高中立体几何计算方法总结

高中立体几何计算方法总结
高中立体几何计算方法总结

高中立体几何计算方法总结

1.位置关系:

(1)两条异面直线相互垂直

证明方法:①证明两条异面直线所成角为90o;②证明线面垂直,得到线线垂直;③证明两条异面直线的方向量相互垂直。

(2)直线和平面相互平行

证明方法:①证明直线和这个平面内的一条直线相互平行;

②证明这条直线的方向量和这个平面内的一个向量相互平行;③证明这条直线的方向量和这个平面的法向量相互垂直。(3)直线和平面垂直

证明方法:①证明直线和平面内两条相交直线都垂直,②证明直线的方向量与这个平面内不共线的两个向量都垂直;③证明直线的方向量与这个平面的法向量相互平行。

(4)平面和平面相互垂直

证明方法:①证明这两个平面所成二面角的平面角为90o;②证明一个平面内的一条直线垂直于另外一个平面;③证明两个平面的法向量相互垂直。

2.求距离:

求距离的重点在点到平面的距离,直线到平面的距离和两个

平面的距离可以转化成点到平面的距离,一个点到平面的距

离也可以转化成另外一个点到这个平面的距离。

(1)两条异面直线的距离

求法:利用公式法。

(2)点到平面的距离

求法:①“一找二证三求”,三步都必须要清楚地写出来。

②等体积法。③向量法。

3.求角

(1)两条异面直线所成的角

求法:①先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得;②通过两条异面直线的方向量所成的角来求得,但是注意到异面直线所成角得范围是,向量所成的角范围是,如果求出的是钝角,要注意转化成相应的锐角。

(2)直线和平面所成的角

求法:①“一找二证三求”,三步都必须要清楚地写出来。

②向量法,先求直线的方向量于平面的法向量所成的角α,那么所要求的角为或。

(3)平面与平面所成的角

求法:①“一找二证三求”,找出这个二面角的平面角,然后再来证明我们找出来的这个角是我们要求的二面角的平面角,最后就通过解三角形来求。②向量法,先求两个平面的法向量所成的角为α,那么这两个平面所成的二面角的平面角为α或π-α。

高中化学学习方法..

高中化学学习方法 大家好,我是王伟川,14级北大化学学院 今天与大家分享化学部分的经验 这部分比较长 因为化学,其实高中不同的三个部分,其应对战略并不完全相同 家长可以先了解,然后后续让孩子看 为什么家长也要看? 因为家长如果对于孩子所学,一无所知,很难和孩子沟通交流,并不需要家长具体了解内容,而是框架性就足够 这样,家长催促孩子复习,就不是快去复习! 而是,你那个元素化学看得如何了? 也方便和老师的沟通 关于高考化学的学习方法,大部分我们所看到的建议与参考,或大同小异,或笼统概括,或蜻蜓点水地说出“归纳很重要、做题也重要”这样的言语却不加细释 乍看之下言简意赅,然而实际上当学生想要学习它的做法时又显得无从下手,不知所措。 我决定从一个高考亲历者的角度出发,还原出当年我自己学习化学过程中的真实心得与经验,将所有的方法与建议都以最详细的方式呈现出来 力求“手把手”地教会学生学习化学的方法。当然,方法因人而异,供各位学弟学妹参考。

很多同学想要学好化学,于是急着去做题、去看书 但是首先我们需要弄清楚的是,高中的化学分为好几个类别 总的来说高中化学通过【图表总结,类比学习的方式梳理知识点】最为有效 然而对每一个类别都有不同的方法来学习,都有自己的知识图表,如果连自己究竟是哪一块最薄弱尚未清楚,所做的努力可能就是事倍功半了。 从知识点上分,高中化学,分为元素化学、有机化学、化学反应原理三个大部分,各种具体的化学实验贯穿其中 基本上,高一上,最多高一下一点点,解决初高中衔接和元素化学高一下进行化学反应原理,这个基本上要一直到高二上 剩下是有机化学 这里我们举一些例子 元素化学是整个高中阶段知识最琐碎的一块内容 所以在这种背景下,显而易见的一个特点就是:元素化学要记的细节特别多,而对于一种元素又要掌握它的多种相关物质,知识点显得杂而碎。 所以我们必须有针对性的给出一些可操作性强的方法: 1.自行绘制物质转化框图——一定要自己书写。 注意,这种总结,框图,你必须自己写,不能是模糊地我记得的!给一张白纸,你自己写下来,梳理出来 比如说,我通过一周的学习,老师把碱金属这一块差不多讲完了

立体几何证明方法汇总

① 中位线定理 例题:已知如图:平行四边形ABCD 中,6BC =,正方形ADEF 所在平面与平面ABCD 垂直,G ,H 分别是DF ,BE 的中点. (1)求证:GH ∥平面CDE ; (2)若2,CD DB ==,求四棱锥F-ABCD 的体积. 练习:1、如下图所示:在直三棱柱ABC —A 1B 1C 1中,AC=3,BC=4,AB=5,AA 1=4,点D 是AB 的中点。 求证:AC 1∥平面CDB 1; 2. 如图,1111D C B A ABCD -是正四棱柱侧棱长为1,底面边长为2,E 是棱BC 的中点。(1)求证: //1BD 平面DE C 1;(2)求三棱锥BC D D 1-的体积. 3、如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,4,3PD DC ==,E 是PC 的中点。 (1)证明://PA BDE 平面; (2)求PAD ?以PA 为轴旋转所围成的几何体体积。 A 1 C _ H _ G _ D _ A _ B _ C E F

G P A B C D F E A B C D E F 例2、 如图, 在矩形ABCD 中,2AB BC = , ,P Q 分别为线段,AB CD 的中点, EP ⊥平面ABCD .求证: AQ ∥平面CEP ;(利用平行四边形) 练习:①如图,PA 垂直于矩形ABCD 所在的平面,E 、F 分别是AB 、PD 的中点。求证:AF ∥平面PCE ; ②如图,已知P 是矩形ABCD 所在平面外一点,ABCD 平面PD ⊥,M ,N 分别是AB ,PC 中点。求证://PAD MN 平面 P A B C D M N ③ 如图,已知AB 平面ACD ,DE//AB ,△ACD 是正三角形,AD = DE = 2AB ,且F 是CD 的中点.⑴求证:AF//平面BCE ; 的交点.求证://1O C 面 ④、已知正方体ABCD-1111D C B A ,O 是底ABCD 对角线11 AB D . D 1C 1 B 1 A 1

高中化学计算方法总结:差量法

差量法 差量法是依据化学反应前后的某些变化找出所谓的理论差量(固体质量差、液体质量差、气体体积差、气体物质的量之差等),与反应物或生成物的变化量成正比而建立的一种解题方法。此法将“差量”看作化学方程式右端的一项,将已知差量(实际差量)与化学方程式中的对应差量(理论差量)列成比例,其他解题步骤与按化学方程式列比例解题完全一样。在根据化学方程式的计算中,有时题目给的条件不是某种反应物或生成物的质量,而是反应前后物质的质量的差值,解决此类问题用差量法十分简便。此法的关键是根据化学方程式分析反应前后形成差量的原因(即影响质量变化的因素),找出差量与已知量、未知量间的关系,然后再列比例式求解。 一.固体差量 1.将19 g Na2CO3和NaHCO3的混合物加热至质量不再减少为止,称得剩余固体质量为15.9 g,则原混合物中NaHCO3的质量分数是_____%。44.2%。 二.液体差量 2.用含杂质(杂质不与酸作用,也不溶于水)的铁10 g与50 g稀硫酸完全反应,滤去杂质,所得液体质量为55.4 g,则该铁的纯度是_____%。56%。 三.气体差量 3.将12 g CO和CO2的混合气体通过灼热的氧化铜后,得到气体的总质量为18 g,则原混合气体中CO的质量分数是_____%。87.5%。 四.增减差量 4.在天平左右两边的托盘天平上,各放一个盛有等质量、等溶质质量分数的足量稀硫酸的烧杯,待天平平衡后,向两烧杯中分别加入铁和镁,若要使天平仍保持平衡,则所加铁和镁的质量比是_____。77/81。 五.体积差量 5.在一个6 L的密闭容器中,放入3 L X和2 L Y,在一定条件下发生下列反应:4X(g)+ 3Y(g) 2Q(g)+nR(g),达到平衡后,容器内温度不变,混合气体的压强比原来增加5%,X的浓度减小1/3,则该反应的n值是 A.4 B.5 C.6 D.7 6.同温同压下,40 mL CO、CO2和O2的混合气体点燃后,恢复到原来的状况,剩余气体36 mL,则原混合气体中O2不少于 A.4 mL B.8 mL C.10 mL D.12 mL 六.压强差量 7.标准状况下,一容积不变的的密闭容器里充满3 L H2和O2的混合气体,点燃完全反应后,恢复至原状态,压强变为原来的1/2,则原混合气体中H2和O2的体积分别是 __________。2.5,0.5;1,2。 七.巧练 8.有KCl、KBr和KI混合物3.87 g,溶于水配成溶液,向溶液中加入足量的AgNO3溶液,得到的沉淀干燥后是6.63 g,则原混合物中钾元素的质量分数是 A.51% B.40.3% C.32% D.24% 9.将足量的铁粉投入到CuCl2和FeCl3组成的混合液中,充分反应后,过滤洗涤并干燥

立体几何解题方法总结

1.判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 2.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 3.空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决. 空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量 分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线所成的角θ∈(0,2 π ], 直线与平面所成的角θ∈0,2π?? ????,二面角的大小,可用它们的平面角来度量,其平面角θ∈[0, π ]. 对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的, 如求异面直线所成的角常用平移法(转化为相交直线)与向量法;求直线与平面所成的角常利用射影转化为相交直线所成的角;而求二面角-l -的平面角(记作)通常有以 下几种方法: (1) 根据定义; (2) 过棱l 上任一点O 作棱l 的垂面 ,设 ∩ =OA , ∩ =OB ,则∠AOB = ; (3) 利用三垂线定理或逆定理,过一个半平面内一点A ,分别作另一个平面的垂线 AB (垂足为B ),或棱l 的垂线AC (垂足为C ),连结AC ,则∠ACB = 或∠ACB =-; (4) 设A 为平面外任一点,AB ⊥ ,垂足为B ,AC ⊥ ,垂足为C ,则∠BAC = 或 ∠BAC =-; (5) 利用面积射影定理,设平面 内的平面图形F 的面积为S ,F 在平面 内的射影图形

高中数学必修2立体几何专题资料

专题一浅析中心投影与平行投影 中心投影与平行投影是画空间几何体的三视图和直观图的基础,弄清楚中心投影与平行投影能使我们更好地掌握三视图和直观图,平行投影下,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小完全相同;而中心投影则不同.下表简单归纳了中心投影与平行投影,结合实例让我们进一步了解平行投影和中心投影. 例1如何才能使如图所示的两棵树在同一时刻的影长分别与它们的原长相等? 解析:方法一:可在同一方向上画出与原长相等的影长,分别连结它们影子顶点与树的顶点,此时为平行投影. 方法二:可在两树外侧不同方向上画出与原长相等的影子,连结影子顶点与树的顶点相交于P,此时为中心投影,P为光源位置. 点评:这是一道平行投影和中心投影相结合的题目,答案不唯一.连结物体顶点与其影子顶点,如果得到的是平行线,即为平行投影;如果得到的是相交线,则为中心投影,这是判断平行投影与中心投影的方法,也是确定中心投影光源位置的基本作法,还应注意,若中心投影光源在两树同侧时,图中的两棵树的影子不可能与原长相等. 例2 如图所示,点O为正方体ABCD-A′B′C′D′的中心,点E为面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的面上的正投影可能是________(填出所有可能的序号).

解析:在下底面ABCD上的投影为③,在右侧面B′BCC′上的投影为②,在后侧面D′DCC′上的投影为①. 答案:①②③ 点评:画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点、端点等,方法是先画出这些关键点的投影,再依次连接各投影点即可得此图形在该平面上的投影. 专题二不规则几何体体积的求法 当所给几何体形状不规则时,无法直接利用体积公式求解,可尝试用以下几种常用的方法求出原几何体的体积,下面逐一介绍,供同学们参考. 一、等积转换法 当所给几何体的体积不能直接套用公式或套用公式时某一量(底面积或高)不易求出时, 可以转换一下几何体中有关元素的相对位置进行计算求解,该方法尤其适用于求三棱锥的体积. 例1在边长为a的正方体ABCD—A1B1C1D1中,M,N,P 分别是棱A1B1,A1D1,A1A上的点,且满足A1M = 1 2A1B1, A1N=2ND1,A1P= 3 4A1A(如图1),试求三棱锥A1—MNP的体 积. 分析:若用公式V= 1 3Sh直接计算三棱锥A1—MNP的体积, 则需要求出△MNP的面积和该三棱锥的高,这两者显然都不易求出, 但若将三棱锥A1—MNP的顶点和底面转换一下,变为求三棱锥P—A1MN的体积,便能很容易的求出其高和底面△A1MN的面积,从而代入公式求解. 解:V A 1-MNP =V A1—MNP = 1 3·S△A1MN ·h = 1 3× 1 2·A1M1·A1N·A1P= 1 3× 1 2× 1 2a· 2 3a· 3 4a= 1 24a 3.

高中有机化学计算题方法总结(修正版)

方程式通式 CXHY +(x+ 4y )O2 →xCO2+ 2y H2O CXHYOz +(x+24z y -) O2 →xCO2+2 y H2O 注意 1、有机物的状态:一般地,常温C 1—C 4气态; C 5—C 8液态(新戊烷C 5常温气态, 标况液态); C 9以上固态(不严格) 1、有机物完全燃烧时的耗氧量 【引例】完全燃烧等物质的量的下列有机物,在相同条件下,需要O 2最多的是( B ) A. 乙酸乙酯 CH 3COOC 2H 5 B. 异丁烷 CH(CH 3)3 C. 乙醇 C 2H 5OH D. 葡萄糖 C 6H 12O 6 ①等物质的量的烃C X H Y 完全燃烧时,耗氧量决定于的x+ 4 y 值,此值越大,耗氧量越多; ②等物质的量的烃的含氧衍生物C X H Y O Z 完全燃烧耗氧量决定于的x+24z y -值,此值越大,耗氧量越多; 【注】C X H Y 和C X H Y O Z 混搭比较——把衍生物C X H Y O Z 分子式写成残基·不耗氧的 CO 2 · H 2O 后,剩余残基再跟烃C X H Y 比较。如比较乙烯C 2H 4和乳酸C 3H 6O 3,后者就可写成 C 2H 4?1CO 2?1H 2O ,故等物质的量的二者耗氧量相同。 【练习】燃烧等物质的量的下列各组物质,耗氧量不相同的是( B ) A .乙烷CH 3CH 3与丙酸C 2H 5COOH B .乙烯CH 2=CH 2与乙二醇CH 2OH CH 2OH C .乙炔HC ≡CH 与乙醛CH 3CHO D .乙炔HC ≡CH 与乙二醇CH 2OH CH 2OH 【引例】等质量的下列烃完全燃烧生成CO 2和H 2O 时,耗氧量最多的是( A ) A .C 2H 6 B . C 3H 8 C .C 4H 10 D .C 5H 12 ③等质量的烃CxHy 完全燃烧时,耗氧量决定于x y 的值,此值越大,耗氧量越多; ④等质量的烃的含氧衍生物CxHyOz 完全燃烧时,先化成 Cx Hy ?mCO2?nH2O 的形式,耗 氧量决定于 ' 'x y 的值,此值越大,耗氧量越多;

精选高中立体几何证明方法及例题

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==???? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化: a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角

面面∥面面平行判定2 线面垂直性质2a b a b //⊥?⊥??? α α a b a b ⊥ ⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90 ° (2)直线与平面所成的角:0°≤θ≤90° (3)二面角:二面角的平面角θ,0°<θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义; (3)指出所求作的角; (4)计算大小。

高中数学立体几何专题

高中课程复习专题——数学立体几何 一空间几何体 ㈠空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 ㈡几种空间几何体的结构特征 1 棱柱的结构特征 棱柱的定义:有两个面互相平行,其余各面都是四边形, 并且每相邻两个四边形的公共边都互相平行,由这些面所 围成的几何体叫做棱柱。 % 棱柱的分类 棱柱的性质 , ⑴侧棱都相等,侧面是平行四边形; ⑵两个底面与平行于底面的截面是全等的多边形; ⑶过不相邻的两条侧棱的截面是平行四边形; ⑷直棱柱的侧棱长与高相等,侧面的对角面是矩形。 长方体的性质 ⑴长方体的一条对角线的长的平方等于一个顶点上三 条棱的平方和:AC12 = AB2 + AC2 + AA12 ⑵长方体的一条对角线AC1与过定点A的三条棱所成 ` 的角分别是α、β、γ,那么: cos2α + cos2β + co s2γ = 1 sin2α + sin2β + sin2γ = 2 ⑶长方体的一条对角线AC1与过定点A的相邻三个面所组成的角分别为α、β、γ,则: cos2α + cos2β + cos2γ = 2 sin2α + sin2β + sin2γ = 1 图1-1 棱柱 图1-2 长方体 图1-1 棱柱

棱柱的侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱为邻边的矩形。 棱柱的面积和体积公式 S 直棱柱侧面 = c ·h (c 为底面周长,h 为棱柱的高) S 直棱柱全 = c ·h+ 2S 底 【 V 棱柱 = S 底 ·h 2 圆柱的结构特征 2-1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。 2-2 圆柱的性质 ⑴ 上、下底及平行于底面的截面都是等圆; ⑵ 过轴的截面(轴截面)是全等的矩形。 2-3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形。 - 2-4 圆柱的面积和体积公式 S 圆柱侧面 = 2π·r ·h (r 为底面半径,h 为圆柱的高) S 圆柱全 = 2π r h + 2π r 2 V 圆柱 = S 底h = πr 2h 3 棱锥的结构特征 3-1 棱锥的定义 ⑴ 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 ⑵ 正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心, 这样的棱锥叫做正棱锥。 3-2 正棱锥的结构特征 ⑴ 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比; ⑵ 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; ⑶ 正棱锥中的六个元素,即侧棱(SB)、高(SO)、斜高(SH)、侧棱在底面上的射影(OB)、斜高在底面上的射影(OH)、底面边长的一半(BH),构成四个直角三角形(三角形SOB 、SOH 、SBH 、OBH 均为直角三角形)。 3-3 正棱锥的侧面展开图:正n 棱锥的侧面展开图是由n 个全等的等腰三角形组成。 3-4 正棱锥的面积和体积公式 图1-3 圆柱 )

高中有机化学计算题方法总结

方程式通式 CXHY +(x+ 4y )O2 →xCO2+ 2y H2O CXHYOz +(x+2 4z y ) O2 →xCO2+2y H2O 注意 1、有机物的状态:一般地,常温C 1—C 4气态; C 5—C 8液态(新戊烷C 5常温气态, 标况液态); C 9以上固态(不严格) 1、有机物完全燃烧时的耗氧量 【引例】完全燃烧等物质的量的下列有机物,在相同条件下,需要O 2最多的是( B ) A. 乙酸乙酯 CH 3COOC 2H 5 B. 异丁烷 CH(CH 3)3 C. 乙醇 C 2H 5OH D. 葡萄糖 C 6H 12O 6 ①等物质的量的烃C X H Y 完全燃烧时,耗氧

量决定于的x+ 4y 值,此值越大,耗氧量 越多; ②等物质的量的烃的含氧衍生物C X H Y O Z 完全燃烧耗氧量决定于的x+2 4z y 值,此值越大,耗氧量越多; 【注】C X H Y 和C X H Y O Z 混搭比较——把衍生物C X H Y O Z 分子式写成残基·不耗氧的 CO 2 · H 2O 后,剩余残基再跟烃C X H Y 比较。如比较乙烯C 2H 4和乳酸C 3H 6O 3,后者就可写成 C 2H 41CO 21H 2O ,故等物质的量的二者耗氧量相同。 【练习】燃烧等物质的量的下列各组物质,耗氧量不相同的是( B ) A .乙烷CH 3CH 3与丙酸C 2H 5COOH B .乙烯CH 2=CH 2与乙二醇CH 2OH CH 2OH C .乙炔HC ≡CH 与乙醛CH 3CHO D .乙炔HC ≡CH 与乙二醇CH 2OH CH 2OH

高中立体几何证明方法及例题

1. 空间角与空间距离 在高考的立体几何试题中,求角与距离是必考查的问题,其中最主要的是求线线角、线面角、面面角、点到面的距离,求角或距离的步骤是“一作、二证、三算”,即在添置必要的辅助线或辅助面后,通过推理论证某个角或线段就是所求空间角或空间距离的相关量,最后再计算。 2. 立体几体的探索性问题 立体几何的探索性问题在近年高考命题中经常出现,这种题型有利于考查学生归纳、判断等方面的能力,也有利于创新意识的培养。近几年立体几何探索题考查的类型主要有:(1)探索条件,即探索能使结论成立的条件是什么(2)探索结论,即在给定的条件下命题的结论是什么。 对命题条件的探索常采用以下三种方法:(1)先观察,尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)把几何问题转化为代数问题,探索出命题成立的条件。 对命题结论的探索,常从条件出发,再根据所学知识,探索出要求的结论是什么,另外还有探索结论是否存在,常假设结论存在,再寻找与条件相容还是矛盾。

(一)平行与垂直关系的论证 由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==?? ?? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化:

a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角 3. 平行与垂直关系的转化: 面面∥面面平行判定2 面面平行性质3 a b a b //⊥?⊥??? α α a b a b ⊥⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论:

高中化学计算题总结+高考真题

高中化学计算题的解法归纳【知识网络】

【典型例题评析】 例1某体积可变的密闭容器,盛有适量的A和B的混合气体,在一定条件下发生反应: A+3B2C。若维持温度和压强不变,当达到平衡时,容器体积为VL,其中C气体的体积占10%,下列推断正确的是(全国高考题) ①原混合气体的体积为1.2VL ②原混合气体的体积为1.1VL ③反应达平衡时气体A消耗掉0.05VL ④反应达平衡时气体B消耗掉0.05VL A.②③ B.②④ C.①③ D.①④ 体积差: 例3将硫酸钾、硫酸铝、硫酸铝钾三种盐混合溶于硫酸酸化的水中,测得c(SO42-)=0.105mol/L、c(Al3+)=0.055mol/L,溶液的pH=2.0(假设溶液中H2SO4完全电离为H+和SO42-),则c(K+)为 (上海高考题) A.0.045mol/L B.0.035mol/L C.0.055mol/L D.0.040mol/L 电荷守恒: )x的水溶液,当阴极上增重a g时,在阳极上同时产生bL氧气(标准状况),例4用惰性电极电解M(NO 3 从而可知M的原子量为 电子守恒: 铜和镁的合金4.6g完全溶于浓硝酸,若反应中硝酸被还原只产生4480mL的NO2气体和336mL的N2O4气体(都已折算到标准状况),在反应后的溶液中,加入足量的氢氧化钠溶液,生成沉淀的质量为(上海高考题)A.9.02g B.8.51g C.8.26g D.7.04g

例5将1.92g铜粉与一定量浓硝酸反应,当铜粉完全作用时收集到1.12L(标准状况)。则所消耗硝酸的物质的量是(上海高考题) A.0.12mol B.0.11mol C.0.09mol D.0.08mol 原子守恒|: 例8在一定条件下,将m体积NO和n体积O2同时通入倒立于水中且盛满水的容器内,充分反应后,容器内残留m/2体积的气体,该气体与空气接触后变为红棕色,则m与n的比值为(上海高考题) 方程式叠加 例9 由CO 2、H 2 和CO组成的混合气在同温同压下与氮气的密度相同。则该混合气体中CO 2 、H 2 和CO的体积 比为 (上海高考题) 十字交叉法 例10由锌、铁、铝、镁四种金属中的两种组成的混合物10g,与足量的盐酸反应产生的氢气在标准状况下为11.2L,则混合物中一定含有的金属是(全国高考题) A.锌 B.铁 C.铝 D.镁 例13第ⅡA族元素R的单质及其相应氧化物的混合物12g,加足量水经完全反应后蒸干,得固体16g,试推测该元素可能为(上海高考题) A.Mg B.Ca C.Sr D.Ba 极值法 R---->ROH 2.8/M1=( 3.58-2.8)/17 M1=61 R2O---->2ROH 2.8/(2M2+16)=( 3.58-2. 8)/18 例15在一个密闭容器中,用等物质的量的A和B发生反应:A(g)+2B(g) 。当反应达到平衡时,如果混合气体中A和B的物质的量之和与C的物质的量相等,则此时A的转化率为(全国高考题) A.40% B.50% C.60% D.70% 估算法

高中数学立体几何专题

高中课程复习专题 ——数学立体几何 一空间几何体 ㈠空间几何体的类型 1多面体:由若干个平面多边形围成的几何体。 围成多面体的各个 多边形叫做多面体的面, 相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭 几何体。 其中, 这条直线称为旋转体的轴。 ㈡几种空间几何体的结构特征 1棱柱的结构特征 1.1棱柱的定义:有两个面互相平行, 其余各面都是四边 形,并且每相邻 两个四边形的公共边都互相平行,由这些 面所围成的几何体叫做棱柱。 1.2棱柱的分类 瓦他棱柱… ②四检杆 底血为甲行四边遊 T-trAfij 休 侧检旺亢丁底向 A-'K'tf'AlkJtt 囱向为和序 ------------------ ? ------------- - ----------------- ■ ------------------ A 长方体I 屁血为止方册.1』四棱相 傭棱打底血边怅*||簞 止方体 1.3棱柱的性质 ⑴侧棱都相等,侧面是平行四边形; ⑵ 两个底面与平行于底面的截面是全等的多边形; ⑶过不相邻的两条侧棱的截面是平行四边形; ⑷直棱柱的侧棱长与高相等,侧面的对角面是矩形。 1.4长方体的性质 ⑴长方体的一条对角线的长的平方等于一个顶点上三 条棱的平方和:AC 12 = AB 2 + AC 2 + AA 12 ⑵长方体的一条对角线 AC 1与过定点A 的三条棱所成 的角分别是a 伙Y 那么: 2 2 2 cos a + cos 3 + COS 丫= 1 sin 2 a + sin 3 + siny =2 ⑶ 长方体的一条对角线 AC 1与过定点A 的相邻三个面所组成的角分别为 a 3 Y 则: .咬llLI 昭|1.呂出 *正棱柱 够一 ;I ;从 图1-2长方体 2 COs a 2 2 + cos 3 + COSY = 2 sin 2 a 2 2 + sin 3 + sinY =1 E' A 图图1棱柱棱柱

高中化学计算题基本计算方法与推断题总结

高中化学计算题基本计算方法与推动总结 推断题解题技巧:看其颜色,观其状态,察其变化。 1. 常见物质的颜色:多数气体为无色,多数固体化合物为白色,多数溶液为无色。 2. 一些特殊物质的颜色: 黑色:MnO2、CuO、Fe3O4、C、FeS(硫化亚铁) 蓝色:CuSO4?5H2O、Cu(OH)2、含Cu2+ 溶液、液态固态O2(淡蓝色) 红色:Cu(亮红色)、Fe2O3(红棕色)、红磷(暗红色) 黄色:硫磺(单质S)、含Fe3+的溶液(棕黄色) 绿色:FeSO4?7H2O、含Fe2+的溶液(浅绿色)、碱式碳酸铜[Cu2(OH)2CO3] 紫黑色:KMnO4 无色气体:N2、CO2、CO、O2、H2、CH4 有色气体:Cl2(黄绿色)、NO2(红棕色) 有刺激性气味的气体:NH3(此气体可使湿润pH试纸变蓝色)、SO2、HCl 有臭鸡蛋气味:H2S 产生酸雾:HCl、HNO3 3. 常见一些变化的判断: ①白色沉淀且不溶于稀硝酸或酸的物质有:BaSO4、AgCl(就这两种物质) ②蓝色沉淀:Cu(OH)2、CuCO3 ③红褐色沉淀:Fe(OH)3 Fe(OH)2为白色絮状沉淀,在空气中很快变成灰绿色沉淀,再变成Fe(OH)3红褐色沉淀 ④沉淀能溶于酸并且有气体(CO2)放出的:不溶的碳酸盐 ⑤沉淀能溶于酸但没气体放出的:不溶的碱 4. 燃烧时的主要现象 ①在氧气中:硫——蓝紫色火焰;铁——火星四射;木炭——发白光。 ②在空气中:镁带——耀眼的白光;红磷——“白烟”; 硫、氢气——淡蓝色火焰;CO、CH4——蓝色火焰 5、酸和对应的酸性氧化物的联系: ①酸性氧化物和酸都可跟碱反应生成盐和水:

立体几何证明方法总结

一、线线平行的证明方法: 1、利用平行四边形。 2、利用三角形或梯形的中位线。 3、如果一条直线与一个平面平行,经过这条直线的平面与这个平面相交,那么这条直线就与交线平行。 (线面平行的性质定理) 4、如果两个平行平面同时与第三个平面相交,那么它们的交线平行。(面面平行的性质定理) 5、如果两条直线垂直于同一个平面,那么这两条直线平行。(线面垂直的性质定理) 6、平行于同一条直线的两条直线平行。 7、夹在两个平行平面之间的平行线段相等。(需证明) 二、线面平行的证明方法: 1、定义法:直线与平面没有公共点。 2、如果平面外一条直线与这个平面内的一条直线平行,那么这条直线与这个平面平行。(线面平行的判定定理) 3、两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面。 三、面面平行的证明方法: 1、定义法:两平面没有公共点。 2、如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。(面面平行的判定定理) 3、平行于同一平面的两个平面平行。 4、经过平面外一点,有且只有一个平面与已知平面平行。 5、垂直于同一直线的两个平面平行。 四、线线垂直的证明方法: 1、勾股定理。 2、等腰三角形。 3、菱形对角线。

4、圆所对的圆周角就是直角。 5、点在线上的射影。 6、如果一条直线与一个平面垂直,那么这条直线就与这个平面内任意的直线都垂直。 7、在平面内的一条直线,如果与这个平面一条斜线的射影垂直,那么它也与这条斜线垂直。(三垂线定理,需证明) 8、在平面内的一条直线,如果与这个平面一条斜线垂直,那么它也与这条斜线的射影垂直。(三垂线逆定理,需证明) 9、如果两条平行线中的一条垂直于一条直线,则另一条也垂直于这条直线。 五、线面垂直的证明方法: 1、定义法:直线与平面内任意直线都垂直。 2、点在面内的射影。 3、如果一条直线与一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。(线面垂直的判定定理) 4、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。(面面垂直的性质定理) 5、两条平行直线中的一条垂直于平面,则另一条也垂直于这个平面。 6、一条直线垂直于两平行平面中的一个平面,则必垂直于另一个平面。 7、两相交平面同时垂直于第三个平面,那么两平面交线垂直于第三个平面。 8、过一点,有且只有一条直线与已知平面垂直。 9、过一点,有且只有一个平面与已知直线垂直。 六、面面垂直的证明方法: 1、定义法:两个平面的二面角就是直二面角。 2、如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。(面面垂直的判定定理) 3、如果一个平面与另一个平面的垂线平行,那么这两个平面互相垂直。 4、如果一个平面与另一个平面的垂面平行,那么这两个平面互相垂直。

高中数学立体几何专项练习

立体几何简答题练习 1、正方形ABCD 与正方形ABEF 所在平面相交于AB,在AE 、BD 上各有一点P 、Q,且AP=DQ 。求证:PQ ∥平面BCE.(用两种方法证明) 2、如图所示,P 是平行四边形ABCD 所在平面外一点,E 、F 分别在PA 、BD 上,且PE:EA=BF:FD,求证:EF ∥平面PBC. 3、如图,E ,F ,G ,H 分别是正方体ABCD-A 1B 1C 1D 1的棱BC ,CC 1,C 1D 1,AA 1的中点。 求证:(1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H .

4、如图所示,已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别为AB 、PC 的中点,平面PAD ∩平面PBC =l. (1)求证:l ∥BC ; (2)MN 与平面PAD 是否平行?试证明你的结论。 5、如图,在四棱锥S-ABCD 中,底面ABCD 是正方形,SA ⊥底面ABCD ,SA=SB ,点M 是SD 的中点,AN ⊥SC ,且交SC 于点N 。 (1)求证:SB ∥平面ACM ; (2)求证:平面SAC ⊥平面AMN ; (3)求二面角D-AC-M 的余弦值。 6、如图,在四棱锥P-ABCD 中,底面ABCD 是边长为2的正方形,侧面PAD ⊥底面ABCD,且PA=PD= 2 2 AD,E 、F 分别为PC 、BD 的中点. 求证:(1) 求证:EF ∥平面PAD; (2) 求证:平面PAB ⊥平面PDC; (3) 在线段AB 上是否存在点G,使得二面角C-PD-G 的余弦值为3 1 ?说明理由.

高中化学计算方法总结

高中化学计算方法总结 高中化学计算方法总结 高中化学教师,在开展计算教学时,应该引导学生掌握常见的解题方法与解题技巧,以促进教学效果的提升。下面为大家总结了高中化学几种计算方法,希望帮助到大家! 一、关系式法 所谓关系式法,就是根据化学概念、物质组成、化学反应方程式中有关物质的有关数量之间的关系,建立起已知和未知之间的关系式,然后根据关系式进行计算。利用关系式的解题,可使运算过程大为简化。 其中包括守恒法。所谓“守恒”就是以化学反应过程中存在的某些守恒关系如质量守恒、元素守恒、得失电子守恒,电荷守恒等。运用守恒法解题可避免在纷纭复杂的解题背景中寻找关系式,提高解题的准确度。 例1、有一在空气中放置了一段时间的KOH固体,经分析测知其含水2.8%、含K2CO337.3% 取1g该样品投入25mL2mol /L的盐酸中后,多余的盐酸用1.0mol/LKOH溶液30.8mL恰好完全中和,蒸发中和后的溶液可得到固体的质量为多少?

【解析】本题化学反应复杂,数字处理烦琐,所发生的化学反应:KOH+HCl=KCl+H2O K2CO3+2HCl=2KCl+H2O+ CO2↑ 若根据反应通过所给出的量计算非常繁琐。 但若根据Cl—守恒,便可以看出:蒸发溶液所得KCl固体中的Cl—,全部来自盐酸中的Cl-, 即:生成的n(KCl)=n(HCl)=0.025L×2mol/L m(KCl)=0.025L×2mol/L×74.5g/mol=3.725g 例2、将纯铁丝5.21g溶于过量稀盐酸中,在加热条件下,用2.53gKNO3去氧化溶液中Fe2+,待反应后剩余的Fe2+离子尚需12mL0.3mol/LKMnO4溶液才能完全氧化,则KNO3被还原后的产物为() A、N2 B、NO C、NO2 D、NH4NO3 【解析】根据氧化还原反应中得失电子的总数相等,Fe2+变为Fe3+ 失去电子的总数等于NO3-和MnO4- 得电子的总数 设n为KNO3的还原产物中N的化合价,则

立体几何证明方法总结及经典3例(可编辑修改word版)

立体几何证明方法总结及典例 例1:平行类证明 【平行类证明方法总结】 线线平行的证明方法: 三线间平行的传递性,三角形中位线,平行四边形对边平行且相等,梯形的上下底平行,棱 柱圆柱的侧棱平行且相等,两平行面被第三面所截交线平行,成比例(相似)证平行等等。 线面平行的证明方法: 面外线与面内线平行,两面平行则面内一线与另面平行等等 面面平行的证明方法: 面内相交线与另面平行则面面平行,三面间平行的传递性等等。 【例】正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ. 求证:PQ∥面BCE. 证法一: 如图(1),作PM∥AB交BE于M, 作QN∥AB交BC于N,连接MN, 因为面ABCD∩面ABEF=AB, 则AE=DB. 又∵AP=DQ, ∴PE=QB. 又∵PM∥AB∥QN, ∴ PM =PE , QN =BQ . AB AE DC BD ∴ PM =QN . AB DC ∴PM∥QN.

四边形PMNQ为平行四边形. ∴PQ∥MN. 又∵MN ?面BCE,PQ ?面BCE, ∴PQ∥面BCE. 证法二: 如图(2),连结AQ并延长交BC或BC的延长线于点K,连结EK. ∵AD∥BC, ∴ DQ =AQ . QB QK 又∵正方形ABCD与正方形ABEF有公共边AB,且AP=DQ, ∴ AQ =AP .则PQ∥EK. QK PE ∴EK ?面BCE,PQ ?面BCE. ∴PQ∥面BCE. 例2:垂直类证明 【垂直类证明方法总结】 证垂直的几种方法:勾股定理、等腰(边)三角形三线合一、菱形对角线、矩形(含正方形)、90o、相似三角形(与直角三角形)、圆直径对的圆周角、平行线、射影定理(三垂线定理)、线面垂直、面面垂直等 【例】如图所示,ABCD 为正方形,SA ⊥平面ABCD,过A 且垂直于SC 的平面分别交SB,SC,SD于E,F,G . 求证:AE ⊥SB ,AG ⊥SD . 证明:∵ SA ⊥平面ABCD, ∴ SA ⊥BC . ∵ AB ⊥BC ,

立体几何证明方法总结(教师)

、线线平行的证明方法: 1、利用平行四边形。 2、利用三角形或梯形的中位线。 3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。 线面平行的性质定理) 4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 6、平行于同一条直线的两条直线平行。 二、线面平行的证明方法: 1、定义法:直线与平面没有公共点。 2、如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。 3、两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面。 三、面面平行的证明方法: 1、定义法:两平面没有公共点。 2、如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。 3、平行于同一平面的两个平面平行。 面面平行的性质定理) 5、如果两条直线垂直于同一个平面,那么这两条直线 平行。(线面垂直的性质定理) 7、夹在两个平行平面之间的平行线段相等。 需证明) 线面平行的判定定理) 面面平行的判定定理)

4、经过平面外一点,有且只有一个平面和已知平面平行。 5、垂直于同一直线的两个平面平行。 四、线线垂直的证明方法: 1、勾股定理。 2、等腰三角形。 3、菱形对角线。 4、圆所对的圆周角是直角。 5、点在线上的射影。 6、如果一条直线和一个平面垂直,那么这条直线就和这个平面内任意的直线都垂直。 7、在平面内的一条直线,如果和这个平面一条斜线的射影垂直,那么它也和这条斜线垂直。证明) 8、在平面内的一条直线,如果和这个平面一条斜线垂直,那么它也和这条斜线的射影垂直。需证明) 9、如果两条平行线中的一条垂直于一条直线,则另一条也垂直于这条直线。 五、线面垂直的证明方法: 1、定义法:直线与平面内任意直线都垂直。三垂线定理,需三垂线逆定理,

高中数学立体几何知识点及练习题

点、直线、平面之间的关系 ㈠平面的基本性质 公理一:如果一条直线上有两点在一个平面内,那么直线在平面内。 公理二:不共线的三点确定一个平面。 推论一:直线与直线外一点确定一个平面。 推论二:两条相交直线确定一个平面。 推论三:两条平行直线确定一个平面。 公理三:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线(两个平面的交线)。 ㈡空间图形的位置关系 1 直线与直线的位置关系(相交、平行、异面) 1.1 平行线的传递公理:平行于同一直线的两条直线相互平行。 即:a∥b,b∥c a∥c 1.2 异面直线 定义:不在任何一个平面内的两条直线称为异面直线。 1.3 异面直线所成的角 ⑴异面直线成角的范围:(0°,90°]. ⑵作异面直线成角的方法:平移法。 注意:找异面直线所成角时,经常把一条异面直线平移到另一条异面直线的特殊点(如中点、端点等),形成异面直线所成的角。 2 直线与平面的位置关系(直线在平面内、相交、平行) 3 平面与平面的位置关系(平行、斜交、垂直) ㈢平行关系(包括线面平行和面面平行) 1 线面平行 1.1 线面平行的定义:平面外的直线与平面无公共点,则称为直线和平面平行。 1.2 判定定理: 1.3 性质定理:

2 线面角: 2.1 直线与平面所成的角(简称线面角):若直线与平面斜 交,则平面的斜线与该斜线在平面内射影的夹角θ。 2.2 线面角的范围:θ∈[0°,90°] 3 面面平行 3.1 面面平行的定义:空间两个平面没有公共点,则称为两平面平行。 3.2 面面平行的判定定理: ⑴ 判定定理1:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面相互平行。 即: 推论:一个平面内的两条相交直线分别平行于另一个 平面的两条线段,那么这两个平面平行。即: ⑵ 判定定理2:垂直于同一条直线的两平面互相平 行。即: 3.3 面面平行的性质定理 ⑴ (面面平行 线面平行) ⑵ ⑶ 夹在两个平行平面间的平行线段相等。 ㈣ 垂直关系(包括线面垂直和面面垂直) 1 线面垂直 1.1 线面垂直的定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。 1.2 线面垂直的判定定理: 图2-3 线面角 图2-5 判定1推论 图2-6 判定2

相关文档
最新文档