切割磁力线,产生转子 电流 ⑵通电的转子绕组相对磁场运动,产生电磁力 ⑶电磁力使转子绕组以转速n旋转,方向与磁场旋转方向相同 2.旋转磁场的产生 旋转磁场实际上是三个交变磁场合成的结果。这三个交变磁场应满足: ⑴在空间位置上互差2π/3 rad电度角。这一点,由定子三相绕 组的布置来保证

⑵在时间上互差2π/3 rad相位角(或1/3周期)。这一点,由通 入的三相交变电流来保证 3.电动机转速 产生转子电流的必要条件是转子绕组切割定子磁场的磁力线。因此,转子的转速n必须低于定子磁场的转速n0,两者之差称为转差: Δn=n0-n 转差与定子磁场转速(常称为同步转速)之比,称为转差率:s=Δn / n0 同步转速n0由下式决定: n0=60 f / p 式中,f为输入电流的频率,p为旋转磁场的极对数。 由此可得转子的转速 n=60 f(1-s)/ p 二.异步电动机调速 由转速n=60 f(1-s)/ p可知异步电动机调速有以下几方法: 1.改变磁极对数p (变极调速) 定子磁场的极对数取决于定子绕组的结构。所以,要改变p,必须将定子绕组制为可以换接成两种磁极对数的特殊形式。 通常一套绕组只能换接成两种磁极对数。 变极调速的主要优点是设备简单、操作方便、机械特性较硬、

效率高、既适用于恒转矩调速,又适用于恒功率调速;其缺点是有极调速,且极数有限,因而只适用于不需平滑调速的场合。2.改变转差率s (变转差率调速) 以改变转差率为目的调速方法有:定子调压调速、转子变电阻调速、电磁转差离合器调速、串极调速等。 ⑴定子调压调速 当负载转矩一定时,随着电机定子电压的降低,主磁通减少,转子感应电动势减少,转子电流减少,转子受到的电磁力减少,转差率s增大,转速减小,从而达到速度调节的目;同理,定子电压升高,转速增加。 调压调速的优点是调速平滑,采用闭环系统时,机械特性较硬,调速范围较宽,缺点是低速时,转差功率损耗较大,功率因素低,电流大,效率低。调压调速既非恒转矩调速,也非恒功率调速,比较适合于风机泵类特性的负载。 分体机上的室内风机就是利用定子电压调速的方法进行调速的,其调速电路如下图。 根据风机速度的反馈信号,控制晶闸管SCR导通的相角,从而控制风机定子的输入电压,以控制风机的风速。 前面讲在空间位置上互差2π/3 rad电度角的三相绕组通以在时间上互差2π/3 rad相位角(或1/3周期)三相交变电流可产生旋转磁场,同样,在空间位置上互差π/2 rad电度角的两相绕组通以在时间上互差π/2 rad相位角(或1/2周期)两相交变电

第六章 交流异步电动机变压变频调速系统精讲

第六章 交流异步电动机变压变频调速系统 本章主要问题: 1. 在变频调速中变频时为什么要保持压频比恒定? 2. 交-直-交电压源型变频器调压、调频的有哪几种电路结构,并说明各种电压结构的优缺点。 3. SPWM 控制的思想是什么? 4. 什么是1800导通型变频器?什么是1200导通型变频器? 5. 电压、频率协调控制有几种控制方式,各有哪些特点? 6. 在转速开环恒压频比控制系统中,绝对值单元GAB 的作用?函数发生器GFC 的作用?如 何控制转速正反转。 7. 总结恒11 ωU 、恒1ωg E 、恒1ωr E 三种控制方式的特点。 ———————————————————————————————————————— §6-1 交流调速的基本类型 要求:掌握交流调速哪几种基本类型有以及各种调速方法的特点。 目的:能根据不同应用场合选择出相应的调速方式。 重点、难点:变频调速时基频以下和基频以上调速的特点 主要内容(交流调速的基本类型、变频调速的基本要求) 思考: 1. 交流异步电动机调速的方式有哪几种?并写出各方式的优缺点? 2. 在变频调速中变频时为什么要保持压频比恒定? 教学设计:交流调速的基本类型采用多媒体课件讲授,用大量的实例,说明几种类型的应用场合。 复习感应电动机转速表达式: )1(60)1(1 0s n f s n n p -= -= 异步电动机调速方法:?? ?? ??? ?????? ? ??型变频调速:绕线式、笼:绕线式串级调速(转差电压)电磁转差离合器调转子电阻:绕线式、调压(定子电压)变转差率调速变极调速:笼型异步机异步电动机 §6-2 变频调速的构成及基本要求 目的、教学要求:掌握变频调速时基频以下和基频以上调速的特点 重点、难点:变频调速时基频以下和基频以上调速的特点 主要内容(变频调速的基本要求)

交直交变频调速设计及仿真

摘要 近些年来,随着现代电力电子技术、计算机技术和自动控制技术的迅速发展,交流传动与控制技术成为目前发展最为迅速的技术之一,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。变频调速技术的迅速发展被越来越多的应用于电机控制领域中,是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其优异的调速和起制动性能,高效率、高功率因数和节电效果,以及广泛的适用范围和调速时因转差功率不变而无附加能量损失等优点而被国内外公认为是最有发展前途的高效调速方式。所以,对交—直—交变频调速系统的基本工作原理和特性的研究是十分有积极意义的。 本文研究了变频调速系统的基本组成部分,主回路主要有三部分组成:将工频电源变换为直流电源的“整流器”;吸收由整流器和逆变器回路产生的电压脉动的“滤波回路”,也是储能回路;将直流功率变换为交流功率的“逆变器”。以Matlab/Simulink为仿真工具,搭建交—直—交变频调速系统的仿真模型,并对仿真结果进行分析研究。通过仿真试验对该交—直—交变频调速系统的基本工作原理、工作特性及作用有更深的认识,也对谐波对于交—直—交变频调速系统的影响有了一定的了解。 第一章绪论 1.1 交流调速技术发展概况 在很长的一个历史时期内,直流调速系统以其所具有优良的静、动态性能指标垄断调速传动应用领域。但是随着生产技术的不断发展,直流电机的缺点逐步显示出来,由于机械式换向器的存在使直流电机的维护工作量增加并限制了电机容量、电压、电流和转速的上限值,加之故障率高、效率低、成本高、使用环境受限等缺点,使其在一些大容量的调速领域中无法应用。 而异步电动机特别是鼠笼异步电动机,容量、电压、电流和转速的上限,不像直流电动机那样受限制。而且异步电动机的转子绕组不需与其他电源相连,其

异步电动机变频调速

异步电动机变频调速 第一节异步电动机基本知识 1、概述 由于大功率电力电子技术(GTO、IGBT、IGCT等器件)和计算机技术的迅速发展,异步电动机也可象直流电动机一样,其速度可在大的速度范围内进行调节。因而,在工业电力拖动和铁道电力牵引等行业,大量采用异步电动机代替直流电动机,以降低设备的投资和维修成本。 2、异步电动机基本方程和特性 2.1、转速方程式 异步电动机的转速方程为:n=60f1/p(1-s)=n1(1-s) 式中:n-电动机转速(rpm) f1-定子供电频率(Hz) s-转差率 p-电动机极对数 n1-定子旋转磁场的同步速度(rpm) 2.2电压方程式 U1=E1+IZ U1≈E1=4.44 f1WK1Φ(V) U1-定子每相电压(V) E1-定子每相反电势(V) W-定子每相绕组匝数 K1-基波绕组系数 Φ-每极气隙磁通(韦伯) 2.3 等效电路图 异步电动机等效电路图如图1: 图1 异步电动机等效电路图 r1-定子绕组电阻x1-定子绕组漏抗 r m-定子激磁电阻x m-定子激磁电抗 r’2-转子绕组电阻(归算到定子側) x’2-转子绕组漏抗(归算到定子側) r2-负载等效电阻

2.4 机械特性 异步电动机转矩-转速特性如图2所示: 图2 异步电动机转矩-转速特性 第二节鼠笼式异步电动机的起动和调速 1、鼠笼式异步电动机传统的起动方法 在各种旋转电机中,鼠笼式异步电动机是最为简单的一种,它有很多的优点。 从使用的角度耒看,它价格低廉、构造简单、坚实可靠、维护容易;从性能上耒看,它漏磁通较小,功率因数较高,过载能力较大。其缺点是起动特性较差,即在额定电压下起动时,起动电流大,起动时的功率因数很低,起动时的转矩小。 为了降低在额定电压下起动时的起动电流,传统的方法有: 1)在定子线路中串联电抗器起动,如图3所示: 图3 串联电抗器起动 其缺点是如降低起动电流50%,则起动转矩将降低75%(与额定电压下起动

交流电动机变频调速

第一变频调速技术的发展及应用 近十年来,随着电力电子技术、微电子学、计算机技术、自动控制技术的迅速发展,电力传动领域正发生着交流调速取代直流调速和计算机数字控制技术取代模拟控制技术的革命。交流变频调速以其优异的调速和起、制动性能,高效率、高功率因数和节电效果,被国内外公认为最有发展前途的调速方式,成为当今节电、改善工艺流程以及提高产品质量和改善环境、推动技术进步的一种主要手段。 一、我国变频调速技术的发展概况 在电气传动领域,人们关心的是如何合理地使用电动机以节约电能和有目的地控制机械的运转状态(位置、速度、解速度等),在实现电能-机械能之间的转换过程中达到优质、高产、低能的目的。近几年来交流调速中最活跃、发展最快的就是变频调速技术,是交流调速的基础和主干内容,其根本原因在于变频调速在节能和调速特性等方面优良的特性优于其他调速方式,当然,电力电子器件发展、计算机技术、自动控制技术的迅速发展也为它的实现提供了基础。 我国关于变频器的研究开始于20世纪60年代初期,当时典型的技术是交-交变频器供电的交流变频调速传动;继此之后80年代主体技术为电压或电流型六脉冲逆变器供电的交流变频调速传动;从90年代中期至今,随着电力电子器件、调速技术以及控制技术的发展,BJT(IGBT)PWM逆变器供电的交流变频调速传动空前发展,并得到广泛的应用。 目前国内变频调速方面主要的产品状况如下。 (1)在中、小功率变频调速中主要是IGBT的PWM逆变器供电的交流变频调速设备。产品应用的范围从单机到全生产线;控制方式从简单的U/f控制到高调速性能的矢量控制,但目前U/f控制占主体,矢量控制数量还较少。 (2)电流源型晶闸管逆变器供电的交流变频调速设备。 (3)交-交变频器供电的交流变频调速设备。 二、国外变频调速技术的现状 当前国外交流变频调速技术高速发展,主要有以下几个特点: (1)近几年来不断涌现出SCR,GTO,IGBT,IGCT等高电压、大电流的大功率电力电子器件以及大功率器件的并联、串联技术的发展应用,使得高电压、大功率变频器产品的生产及应用得到很大的发展。 (2)矢量控制、磁链控制、直接转矩控制、模糊控制等新的控制理论为高性能的变频器提供了理论基础;16位、32位高速处理微处理器,数字信号处理器(DSP),精简指令集计算机(RISC)和高级专用集成电路(ASIC)技术的快速发展,使得变频器朝高精度、多功能化方向发展。国外产品已实现控制全数字化、产品系列化、功能多样化,产品已进入很成熟的阶段。 (3)由于相关的基础工业和各种制造业的高速发展,已经使变频调速装置相关配套件的生产社会化、专业化,产品可靠性更高。 二、变频调速技术未来发展趋势 交流变频调速技术是强、弱电混合,机电一体化的综合性技术。它分为功率级和控制级两大部分。功率级部分是要解决高电压、大电流方面的技术问题和新型电力电子器件的应用技术问题;控制级部分是要解决数字化控制的硬、软件开发问题。鉴于这两方面,未来变频调速技术的发展方向主要有以下几点: (1)各种控制方法的深入研究与实现,进一步提高变频调速性能。 (2)进一步提高变频器的功率因数,降低网侧和负载侧的谐波,以减少对电网的污染和电动机的转矩脉冲。

异步电动机的变频调速控制方式

异步电动机的变频调速控制方式

为了更好地在整体上对异步电动机的变频调速控制方式加以认识,本文简要介绍了异步电动机调速的基本方法。按时间顺序综述了异步电动机变频调速的经典控制方式的基本原理,分析了它们的优缺点,并给出了实际应用。对所述各种控制方式之间的内在联系和区别进行了归纳和总结。对未来异步电动机变频调速控制方式的发展做出了展望,为异步电动机变频调速控制方式的研究提供了参考。 1 引言 由电机理论[1]可知,异步电动机转速公式为: 60(1)f s n p -= (1) 其中:n —异步电动机的转速 f —电源频率 s —转差率 p —极对数 由式(1)知,异步电动机的调速可通过变频、变极对数和变转差率实现。本文只讨论异步电动机的变频调速策略。 自上个世纪90年代以来,近代交流调速步入以变频调速为主的发展阶段,其间,由于各种新型电力电子器件的支持,使变频调速在低压(380V )中小容量(200KW 以下)方面取得了较大发展[2]。 通常,为了充分发挥电动机的性能,应保持定子磁链幅值为额定值。由电机学的知识可知,异步电机气隙磁通在定子绕组中的感应电势有效值:

4.44s s s m E fN K φ= (2) 其中: s E —气隙磁通在定子绕组中的感应电势; s f —定子电流频率; m φ—每极气隙磁通; s N —绕组匝数; s K —系数 可见,只要控制s E 和s f ,即可控制磁通。 由定子电压平衡关系(式中只表示大小): 1111()s U I r jX E =++ (3) 其中: 1U —电动机的端电压 1I —定子电流; 1r —定子电阻; 1X —定子漏抗; 当定子电流频率s f 较高时,感应电势s E 的有效值就较大,可以认 为定子相电压有效值1U =s E 。由此,可以通过控制使/U f 恒定,使磁 通恒定。要恒U/f 控制,就必须使频率和输出电压同时改变,这就是变压变频,即VVVF(Variable Voltage Variable Frequency)调速技术。