伽玛函数

伽玛函数

伽玛函数(Gamma Function)作为阶乘的延拓,通常写成

在实数域上伽玛函数定义为:

函数性质

1、通过分部积分的方法,可以推导出这个函数有如下的递归性

质:

于是很容易证明,伽马函数可以当成是阶乘在实数集上的延拓,具有如下性质:

2、Β函数,又称为贝塔函数或第一类欧拉积分,是一个特殊

函数,由下式定义:

3、与贝塔函数的关系:

神奇的Gamma函数 (上)

神奇的Gamma函数 (上) rickjin 关键词:特殊函数, 欧拉 G a m m a函数诞生记 学高等数学的时候,我们都学习过如下一个长相有点奇特的Gamma函数 Γ(x)=∫∞0t x?1e?t dt 通过分部积分的方法,可以推导出这个函数有如下的递归性质 Γ(x+1)=xΓ(x) 于是很容易证明,Γ(x)函数可以当成是阶乘在实数集上的延拓,具有如下性质 Γ(n)=(n?1)! 学习了Gamma 函数之后,多年以来我一直有两个疑问: ? 1.这个长得这么怪异的一个函数,数学家是如何找到的; ? 2.为何定义Γ函数的时候,不使得这个函数的定义满足Γ(n)=n!而是Γ(n)=(n?1)! 最近翻了一些资料,发现有不少文献资料介绍Gamma 函数发现的历史,要说清楚它需要一定的数学推导,这儿只是简要的说一些主线。

1728年,哥德巴赫在考虑数列插值的问题,通俗的说就是把数列的通项公式定义从整数集合延拓到实数集合,例如数列1,4,9,16,?可以用通项公式n2自然的表达,即便n为实数的时候,这个通项公式也是良好定义的。直观的说也就是可以找到一条平滑的曲线y=x2通过所有的整数点(n,n2),从而可以把定义在整数集上的公式延拓到实数集合。一天哥德巴赫开始处理阶乘序列1,2,6,24,120,720,?,我们可以计算2!,3!, 是否可以计算 2.5!呢?我们把最初的一些(n,n!)的点画在坐标轴上,确实可以看到,容易画出一条通过这些点的平滑曲线。 但是哥德巴赫无法解决阶乘往实数集上延拓的这个问题,于是写信请教尼古拉斯.贝努利和他的弟弟丹尼尔.贝努利,由于欧拉当时和丹尼尔.贝努利在一块,他也因此得知了这个问题。而欧拉于1729 年完美的解决了这个问题,由此导致了Γ函数的诞生,当时欧拉只有22岁。 事实上首先解决n!的插值计算问题的是丹尼尔.贝努利,他发现,

神奇的Gamma函数

神奇的Gamma函数 (上) 关键词:特殊函数, 欧拉 G a m m a函数诞生记 学高等数学的时候,我们都学习过如下一个长相有点奇特的Gamma函数 通过分部积分的方法,可以推导出这个函数有如下的递归性质 于是很容易证明,函数可以当成是阶乘在实数集上的延拓,具有如下性质 学习了Gamma 函数之后,多年以来我一直有两个疑问: 1.这个长得这么怪异的一个函数,数学家是如何找到的;

2.为何定义函数的时候,不使得这个函数的定义满足而 是 最近翻了一些资料,发现有不少文献资料介绍Gamma 函数发现的历史,要说清楚它需要一定的数学推导,这儿只是简要的说一些主线。 1728年,哥德巴赫在考虑数列插值的问题,通俗的说就是把数列的通项公式 定义从整数集合延拓到实数集合,例如数列可 以用通项公式自然的表达,即便为实数的时候,这个通项 公式也是良好定义的。直观的说也就是可以找到一条平滑的曲线 通过所有的整数点,从而可以把定义在整数集上的公式延拓 到实数集合。一天哥德巴赫开始处理阶乘序列 ,我们可以计算, 是否可以计算 呢?我们把最初的一些的点画在坐标轴上,确实可以看到,容易画出一条通过这些点的平滑曲线。

但是哥德巴赫无法解决阶乘往实数集上延拓的这个问题,于是写信请教尼古拉斯.贝努利和他的弟弟丹尼尔.贝努利,由于欧拉当时和丹尼尔.贝努利在一块,他也因此得知了这个问题。而欧拉于1729 年完美的解决了这个问题, 由此导致了函数的诞生,当时欧拉只有22岁。 事实上首先解决的插值计算问题的是丹尼尔.贝努利,他发现, 如果都是正整数,如果,有 于是用这个无穷乘积的方式可以把的定义延拓到实数集合。例如, 取, 足够大,基于上式就可以近似计算出 。 欧拉也偶然的发现可以用如下的一个无穷乘积表达

伽马函数在概率统计中的应用

韩山师范学院 学生毕业论文 ( 2011届) 题目(中文)伽马函数在概率统计中的应用(英文)The Application of the Γ–Function in the Probability 系别:数学与信息技术系 专业:数学与应用数学班级: 20071112 姓名:史泽龙学号: 2007111205 指导教师:屈海东讲师 韩山师范学院教务处制

诚信声明 我声明,所呈交的毕业论文是本人在老师指导下进行的研究工作及取得的研究成果。据我查证,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,我承诺,论文中的所有内容均真实、可信。 毕业论文作者签名:签名日期:年月日

摘要: 本文阐述了Γ函数的定义及其特殊性质, 并就如何利用Γ函数的特定性质解决概率应用中的一些特定问题进行了探讨和分析. 分析说明: 应用Γ函数收敛的性质, 可间接求解概率积分值; 利用Γ函数表示分布的密度;可表征F分布的密度函数. 这些分析及其结论对于函数的具体应用, 对于求解概率论中的一些具体实用问题具有重要的参考价值. 关键词: Γ函数; 收敛性; 概率积分; 密度函数

Abstract: Expounds the definition of Γ function and its special properties, and how to use the specific nature solution Γ function in some specific questions the probability application is discussed and analyzed. Γ function analysis and explanation: application of nature, but indirect convergent solution probability integral value; Use the density of Γ function says distribution; F distribution can be characterized the density function analysis and conclusions. These specific application for function for solving some of the specific practical problems probability has important reference value. Keywords:Gamma function;Convergence; Probability integral;Density function

神奇的Gamma函数 (下)

神奇的Gamma函数 (下) rickjin 关键词:特殊函数, 概率分布 从二项分布到G a m m a分布 Gamma 函数在概率统计中频繁现身,众多的统计分布,包括常见的统计学三大分布(t分布,χ2分布,F分布)、Beta分布、Dirichlet 分布的密度公式中都有Gamma 函数的身影;当然发生最直接联系的概率分布是直接由Gamma 函数变换得到的Gamma 分布。对Gamma 函数的定义做一个变形,就可以得到如下式子 ∫∞0xα?1e?xΓ(α)dx=1 于是,取积分中的函数作为概率密度,就得到一个形式最简单的Gamma 分布的密度函数 Gamma(x|α)=xα?1e?xΓ(α) 如果做一个变换x=βt, 就得到Gamma 分布的更一般的形式 Gamma(t|α,β)=βαtα?1e?βtΓ(α) 其中α称为shape parameter, 主要决定了分布曲线的形状;而β称为rate parameter 或者inverse scale parameter (1β称为scale parameter),主要决定曲线有多陡。

Gamma(t|α,β)分布图像 Gamma 分布在概率统计领域也是一个万人迷,众多统计分布和它有密切关系。指数分布和χ2分布都是特殊的Gamma 分布。另外Gamma 分布作为先验分布是很强大的,在贝叶斯统计分析中被广泛的用作其它分布的先验。如果把统计分布中的共轭关系类比为人类生活中的情侣关系的话,那指数分布、Poission分布、正态分布、对数正态分布都可以是Gamma 分布的情人。接下来的内容中中我们主要关注β=1的简单形式的Gamma 分布。

伽马函数表

伽马函数表 ()()001>=Γ?+∞ --x dt t e x x t x 0 1 2 3 4 5 6 7 8 9 1.00 0000 9994 9988 9983 9977 9971 9966 9960 9954 9949 1.01 9943 9938 9932 9927 9921 9916 9910 9905 9899 9894 1.02 9888 9883 9878 9872 9867 9862 9856 9851 9846 9841 1.03 9835 9830 9825 9820 9815 9810 9805 9800 9794 9789 1.04 9784 9779 9774 9769 9764 9759 9755 9750 9745 9740 1.05 9735 9730 9725 9721 9716 9711 9706 9702 9697 9692 1.06 9687 9683 9678 9673 9669 9664 9660 9655 9651 9646 1.07 9642 9637 9633 9628 9624 9619 9615 9610 9606 9602 1.08 9597 9593 9589 9584 9580 9576 9571 9567 9563 9559 1.09 9555 9550 9546 9542 9538 9534 9530 9526 9522 9518 1.10 9514 9509 9505 9501 9498 9494 9490 9486 9482 9478 1.11 9474 9470 9466 9462 9459 9455 9451 9447 9443 9440 1.12 9436 9432 9428 9425 9421 9417 9414 9410 9407 9403 1.13 9399 9396 9392 9389 9385 9382 9378 9375 9371 9368 1.14 9364 9361 9357 9354 9350 9347 9344 9340 9337 9334 1.15 9330 9327 9324 9321 9317 9314 9311 9308 9304 9301 1.16 9298 9295 9292 9289 9285 9282 9279 9276 9273 9270 1.17 9267 9264 9261 9258 9255 9252 9249 9246 9243 9240 1.18 9237 9234 9231 9229 9226 9223 9220 9217 9214 9212 1.19 9209 9206 9203 9201 9198 9195 9192 9190 9187 9184 1.20 9182 9179 9176 9174 9171 9169 9166 9163 9161 9158 1.21 9156 9153 9151 9148 9146 9143 9141 9138 9136 9133 1.22 9131 9129 9126 9124 9122 9119 9117 9114 9112 9110 1.23 9108 9105 9103 9101 9098 9096 9094 9092 9090 9087 1.24 9085 9083 9081 9079 9077 9074 9072 9070 9068 9066 1.25 9064 9062 9060 9058 9056 9054 9052 9050 9048 9046 1.26 9044 9042 9040 9038 9036 9034 9032 9031 9029 9027 1.27 9025 9023 9021 9020 9018 9016 9014 9012 9011 9009 1.28 9007 9005 9004 9002 9000 8999 8997 8995 8994 8992 1.29 8990 8989 8987 8986 8984 8982 8981 8979 8978 8976 1.30 8975 8973 8972 8970 8969 8967 8966 8964 8963 8961 1.31 8960 8959 8957 8956 8954 8953 8952 8950 8949 8948 1.32 8946 8945 8944 8943 8941 8940 8939 8937 8936 8935 1.33 8934 8933 8931 8930 8929 8928 8927 8926 8924 8923 1.34 8922 8921 8920 8919 8918 8917 8916 8915 8914 8913 1.35 8912 8911 8910 8909 8908 8907 8906 8905 8904 8903 1.36 8902 8901 8900 8899 8898 8897 8897 8896 8895 8894 1.37 8893 8892 8892 8891 8890 8889 8888 8888 8887 8886

γ伽马函数与多伽马函数

函数与多伽马函数 定义 函数可以通过欧拉(Euler)第二类积分定义: 对复数,我们要求。 Γ函数还可以通过对做泰勒展开,解析延拓到整个复平面: 这样定义的Γ函数在全平面除了以外的地方解析。 Γ函数也可以用无穷乘积的方式表示: 这样定义的Γ函数在全平面解析 [编辑] 无穷乘积 函数可以用无穷乘积表示: 其中是欧拉-马歇罗尼常数。 [编辑] Gamma积分

[编辑] 递推公式 函数的递推公式为:, 对于正整数,有 , 可以说函数是阶乘的推广。 [编辑] 递推公式的推导 我们用分部积分法来计算这个积分: 当时,。当趋于无穷大时,根据洛必达法则,有: . 因此第一项变成了零,所以: 等式的右面正好是。因此,递推公式为: 。 [编辑] 重要性质

Γ函数在实轴上的函数图形 ?当时, ?欧拉反射公式: 由此可知当时,。 ?乘法定理: 。 。 ?补充: 此式可用来协助计算t分布概率密度函数、卡方分布概率密度函数、分布概率密度函数等的累计概率。 [编辑] 特殊值 [编辑] 导数 [编辑] 复数值 [编辑] 斯特灵公式 斯特灵公式能用以估计Γ函数的增长速度。

[编辑] 解析延拓 Γ函数的绝对值函数图形 注意到在Γ函数的积分定义中若取为实部大于零之复数、则积分存在,而且在右半复平面上定义一个全纯函数。利用函数方程 并注意到函数在整个复平面上有解析延拓,我们可以在时设 从而将函数延拓为整个复平面上的亚纯函数,它在有单极点,留数为 多伽玛函数 维基百科,自由的百科全书 跳转至:导航,搜索 阶多伽玛函数是伽玛函数的第个对数导数。 在这里 是双伽玛函数,是伽玛函数。函数有时称为三伽玛函数。

相关主题
相关文档
最新文档