大学物理习题解答8第八章振动与波动 (1)

大学物理习题解答8第八章振动与波动 (1)
大学物理习题解答8第八章振动与波动 (1)

第八章 振动与波动

本章提要

1. 简谐振动

· 物体在一定位置附近所作的周期性往复运动称为机械振动。 · 简谐振动运动方程

()cos x A t ω?=+

其中A 为振幅,ω 为角频率,(ωt+?)称为谐振动的相位,t =0时的相位? 称为初相位。

· 简谐振动速度方程

d ()

d sin x v A t t

ωω?=

=-+

· 简谐振动加速度方程

2

2

2d ()d cos x a A t t

ωω?=

=-+

· 简谐振动可用旋转矢量法表示。

2. 简谐振动的能量

· 若弹簧振子劲度系数为k ,振动物体质量为m ,在某一时刻m 的位移为x ,振动速度为v ,则振动物体m 动能为

2

12k E m v

=

· 弹簧的势能为

2

12p E kx

=

· 振子总能量为

P

2

2

2

2

2

211()+()22

1=2

sin cos k E E E m A t kA t kA

ωω?ω?=+=++

3. 阻尼振动

· 如果一个振动质点,除了受弹性力之外,还受到一个与速度成正比的阻尼作用,那么它将作振幅逐渐衰减的振动,也就是阻尼振动。

· 阻尼振动的动力学方程为

2

2

2d d 20d d x x x t

t

β

ω++=

其中,γ是阻尼系数,2m

γ

β=

(1) 当22ωβ>时,振子的运动一个振幅随时间衰减的振动,称阻尼振动。 (2) 当22ωβ=时,不再出现振荡,称临界阻尼。 (3) 当22ωβ<时,不出现振荡,称过阻尼。

4. 受迫振动

· 振子在周期性外力作用下发生的振动叫受迫振动,周期性外力称驱动力 · 受迫振动的运动方程为

2

2

P 2d d 2d d cos x x F x t t

t

m

β

ωω++=

其中,2k m ω=,为振动系统的固有频率;2C m β=;F 为驱动力振幅。

· 当驱动力振动的频率p ω等于ω时,振幅出现最大值,称为共振。

5. 简谐振动的合成与分解

(1) 一维同频率的简谐振动的合成 若任一时刻t 两个振动的位移分别为

111()cos x A t ω?=+ 222()cos x A t ω?=+

合振动方程可表示为

()cos x A t ω?=+

其中,A 和? 分别为合振动的振幅与初相位

A =

11221122

sin sin tan cos cos A A A A ?????+=

+

(2) 二维同频率的简谐振动的合成

若一个质点同时参与两个同频率的简谐振动,且此两个简谐振动分别在x 轴和y 轴上进行,运动方程分别为

11()cos x A t ω?=+ 22()cos y A t ω?=+

其合振动方程为

222

21212

2

1

2

12

2()()cos sin x

y

xy A A A A ????+

-

-=-

该为一个椭圆方程,椭圆形状由振幅A 1、A 2及相位差21()??-决定。

(3) 二维不同频率的简谐振动的合成

如果两个相互垂直的简谐振动的周期成简单的整数比,合运动的轨迹也是稳定的闭合曲线,这样合成振动的轨迹图形称为李萨如图形。

6. 简谐波

· 若波源作简谐振动,那么当这种振动在介质中传播时,介质中的各点也作与此频率相同的简谐振动,这样形成的波动称为简谐波。

· 简谐波的波动方程

()

cos x y A t u ω=-

2(

)

cos t x

y A T πλ

=-

2()cos x

y A t πνλ

=-

7. 简谐波的能量密度

· 单位体积的介质中波的能量称能量密度,用w 表示,其描述了介质中各处能量的分布情况

222sin E

x w A t V u ρω???

?=

=- ???

· 平均能量密度表示一个周期内能量密度的平均值

0222

2

2

1d 1d 12

sin T T w w t

T x A t t T u A

ρωρω=?

?=-

??

?

=??

· 波动的能流密度

22

12

I w u u A ρω=?=

8. 多普勒效应

· 当观察者或波源相对于传播的介质运动时,观察者接受到的波的频率与波源的频率不同,这种现象称为多普勒效应。

(1) 波源静止,观察者相对于介质运动 观察者接收到的频率为

0011v u v u u vT

v ννλ

++?

?=

=

=+ ??

?

(2) 观察者静止,波源相对于介质运动

观察者接收到的频率为

11

s s s

v

v

v v u T

vT u T

v u ννλλ=

=

=

=

---

(3) 波源和观察者同时相对于介质运动 观察者接收到的频率为

01s s

v u v u u T

v u ννλ++=

=

--

思考题

8-1 什么是简谐振动?下列运动哪个是简谐振动?(1)拍皮球时球的运动;(2)人的脉搏运动;(3)一个小球在球形碗底部的微小摆动。

答:简谐振动是物体在回复力(弹性力或准弹性力)作用下的运动。在运动过程中,平衡位置两侧的回复力方向不同;运动轨迹是正弦曲线 (1) 该现象好象是往复运动,实际上由于在运动过程中重力的方向始终不变,因而不是简谐振动

(2) 运动轨迹不是正弦曲线,不是简谐振动。

(3) 一个小球在球形碗底部的微小摆动时,重力的切向分力起着回复力的作

用是简谐振动。

8-2 一个弹簧振子振动的振幅增大到两倍时,振动的周期、频率、最大速度、最大加速度和振动能量都将如何变化?

答:若弹簧振子振动的振幅增大到原来的两倍时,振动的周期和频率不变,最大速度和最大加速度增加二倍,振动能量增加四倍。

8-3 如果不忽略弹簧的质量,一个弹簧振子的振动周期比忽略弹簧的质量时的振动周期是变大还是变小?

答:若不忽略弹簧的质量,弹簧振子的振动周期相对于忽略质量时的周期较大。

8-4 设向右的方向为正方向,试指出在怎样的位置时简谐振动的质点 (1)位移为零;(2)位移最大;(3)速度为零;(4)速度为负最大值;(5)加速度为零;(6)加速度为正最大。

答:(1)考虑简谐振动质点位移表达式

()cos x A t ω?=+

可得2

t π

ω?+=

时,位移为零。这时质点在平衡位置。

(2) 同理,当0t ω?+=时,位移最大。这时质点在两侧的端点。 (3) 考虑简谐振动质点速度表达式

()sin v A t ωω?=-+

可得0t ω?+=时,速度为零。这时质点在两侧的端点。

(4) 同理,当2

t π

ω?+=

时,速度为负最大值。这时质点从右侧经平衡位

置向左运动。

(5) 考虑简谐振动质点加速度表达式

2

()cos a A t ωω?=-+

当2

t π

ω?+=

时,加速度为零。这时质点在平衡位置。

(6) 同理,当t ω?π+=时,加速度为正最大。这时质点左侧端点(位移最大)位置。

8-5 弹簧振子的简谐振动方程为)cos(?ω+=t A x ,指出振动物体在下列位置时的位移、速度、加速度和所受弹性力的大小和方向:(1)正方向端点;(2)

平衡位置且向负方向运动;(3)平衡位置且向正方向运动;(4)负方向端点。

答:(1)振动物体位于正方向端点的状态如下:

位移最大,方向指向正方向,速度为零,加速度最大、方向指向负方向,所受弹性力的大小最大、方向指向平衡位置。

(2)振动物体在平衡位置且向负方向运动的状态如下:

位移为零,速度最大、方向指向负方向,加速度为零,所受弹性力的大小为零。

(3)振动物体在平衡位置且向正方向运动的状态如下:

位移为零,速度最大、方向指向正方向,加速度为零,所受弹性力的大小为零。

(4)振动物体位于负方向端点的运动状态如下:

位移最大、方向指向负方向,速度为零,加速度最大、方向指向正方向,所受弹性力的大小最大、方向指向平衡位置。

8-6 要测定一个未知振动的频率,你有何办法?

答:利用李萨如图形方法:用一个已知频率的振动与未知频率进行合成,只要合成的结果是一个闭合稳定的图形,便可以测定未知振动的频率。

8-7 在波的表达式中,坐标原点是否一定要设在波源的位置?在简谐振动的表达式中有几个独立变量?简谐波的表达式中有几个独立变量?比较两个表达式的意义。

答:在波的表达式中,坐标原点不一定要设在波源的位置。

在简谐振动的表达式中有两个独立变量:x和t。

简谐波的表达式中有三个独立变量:x、y和t。

简谐振动的表达式是描写某一个固定点的振动规律,简谐波的表达式是描写在波转播的介质空间中任意点的振动规律及这些振动之间的相互联系。

8-8 当频率为ν,波长为λ的一列波由波速为u的介质进入波速为3/u的介质后,波的频率和波长如何变化?

答:当频率为ν,波长为λ的一列波由波速为u的介质进入波速为3/u的介质后,波的频率不变,波长为原波长的三分之一。

8-9 弦乐器上的一根弦的音调是靠什么调节的?演奏时一根弦发出不同的音调又是靠什么调节的?

答:弦乐器上的一根弦振动时形成驻波,不同长度,驻波频率不一样,因而发出不同音调。弦乐器上的一根弦的音调是靠弦的长度来调节,演奏时一根弦发出不同的音调又是靠弦的不同长度来调节。

8-10 在声源运动、接收器不动和声源不动、接收器运动两种情况下,如果使运动速度一样,接收器接收到的声波是否相同?

答:在声源运动、接收器不动和声源不动、接收器运动两种情况下,如果使运动速度一样,根据多普勒效应公式可知,接收器相当于观察者,所以接受器所接收到的声波的频率是不相同的。

练习题

8-1 如图8-1所示,两个完全相同的弹簧振子,如将一个拉长10cm ,另一个压缩5cm ,然后放手,试问两物体在何处相遇。

解:依题意得两弹簧振子的振动方程

11()cos x A t ω?=+ 22()cos x A t ω?=+

当12x x =时,得 ,2,1,0,)2

1

(=+=+k k t π?ω,

两物体在平衡位置处相遇。

8-2 经验证明,当车辆沿竖直方向振动

时,如果振动的加速度不超过1m/s 2,乘客不会有不舒服的感觉。若车辆竖直振动频率为每分钟90次,为保证乘客没有不舒服的感觉,车辆允许振动的最大振幅为多少?

解:由已知可得

9023(rad/s)60

πωπ?=

=

当()?ω+=t A x cos 时,加速度方程为

()2

2

d cos d 2x a A t t

ωω?=

=-+

根据题意知,车辆允许振动的最大振幅为A m ,且21m A ω≤ ,则

2

2

110011(m )9314

m A ω

=

=???

取等号时是最大振幅。

8-3 放置在水平桌面上的弹簧振子,其简谐振动的振幅A =m 100.22-?,周期T = 0.5s ,求起始状态为下列情况的简谐振动方程: (1) 振动物体在正方向端点 (2) 振动物体在负方向端点

(3) 振动物体在平衡位置,向负方向运动 (4) 振动物体在平衡位置,向正方向运动

(5) 振动物体在m 100.12-?=x 处,向负方向运动 (6) 振动物体在m 100.12-?-=x 处,向正方向运动

解:由于T = 0.5s ,故ππω4/2==T 。则振动方程为

002(4).cos x t π?=+

图8-1

由题意得,起始状态为0t =时

(1)002002..cos x ?==,即0?=,该状态下的振动方程为

0024.cos x t π=

(2)002002..cos x ?=-=,即?π=,该状态下的振动方程为

002(4).cos x t ππ=+

(3)0002.cos x ?==,0080.sin v π?=-<,即2

π

?=,该状态下的振动方

程为

002(4)2

.cos x t π

π=+

(4)0002.cos x ?==,0080.sin v π?=->,即32

π?=,该状态下的振动

方程为

3002(4)2.cos x t ππ=+

(5)001002..cos x ?==,0080.sin v π?=-<,即3

π

?=,该状态下的振动

方程为

002(4)3

.cos x t π

π=+

(6)001002..cos x ?=-=,0080.sin v π?=->,即43

π?=,该状态下的

振动方程为

4002(4)3.cos x t ππ=+

8-4 如图8-2所示,一个立方形木块浮于静水中,其浸入部分的高度为a ,用手指沿竖直方向将其慢慢压下,使其浸入部分的高度为b ,然后放手让其运动。试证明,若不计水对木块的粘滞阻力,木块的运动是简谐振动,并求出振动的周期和振幅。

解:取静止木块上端点O 作为坐标原点,向

上的方向作为坐标轴正方向,木块以O 中心上下振动,某时刻向下位移为x ,则木块所受合力(即

重力与浮力之差)为

F xs g ρ=-

负号表示合力与位移方向相反。

由牛顿第二定律得

g xs t

x m

F ρ-==22

d d

由题意知

ρ

as m =

2

2d x as xs g dt

ρ

ρ=-

联立①②③得

2

2d x g x dt

a

=-

因此,由④可得木块的运动为简谐振动,且振动周期为

2T π

=振幅为

A b a =-

8-5 一个质量为5g 的物体作简谐振动,其振动方程为

3654cos x t π?

?=+ ???

求:(1)振动的周期和振幅;(2)起始时刻的位置;(3)在1s 末的位置;(4)

振动的总能量。

解:(1)由已知振动方程可得振动振幅为

6(cm)A =

振动周期为

2204(πs)5

T π

πω

=

=

=?

(2) 振动起始时刻即0t =时的位置为

)cm (24.4)4

3cos(

6-==πx

(3) 在1s 末的位置,即1t s =时的位置为

36(51)285(cm )4

cos .x π=?+

=

(4) 振动总能量为

2

24

1122510

(J)22

m ax

E K A m v

-=

=

=??

8-6 一个简谐波的波形曲线如图8-3所示。在该时刻波形曲线上各质点的振动方向如何?经过1/4周期后,该波形曲线形状如何?

解:将0t =时的波形图向x 正向平移4

T x u ?=,则得到4

T t =

时的波形曲线。

8-7 波源作简谐振动,其振动方程为3410240(m)cos y t π-=?,它所形成的波以30m/s 的速度沿一条直线传播。(1)求波的周期和波长;(2)写出波动方程。

解:根据题意得该简谐波方程为

3

3

3

410240410

24030

410211120

4cos ()cos ()cos x y t u x

t t x πππ---=?-=?-

??

?=?- ?

?

??

(1) 该简谐波的周期为

100083(s)120

T =

=?

波长为

1025(m )

4

λ=

=?

(2) 3410240()30

cos x y t π-=?-

8-8 有一个沿x 轴正方向传播的平面波,波速1m/s u =,波长004m .λ=

图8-3

振幅003m .A =。若以坐标原点O 处的质点恰在平衡位置且向负方向运动为计时起点,试求:(1)此平面波的波动方程;(2)距原点1005m .x =处质点的振动方程和该点的初相位;(3)在3s t =时,

距原点20045m .x =处的质点的位移和速度。 解:依题意得,此平面波的周期为

004(s)T u

λ

=

=?

角频率为

-1

250(rad s T

πωπ=

=?)

(1) 由于坐标原点O 处的质点恰在平衡位置且向负方向运动为计时起点,则初相位为2/π?=,故平面波的波动方程为

()cos 0035022cos x y A t t x u ππω

π?

????

?=-+=?-+

??????

??

??

? (2) 求距原点1005m .x =的质点振动方程,可把1005m .x =代入波动方程得

()003500052003(502)00350cos cos cos y t t t

πππππ?

?=?-?+??

?

?=?-=?

该点的初相位为0?=

(3) 当3s t =时,距原点20045m .x =处的质点的位移为

7003(503)00212(m )4

cos y ππ=??-

=?

该质点的速度为

-1

7003505034333(m s )

sin y v t

πππ?=

??

?=-???-??

??=-??

8-9 有一个波在介质中传播,其波速210m/s u =,振幅41010m .A -=?,频率310Hz ν=。若介质密度为3kg/m 800=ρ,求:(1)波的能流密度;(2) 1min 内垂直通过截面42410m S -=?的总能量。

解:(1)依题意得,波在介质中传播的能流密度为

22

222

2

8

26

4

-2

11422

180010110

431410

2

15810(w m )

I uA uA ρωρπυ

-==

=????????=???

(2)1min 内垂直通过截面42410m S -=?的总能量为

4

4

2

15810410

6037910(J)E ISt -==?????=??

8-10 人耳能分辨的声强级差别是1dB ,声强级有此差别的两声波的振幅之比是多少?

解: 已知波在介质中传播的能流密度为

22

12

I uA ρω=

又由声强级定义有

10lg

I L I =

人耳能分辨的声强级差别是1dB ,即

211(dB)L L -=

则由②得

210

10101lg

lg

I I I I -=

可得

01

2110

I I ?=

又由①得

2

01

2

21

10

A A ?=

21112A A =?

8-11 一只唢呐演奏的平均声强级为70dB ,五只同样的唢呐同时演奏的声强级有多大?

解:设一只唢呐演奏时声波的能流密度为I 1,五只同样的唢呐能流密度为I 2,则

215I I =

由声强级定义得

11010lg

I L I =

220

10lg

I L I =

2211

10lg

I L L I -=

21105701057698(dB)lg lg .L L =+=+=

大学物理-机械振动习题-含答案

大学物理-机械振动习题-含答案

t (s ) v (m.s -1) 12m v m v o 1.3题图 第三章 机械振动 一、选择题 1. 质点作简谐振动,距平衡位置2。0cm 时, 加速度a=4.0cm 2 /s ,则该质点从一端运动到另一端的时间为( C ) A:1.2s B: 2.4s C:2.2s D:4.4s 解: s T t T x a x a 2.2422,2 222,22===∴== ===ππ ω πωω 2.一个弹簧振子振幅为2 210m -?, 当0t =时振子在2 1.010m x -=?处,且向 正方向运动,则振子的振动方 程是:[ A ] A :2 210cos()m 3 x t πω-=?-; B :2 210cos()m 6x t π ω-=?-; C :2 210cos()m 3 x t π ω-=?+ ; D : 2210cos()m 6 x t π ω-=?+; 解:由旋转矢量可以得出振动的出现初相为:3 π- 3.用余弦函数描述一简 谐振动,若其速度与时间(v —t )关系曲线 如图示,则振动的初相位为:[ A ] 1.2题图 x y o

A :6π; B :3π; C :2 π ; D :23π; E :56π 解:振动速度为:max sin()v v t ω?=-+ 0t =时,01sin 2?=,所以06π?=或0 56 π ?= 由知1.3图,0t =时,速度的大小 是在增加,由旋转矢量图知,旋转矢量在第一象限内,对应质点的运动是由正最大位移向平衡位置运动,速度是逐渐增加的,旋转矢量在第二象限内,对应质点的运动是由平衡位置向负最大位移运动,速度是逐渐减小的,所以只有0 6 π?=是符合条件的。 4.某人欲测钟摆摆长,将钟摆摆锤上移1毫米,测得此钟每分快0。1秒,则此钟摆的摆长为( B ) A:15cm B:30cm C:45cm D:60cm 解:单摆周期 ,2g l T π=两侧分别对T , 和l 求导,有: cm mm T dT dl l l dl T dT 3060) 1.0(21 21,21=-?-==∴= 二、填空题 1.有一放置在水平面上的弹簧振子。振幅 A = 2.0×10-2m 周期 T = 0.50s , 3 4 6 5 2 1 x /1 2题图 x y

大学物理 机械振动习题 含答案

题图 第三章 机械振动 一、选择题 1. 质点作简谐振动,距平衡位置2。0cm 时,加速度a=4.0cm 2 /s ,则该质点从一端运动到另一端的时间为( C ) A: B: C: D: 解: s T t T x a x a 2.242 2,2 222,22===∴==== =ππ ωπ ωω 2.一个弹簧振子振幅为2210m -?,当0t =时振子在21.010m x -=?处,且向正方向运 动,则振子的振动方程是:[ A ] A :2210cos()m 3 x t π ω-=?-; B :2 210cos()m 6 x t π ω-=?-; C :2210cos()m 3 x t π ω-=?+ ; D :2210cos()m 6 x t π ω-=?+ ; 解:由旋转矢量可以得出振动的出现初相为:3 π- 3.用余弦函数描述一简谐振动,若其速度与时间(v —t )关系曲线如图示,则振动的初相位为:[ A ] A :6π; B :3π; C :2 π ; D :23π; E :56 π 解:振动速度为:max 0sin()v v t ω?=-+ 0t =时,01sin 2?= ,所以06π?=或056 π?= 由知图,0t =时,速度的大小是在增加,由旋转矢量图知, 旋转矢量在第一象限内,对应质点的运动是由正最大位移向平衡位置运动,速度是逐渐增加的,旋转矢量在第二象限内,对 应质点的运动是由平衡位置向负最大位移运动,速度是逐渐减小的,所以只有06 π ?= 是符 合条件的。 4.某人欲测钟摆摆长,将钟摆摆锤上移1毫米,测得此钟每分快0。1秒,则此钟摆的摆长为( B ) A:15cm B:30cm C:45cm D:60cm 解:单摆周期 ,2g l T π =两侧分别对T ,和l 求导,有: cm mm T dT dl l l dl T dT 3060) 1.0(21 21,21=-?-= =∴=

大学物理习题_机械振动机械波

机械振动机械波 一、选择题 1.对一个作简谐振动的物体,下面哪种说法是正确的 (A )物体处在运动正方向的端点时,速度和加速度都达到最大值; (B )物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C )物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D )物体处在负方向的端点时,速度最大,加速度为零。 2.质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间2/T t =(T 为周期)时,质点的速度为 (A )φωsin A v -=; (B )φωsin A v =; (C )φωcos A v -=; (D )φωcos A v =。 3.一物体作简谐振动,振动方程为??? ? ? +=4cos πωt A x 。在4T t =(T 为周期)时刻,物 体的加速度为 (A )2221ωA - ; (B )2221 ωA ; (C )232 1 ωA - ; (D )2321ωA 。 4.已知两个简谐振动曲线如图所示,1x 的位相比2x 的位相 (A )落后2π; (B )超前2π ; (C )落后π; (D )超前π。 5.一质点沿x 轴作简谐振动,振动方程为?? ? ?? +?=-ππ312cos 10 42 t x (SI )。从0=t 时刻 起,到质点位置在cm x 2-=处,且向x 轴正方向运动的最短时间间隔为 第题图

(A )s 8/1; (B )s 4/1; (C )s 2/1; (D )s 3/1。 6.一个质点作简谐振动,振幅为 A ,在起始时刻质点的位移为2/A ,且向x 轴的正方向运 动,代表此简谐振动的旋转矢量图为 7.一个简谐振动的振动曲线如图所示。此振动的周期为 (A )s 12; (B )s 10; (C )s 14; (D )s 11。 8.一简谐振动在某一瞬时处于平衡位置,此时它的能量是 (A )动能为零,势能最大; (B )动能为零,机械能为零; (C )动能最大,势能最大; (D )动能最大,势能为零。 9.一个弹簧振子做简谐振动,已知此振子势能的最大值为1600J 。当振子处于最大位移的1/4时,此时的动能大小为 (A )250J ; (B )750J ; (C )1500J ; (D ) 1000J 。 10.当质点以频率ν作简谐振动时,它的动能的变化频率为 (A )ν; (B )ν2 ; (C )ν4; (D ) 2 ν。 11.一质点作简谐振动,已知振动周期为T ,则其振动动能变化的周期是 (A )T /4; (B )T/2; (C )T ; (D )2T 。 x (A ) (B )(C ) (D ) )s 2 1 -

大学物理振动波动例题习题

精品 振动波动 一、例题 (一)振动 1.证明单摆是简谐振动,给出振动周期及圆频率。 2. 一质点沿x 轴作简谐运动,振幅为12cm ,周期为2s 。当t = 0时, 位移为6cm ,且向x 轴正方向运动。 求: (1) 振动表达式; (2) t = 0.5s 时,质点的位置、速度和加速度; (3)如果在某时刻质点位于x =-0.6cm ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。 3. 已知两同方向,同频率的简谐振动的方程分别为: x 1= 0.05cos (10 t + 0.75π) 20.06cos(100.25)(SI)x t π=+ 求:(1)合振动的初相及振幅. (2)若有另一同方向、同频率的简谐振动x 3 = 0.07cos (10 t +? 3 ), 则当? 3为多少时 x 1 + x 3 的振幅最大?又? 3为多少时 x 2 + x 3的振幅最小? (二)波动 1. 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s 。在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动, 求:(1)波动方程 (2)x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度。 2. 一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播。已知原点的振动曲线如图所示。求:(1)原点的振动表达式; (2)波动表达式; (3)同一时刻相距m 1的两点之间的位相差。 3. 两相干波源S 1和S 2的振动方程分别是1cos y A t ω=和2cos(/2)y A t ωπ=+。 S 1距P 点3个波长,S 2距P 点21/4个波长。求:两波在P 点引起的合振动振幅。

《大学物理学》机械振动练习题

《大学物理学》机械振动自主学习材料 一、选择题 9-1.一个质点作简谐运动,振幅为A ,在起始时质点的位移为2 A - ,且向x 轴正方向运动, 代表此简谐运动的旋转矢量为( ) 【旋转矢量转法判断初相位的方法必须掌握】 9-2.已知某简谐运动的振动曲线如图所示,则此简谐运动的运动方程(x 的单位为cm ,t 的单位为s )为( ) (A )22 2cos()3 3x t ππ=-; (B )2 22cos()33x t ππ=+ ; (C )4 22cos()33x t ππ=-; (D )4 22cos()33 x t ππ=+ 。 【考虑在1秒时间内旋转矢量转过 3 ππ+,有43 πω= 】 9-3.两个同周期简谐运动的振动曲线如图所示, 1x 的相位比2x 的相位( ) (A )落后 2 π ; (B )超前 2 π ; (C )落后π; (D )超前π。 【显然1x 的振动曲线在2x 曲线的前面,超前了1/4周期,即超前/2π】 9-4.当质点以频率ν作简谐运动时,它的动能变化的频率为( ) (A )2 ν ; (B )ν; (C )2ν; (D )4ν。 【考虑到动能的表达式为2 2 2 11sin () 2 2 k E m v kA t ω?= = +,出现平方项】 9-5.图中是两个简谐振动的曲线,若这两个简谐振动可 叠加,则合成的余弦振动的初相位为( ) (A )32 π; (B )2π ; (C )π; (D )0。 【由图可见,两个简谐振动同频率,相位相差π,所以,则合成的余弦振动的振幅应该是大减小,初相位是大的那一个】 9--1.一物体悬挂在一质量可忽略的弹簧下端,使物体略有位移, 测得其振动周期为T ,然后将弹簧分割为两半,并联地悬挂同 一物体,再使物体略有位移,测得其振动周期为'T ,则 '/T T 为( ) ()A ()B () C ()D ) s 1 -2 -

大学物理题库-振动与波动

振动与波动题库 一、选择题(每题3分) 1、当质点以频率ν 作简谐振动时,它的动能的变化频率为( ) (A ) 2v (B )v (C )v 2 (D )v 4 2、一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2。当0=t 时, 位移为cm 6,且向x 轴正方向运动。则振动表达式为( ) (A) )(3 cos 12.0π π-=t x (B ) )(3 cos 12.0π π+=t x (C ) )(3 2cos 12.0π π-=t x (D ) ) (32cos 12.0π π+=t x 3、 有一弹簧振子,总能量为E ,如果简谐振动的振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量变为 ( ) (A )2E (B )4E (C )E /2 (D )E /4 4、机械波的表达式为()()m π06.0π6cos 05.0x t y +=,则 ( ) (A) 波长为100 m (B) 波速为10 m·s-1 (C) 周期为1/3 s (D) 波沿x 轴正方向传播 5、两分振动方程分别为x 1=3cos (50πt+π/4) ㎝ 和x 2=4cos (50πt+3π/4)㎝,则它们的合振动的振幅为( ) (A) 1㎝ (B )3㎝ (C )5 ㎝ (D )7 ㎝ 6、一平面简谐波,波速为μ=5 cm/s ,设t= 3 s 时刻的波形如图所示,则x=0处的质点的振动方程为 ( ) (A) y=2×10- 2cos (πt/2-π/2) (m) (B) y=2×10- 2cos (πt + π) (m) (C) y=2×10- 2cos(πt/2+π/2) (m) (D) y=2×10- 2cos (πt -3π/2) (m) 7、一平面简谐波,沿X 轴负方向 传播。x=0处的质点 的振动曲线如图所示,若波函数用余弦函数表示,则该波的初位相为( ) (A )0 (B )π (C) π /2 (D) - π /2 8、有一单摆,摆长m 0.1=l ,小球质量g 100=m 。设小球的运动可看作筒谐振动,则该振动的周期为( ) (A) 2π (B )32π (C )102π (D )52π 9、一弹簧振子在光滑的水平面上做简谐振动时,弹性力在半个周期内所做的功为 [ ] (A) kA 2 (B )kA 2 /2 (C )kA 2 /4 (D )0

大学物理振动与波动

振动与波动 选择题 0580.一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,(如图所示), 作成一复摆.已知细棒绕通过其一端的轴的转动惯量23 1 ml J =,此摆作微小振 动的周期为 (A) g l π2. (B) g l 22π. (C) g l 322π . (D) g l 3π. [ C ] 3001. 把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为 (A) π. (B) π/2. (C) 0 . (D) θ. [ C ] 3003.轻弹簧上端固定,下系一质量为m 1的物体,稳定后在m 1下边又系一质量为m 2 的物体,于是弹簧又伸长了?x .若将m 2移去,并令其振动,则振动周期为 (A) g m x m T 122?π= . (B) g m x m T 212?π=. (C) g m x m T 2121?π= . (D) g m m x m T )(2212+π=?. [ B ] 3004.劲度系数分别为k 1和k 2的两个轻弹簧串联在一起,下面挂着质量为m 的物体,构成一个竖挂的弹簧振子,则该系统的振动周期为 (A) 21212)(2k k k k m T +π =. (B) ) (221k k m T +π= . (C) 2121)(2k k k k m T +π=. (D) 2 122k k m T +π=. [ C ] 3255.如图所示,在一竖直悬挂的弹簧下系一质量为m 的物体,再用此弹簧改系一质量为4m 的物体,最后将此弹簧截断为两个等长的弹簧并联后悬挂质 量为m 的物体,则这三个系统的周期值之比为 (A) 1∶2∶2/1. (B) 1∶2 1 ∶2 .

大学物理习题解答8第八章振动与波动 (1)

第八章 振动与波动 本章提要 1. 简谐振动 · 物体在一定位置附近所作的周期性往复运动称为机械振动。 · 简谐振动运动方程 ()cos x A t ω?=+ 其中A 为振幅,ω 为角频率,(ωt+?)称为谐振动的相位,t =0时的相位? 称为初相位。 · 简谐振动速度方程 d () d sin x v A t t ωω?= =-+ · 简谐振动加速度方程 2 2 2d ()d cos x a A t t ωω?= =-+ · 简谐振动可用旋转矢量法表示。 2. 简谐振动的能量 · 若弹簧振子劲度系数为k ,振动物体质量为m ,在某一时刻m 的位移为x ,振动速度为v ,则振动物体m 动能为 2 12k E m v = · 弹簧的势能为 2 12p E kx = · 振子总能量为 P 2 2 2 2 2 211()+()22 1=2 sin cos k E E E m A t kA t kA ωω?ω?=+=++ 3. 阻尼振动

· 如果一个振动质点,除了受弹性力之外,还受到一个与速度成正比的阻尼作用,那么它将作振幅逐渐衰减的振动,也就是阻尼振动。 · 阻尼振动的动力学方程为 2 2 2d d 20d d x x x t t β ω++= 其中,γ是阻尼系数,2m γ β= 。 (1) 当22ωβ>时,振子的运动一个振幅随时间衰减的振动,称阻尼振动。 (2) 当22ωβ=时,不再出现振荡,称临界阻尼。 (3) 当22ωβ<时,不出现振荡,称过阻尼。 4. 受迫振动 · 振子在周期性外力作用下发生的振动叫受迫振动,周期性外力称驱动力 · 受迫振动的运动方程为 2 2 P 2d d 2d d cos x x F x t t t m β ωω++= 其中,2k m ω=,为振动系统的固有频率;2C m β=;F 为驱动力振幅。 · 当驱动力振动的频率p ω等于ω时,振幅出现最大值,称为共振。 5. 简谐振动的合成与分解 (1) 一维同频率的简谐振动的合成 若任一时刻t 两个振动的位移分别为 111()cos x A t ω?=+ 222()cos x A t ω?=+ 合振动方程可表示为 ()cos x A t ω?=+ 其中,A 和? 分别为合振动的振幅与初相位 A =

大学物理复习题答案(振动与波动)

大学物理1复习题答案 一、单选题(在本题的每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号,填入题干的括号内) 1.一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和 T 2。将它们拿到月球上去,相应的周期分别为'T 1和'T 2。则有 ( B ) A .'T T >11且 'T T >22 B .'T T =11且 'T T >22 C .'T T <11且 'T T <22 D .'T T =11且 'T T =22 2.一物体作简谐振动,振动方程为cos 4x A t ?? =+ ?? ? πω,在4 T t = (T 为周期)时刻,物体的加速度为 ( B ) A. 2ω 2ω C. 2ω 2ω 3.一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A -,且向x 轴的正方向 运动,代表此简谐振动的旋转矢量图为 ( D ) A A A A A A C) A x x A A x A B C D 4. 两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为 )cos(1αω+=t A x .当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二 个质点正在最大正位移处.则第二个质点的振动方程为 ( B ) A. )π21cos( 2++=αωt A x B. )π21 cos(2-+=αωt A x . C. )π2 3 cos( 2-+=αωt A x D. )cos(2π++=αωt A x .

5.波源作简谐运动,其运动方程为t y π240cos 10 0.43 -?=,式中y 的单位为m ,t 的单 位为s ,它所形成的波形以s m /30的速度沿一直线传播,则该波的波长为 ( A ) A .m 25.0 B .m 60.0 C .m 50.0 D .m 32.0 6.已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒。则此简谐振动的振动方程为: ( B ) A .cos x t ππ??=+ ???2 2233 B .cos x t ππ??=+ ??? 42233 C .cos x t ππ??=- ???22233 D .cos x t ππ??=- ??? 42233 二. 填空题(每空2分) 1. 简谐运动方程为)4 20cos(1.0π π+ =t y (t 以s 计,y 以m 计) ,则其振幅为 0.1 m,周期为 0.1 s ;当t=2s 时位移的大小为205.0m. 2.一简谐振动的旋转矢量图如图所示,振幅矢量长2cm ,则该简谐振动 的初相为4 0π ?=,振动方程为_)4 cos(2π π+ =t y 。 3. 平面简谐波的波动方程为()x t y ππ24cos 08.0-=,式中y 和x 的单位为m ,t 的单位为s ,则该波的振幅A= 0.08 ,波长=λ 1 ,离波源0.80m 及0.30m 两处的相位差=?? -Л 。 4. 一简谐振动曲线如图所示,则由图可确定在t = 2s 时刻质点的位移为___0 ___,速度为:πω3=A . t

清华大学《大学物理》习题库试题及答案--04-机械振动习题

一、选择题: 1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度 θ ,然后由静止放手任其振动,从放手时开始计时。若用余弦函数表示其运动方程,则该单 摆振动的初相为 (A) π (B) π/2 (C) 0 (D) θ 2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。第一个质点的振动方程为x 1 = A cos(ωt + α)。当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。则第二个质点的振动方程为: (A) )π21cos(2++=αωt A x (B) ) π21 cos(2-+=αωt A x (C) ) π23 cos(2-+=αωt A x (D) )cos(2π++=αωt A x 3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是 (A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 (B) 4.3396:一质点作简谐振动。其运动速度与时间的曲线如图所示。若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。将它们拿到月球上去,相应的周期分别为1T '和2T '。则有 (A) 11T T >'且22T T >' (B) 11T T <'且22T T <' (C) 11T T ='且22T T =' (D) 11T T ='且22T T >' 6.5178:一质点沿x 轴作简谐振动,振动方程为 ) 31 2cos(1042π+π?=-t x (SI)。从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为 (A) s 81 (B) s 61 (C) s 41 (D) s 31 (E) s 21 7.5179:一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。当重物通过平衡位置且向规定的正方向运动时,开始计时。则其振动方程为: (A) )21/(cos π+=t m k A x (B) ) 21/cos(π-=t m k A x (C) ) π21/(cos +=t k m A x (D) )21/cos(π-=t k m A x (E) t m /k A x cos = 8.5312:一质点在x 轴上作简谐振动,振辐A = 4 cm ,周期T = 2 s ,其平衡位置取 v 2 1

大学物理振动习题含答案

一、选择题: 1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。若用余弦函数表示其运动方程,则该单摆振动的初相为 (A) π (B) π/2 (C) 0 (D) θ [ ] 2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。第一个质点的振动方程为x 1 = A cos(ωt + α)。当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。则第二个质点的振动方程为: (A) )π21cos(2++=αωt A x (B) ) π2 1cos(2- +=αωt A x (C) ) π23cos(2- +=αωt A x (D) )cos(2π++=αωt A x [ ] 3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是 (A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ] 4.3396:一质点作简谐振动。其运动速度与时间的曲线如图所示。若质点的振动规律 用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 [ ] 5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。将它们拿到月球上去,相应的周期分别为1T '和2T '。则有 (A) 11T T >'且22T T >' (B) 11T T <'且22T T <' (C) 11T T ='且22T T =' (D) 11T T ='且22T T >' [ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为 ) 31 2cos(10 42 π+ π?=-t x (SI)。 从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为 (A) s 8 1 (B) s 6 1 (C) s 4 1 (D) s 3 1 (E) s 2 1 [ ] 7.5179:一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。当重物通过平衡位置且向规定的正方向运动时,开始计时。则其振动方程为: (A) )21/(cos π+=t m k A x (B) )21 /cos(π-=t m k A x (C) )π21/(cos + =t k m A x (D) )21/cos(π- =t k m A x (E) t m /k A x cos = [ ] 8.5312:一质点在x 轴上作简谐振动,振辐A = 4 cm ,周期T = 2 s ,其平衡位置取作坐标原点。若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,则质点第二次通过x = -2 cm 处的时刻为 v v 2 1

(完整版)《大学物理》习题册题目及答案第15单元 机械振动

第15单元 机械振动 学号 姓名 专业、班级 课程班序号 一 选择题 [ B ]1. 已知一质点沿y 轴作简谐振动,其振动方程为)4/3cos(πω+=t A y 。与其对应的振动曲线是: [ B ] 2. 一质点在x 轴上作简谐振动,振幅A = 4cm ,周期T = 2s, 其平衡位置取作坐标原点。若t = 0时刻质点第一次通过x = -2cm 处,且向x 轴负方向运动,则质点第二次通过x = -2cm 处的时刻为: (A) 1s (B) s 32 (C) s 3 4 (D) 2s [ C ] 3. 如图所示,一质量为m 的滑块,两边分别与劲度系数为k1和k2的轻弹簧联接, 两弹簧的另外两端分别固定在墙上。滑块m 可在光滑的水平面上滑动,O 点为系统平衡位置。现将滑块m 向左移动x0,自静止释放,并从释放时开始 计时。取坐标如图所示,则其振动方程为: ??? ? ? ?+=t m k k x x 2 10cos (A) ??????++=πt k k m k k x x )(cos (B) 212 10 ? ?? ???++=πt m k k x x 210cos (C) ??? ???++=πt m k k x x 210cos (D) ??????+=t m k k x x 2 1 0cos (E) [ E ] 4. 一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的: (A) 167 (B) 169 (C) 1611 (D) 1613 (E) 16 15 [ B ] 5. 图中所画的是两个简谐振动的振动曲线,若 这两个简谐振动可叠加,则合成的余弦振动的初相为: (A) π2 1 (B)π t y A (D) A -t y o A -(A) A t y o A A -t y A A (C) o m x x O 1k 2 k t x o 2 /A -2 x 1 x

精选-大学物理振动与波练习题与答案

第二章 振动与波习题答案 12、一放置在水平桌面上的弹簧振子,振幅2 10 0.2-?=A 米,周期50.0=T 秒,当0 =t 时 (1) 物体在正方向的端点; (2) 物体在负方向的端点; (3) 物体在平衡位置,向负方向运动; (4) 物体在平衡位置,向正方向运动。 求以上各种情况的谐振动方程。 【解】:π=π = ω45 .02 )m () t 4cos(02.0x ?+π=, )s /m ()2 t 4cos(08.0v π+?+ππ= (1) 01)cos(=?=?,, )m () t 4cos(02.0x π= (2) π=?-=?,1)cos(, )m () t 4cos(02.0x π+π= (3) 2 1)2cos(π=?-=π+?, , )m () 2 t 4cos(02.0x π+π= (4) 21)2cos(π-=?=π+?, , )m () 2 t 4cos(02.0x π-π= 13、已知一个谐振动的振幅02.0=A 米,园频率πω 4=弧度/秒, 初相2/π=?。 (1) 写出谐振动方程; (2) 以位移为纵坐标,时间为横坐标,画出谐振动曲线。 【解】:)m () 2 t 4cos(02.0x π+π= , )(2 12T 秒=ωπ= 15、图中两条曲线表示两个谐振动 (1) 它们哪些物理量相同,哪些物理量不同? (2) 写出它们的振动方程。

【解】:振幅相同,频率和初相不同。 虚线: )2 t 2 1cos(03.0x 1π-π= 米 实线: t cos 03.0x 2π= 米 16、一个质点同时参与两个同方向、同频率的谐振动,它们的振动方程为 t 3cos 4x 1= 厘米 )3 2t 3cos(2x 2π+= 厘米 试用旋转矢量法求出合振动方程。 【解】:)cm () 6 t 3cos(32x π+= 17、设某一时刻的横波波形曲线如图所示,波动以1米/秒的速度沿水平箭头方向传播。 (1) 试分别用箭头表明图中A 、B 、C 、D 、E 、F 、H 各质点在该时刻的运动方向; (2) 画出经过1秒后的波形曲线。 【解】: 18、波源作谐振动,其振动方程为(m ))240(1043t cos y π-?=,它所形成的波以30m/s 的速度沿一直线传播。

大学物理机械振动习题解答

习题四 4-1 符合什么规律的运动才是谐振动分别分析下列运动是不是谐振动: (1)拍皮球时球的运动; (2)如题4-1图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很 短). 题4-1图 解:要使一个系统作谐振动,必须同时满足以下三个条件:一 ,描述系统的各种参量,如质量、转动惯量、摆长……等等在运动中保持为常量;二,系统 是在 自己的稳定平衡位置附近作往复运动;三,在运动中系统只受到内部的线性回复力的作用. 或者说,若一个系统的运动微分方程能用 0d d 2 22=+ξωξt 描述时,其所作的运动就是谐振动. (1)拍皮球时球的运动不是谐振动.第一,球的运动轨道中并不存在一个稳定的平衡位置; 第二,球在运动中所受的三个力:重力,地面给予的弹力,击球者给予的拍击力,都不是线 性回复力. (2)小球在题4-1图所示的情况中所作的小弧度的运动,是谐振动.显然,小球在运动过程中 ,各种参量均为常量;该系统(指小球凹槽、地球系统)的稳定平衡位置即凹槽最低点,即系统势能最小值位置点O ;而小球在运动中的回复力为θsin mg -,如题4-1图(b)所示.题 中所述,S ?<<R ,

故R S ?= θ→0,所以回复力为θmg -.式中负号,表示回复力的方向始终与角位移的方向相反.即小球在O 点附近的往复运动中所受回复力为线性的.若以小球为对象,则小球在以O '为圆心的竖直平面内作圆周运动,由牛顿第二定律,在凹槽切线方向上有 θθ mg t mR -=22d d 令R g = 2ω,则有 0d d 2 22=+ωθt 4-2 劲度系数为1k 和2k 的两根弹簧,与质量为m 的小球按题4-2图所示的两种方式连 接,试证明它们的振动均为谐振动,并分别求出它们的振动周期. 题4-2图 解:(1)图(a)中为串联弹簧,对于轻弹簧在任一时刻应有21F F F ==,设串联弹簧的等效倔强系数为串K 等效位移为x ,则有 1 11x k F x k F -=-=串 222x k F -= 又有 21x x x += 2 211k F k F k F x +== 串 所以串联弹簧的等效倔强系数为

(完整版)大学物理(第四版)课后习题及答案机械振动

13 机械振动解答 13-1 有一弹簧振子,振幅A=2.0×10-2m ,周期T=1.0s ,初相?=3π/4。试写出它的运动方程,并做出x--t 图、v--t 图和a--t 图。 13-1 分析 弹簧振子的振动是简谐运动。振幅A 、初相?、角频率ω是简谐运动方程 ()?ω+=t A x cos 的三个特征量。求运动方程就 要设法确定这三个物理量。题中除A 、?已知外, ω可通过关系式T π ω2= 确定。振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同。 解 因T π ω2=,则运动方程 ()?? ? ??+=+=?π?ωt T t A t A x 2cos cos 根据题中给出的数据得 ]75.0)2cos[()100.2(12ππ+?=--t s m x 振子的速度和加速度分别为 ]75.0)2sin[()104(/112πππ+??-==---t s s m dt dx v πππ75.0)2cos[()108(/112222+??-==---t s s m dt x d a x-t 、v-t 及a-t 图如图13-l 所示 13-2 若简谐运动方程为?? ???? +=-4)20(cos )01.0(1ππt s m x ,求:(1)振幅、频率、角频率、周期和 初相;(2)t=2s 时的位移、速度和加速度。 13-2 分析 可采用比较法求解。 将已知的简谐运动方程与简谐运动方程的一般形式()?ω+=t A x cos 作比较,即可求得各特征量。 运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果。 解 (l )将]25.0)20cos[()10.0(1ππ+=-t s m x 与()?ω+=t A x cos 比较后可得:振幅A= 0.10 m ,角频率120-=s πω,初相π?25.0=,则周期 s T 1.0/2==ωπ,频率Hz T 10/1==ν。 (2)t= 2s 时的位移、速度、加速度分别为 m m x 21007.7)25.040cos()10.0(-?=+=ππ )25.040sin()2(/1πππ+?-==-s m dt dx v

大学物理复习题答案(振动与波动)讲解学习

大学物理复习题答案(振动与波动)

大学物理1复习题答案 一、单选题(在本题的每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号,填入题干的括号内) 1. 一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T i和T2。将它们拿到月球上去,相应的周期分别为T i'和T2。则有(B ) A. T i' T i且T T2 B. T i' T i 且T2 T2 C. T i' T i且T2T2 D. T i' T i且T2T2 2.一?物体作简谐振动,振动方程为x A cos t-,在t T(T为周 期) 44 时刻,物体的加速度为( B ) A.i,2A2 B.i &A 2c. i、3A2D.T A2 2 2 22 3. —质点作简谐振动,振幅为A,在起始时刻质点的位移为 A 的正方向 4. 两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动 方程为 A/2,且向x轴运动,代表此简谐振动的旋转矢量图为( C D

X i Acos( t ).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处?则第二个质点的振动方程为 (B ) A. X2 Acos( t 1 1 一冗) B. X2 Acos( t 一冗). 2 2 C. x2Acos( t 3 冗) D. x2Acos( t ). 5. 波源作简谐运动,其运动方程为y 4.0 10 3cos240 t,式中y的单位为 m,t的单位为s,它所形成的波形以30m/s的速度沿一直线传播,则该波的波 长为(A ) A. 0.25m B. 0.60m C. 0.50m D. 0.32m 6.已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒。则此简谐振动的振动方程为:( B ) c 22 2cos 42 A. x 2cos — t B. x-t i x (cm) 3333 O严) 小22 2cos 42-1JY/ C. x 2cos — t 33D. x-t 33 -2 填空题(每空2分) 1. 简谐运动方程为y 0.1cos(20 t -)(t以s计,y以m计),则其振幅为0.1 m,周期为0.1 s ;当t=2s时位移的大小为0.05. 2 m. 2. 一简谐振动的旋转矢量图如图所示,振幅矢量长 的初相为0—,振动方程为_y 2cos( t 一) 4 4

《大学物理学》机械振动练习题

大学物理学》机械振动自主学习材料 、选择题 9-1 .一个质点作简谐运动,振幅为A ,在起始时质点的位移为 代表此简谐运动的旋转矢量为() 【旋转矢量转法判断初相位的方法必须掌握】 9-2 .已知某简谐运动的振动曲线如图所示,则此简谐运动 的运动方程( 的单位为 s)为( 2 2cos( 3t ) 2 3 ) ; (A)x 22 (B x2cos(t) 33 (C)x 4 2cos( 3 t 2 3 ) ; 42 (D x2cos(t) 33 4 【考虑在1 秒时间内旋转矢量转过,有】 33 9-3 .两个同周期简谐运动的振动曲线如图所示,x1的相位 比x2 的相位() (A )落后;(B)超前; 22 (C)落后;(D )超前。 【显然x1的振动曲线在x2 曲线的前面,超前了1/4 周期,即超前 9-5 .图中是两个简谐振动的曲线,若这两个简谐振动可叠 加,则合成的余弦振动的初相位为() 9-4 .当质点以频 率 作简谐运动时,它的动能变化的频率为 ( A)2;(B) 考虑到动能的表达式为E k C) 2 ;(D) 4 。 1 2 mv 221 kA 2 sin 2( t ) ,出现平方项】 A,且向x 轴正方向运 动, x 的单位为cm ,t /2】

】 3 9-10 .如图所示,两个轻弹簧的劲度系数分别为 9-15 .一个质点作简谐振动, 置到二分之一最大位移这段路程所需要的最短时间为: 3 A ) 2 C ) B )2; D ) 0 。 【由图可见,两个简谐振动同频率,相位相差 是大的那一个】 ,所以,则合成的余弦振动的振幅应该是大减小,初相位 9--1 .一物体悬挂在一质量可忽略的弹簧下端,使物体略有位移, 测得其振动周期为 T ,然后将弹簧分割为两半,并联地悬挂同 一物体,再使物体略有位移,测得其振动周期为 T ',则 T'/T 为( ) 11 (A ) 2; (B )1; (C ) ; (D ) 。 22 弹簧串联的弹性系数公式为 形成新的弹簧整体,弹性系数为 T ' 2 1 1 1 ,弹簧对半分割后,其中一根的弹性系数为 2k ,两弹簧并联后 k 串 k 1 k 2 4k ,公式为 k 并 k 1 k 2 ,利用 ,考虑到 T 2 ,所以, T 】 2 9--2 .一弹簧振子作简谐运动,当位移为振幅的一半时,其动能为总能量的( 33 ;( D ) 。 24 11 E k mv 2 kA 2 sin 2 ( t ) , 位 移 为 振 幅 的 一 半 时 , 有 22 1 kA 2 ( 3)2 】 22 A ) 1;( B ) 2 考虑到动 12 ; (C ) 能的 表达式 为 2 2 ,那么, E k 3k 9--3 .两个同方向, 相位差为( A ) 6; ( B ) 同频率的简谐运动,振幅均为 A ,若合成振幅也为 A ,则两分振动的初 2 3; (C )2 3 D ) 则振动频率为: ( 1 A ) 2 k 1 k 2 ; m B ) C ) 2 m ; k 1 k 2 D ) 提示:弹簧串联的弹性系数公式为 k 1 k 2 m(k 1 k 2) m(k 1 k 2) k 1 。 k 2 11 1 , ,而简谐振动的频率为 k 串 k 1 k 2 】 1 2 k 1和 k 2 ,物体在光滑平面上作简谐振动, 可用旋转矢量考虑,两矢量的夹角应为 周期为 T ,当质点由平衡位置向 x 轴正方向运动时, 由平衡位

大学物理振动和波动知识点总结

大学物理振动和波动 知识点总结 1.简谐振动的基本特征 (1)简谐振动的运动学方程: cos()x A t ??=+ (2)简谐振动的动力学特征: F kx =-r r 或 2220d x x d t ?+= (3)能量特征: 222111222 k p E E E mv kx KA =+= +=, k p E E = (4)旋转矢量表示: 做逆时针匀速转动的旋转矢量A r 在x 轴上的投影点的运动可用来 表示简谐振动。 旋转矢量的长度A r 等于振动的振幅,旋转矢量的角速度等于谐振动的角频率,旋转矢量在0t =时刻与坐标轴x 的夹角为谐振动的初相。 2.描述简谐振动的三个基本量 (1)简谐振动的相位:t ω?+,它决定了t 时刻简谐振动的状态;其中:00arctan(/)v x ?ω=- (2)简谐振动的振幅:A ,它取决于振动的能量。其中:A = (3)简谐振动的角频率:ω,它取决于振动系统本身的性质。 3.简谐振动的合成 (1)两个同方向同频率简谐振动的合成: 合振动的振幅:A = 合振幅最大: 212,0,1,2....k k ??π-==;合振幅最小:21(21),0,1,2....k k ??π-=+= (2)不同频率同方向简谐振动的合成:当两个分振动的频率都很大,而两个频率差很小时,产生拍现象,拍频为21ννν?=-;合振动不再是谐振动,其振动方程为 21 21 0(2cos 2)cos 222x A t t ννννππ-+= (3)相互垂直的两个简谐振动的合成:若两个分振动的频率相同,则合成运动的轨迹一般为椭圆;若两个分振动的频率为简单的整数比,则合成运动的轨迹为李萨如图形。 (4)与振动的合成相对应,有振动的分解。 4.阻尼振动与受迫振动、共振:

大学物理(第四版)课后习题与答案机械振动

13 机械振动解答 13-1 有一弹簧振子,振幅A=2.0 ×10 -2 m,周期T=1.0s ,初相=3π/4。试写出它的运动方程,并做出x--t 图、v--t 图和a--t 图。 13-1 分析弹簧振子的振动是简谐运动。振幅 A 、初相、角频率是简谐运动方程 x A cos t 的三个特征量。求运动方程就 要设法确定这三个物理量。题中除A、已知外, 可通过关系式2 T 确定。振子运动的速度 和加速度的计算仍与质点运动学中的计算方法相同。 解因2 T ,则运动方程 x A c os t A cos 2 T t t 根据题中给出的数据得 x ( 2.0 10 2 m s 1 t ) cos[( 2 ) 0.75 ] 振子的速度和加速度分别为 v dx / dt (4 10 2 m s 1 s 1 t ) sin[( 2 ) 0.75 ] a d 2 x dt2 2 2 m s 1 s 1 t / (8 10 ) cos[( 2) 0.75 x-t 、v-t 及a-t 图如图13-l 所示 13-2 若简谐运动方程为x(0 .01m) cos (20 s ) ,求:(1)振幅、频率、角频率、周期和 1 t 1 t 4 初相;(2)t=2s 时的位移、速度和加速度。 13-2 分析可采用比较法求解。将已知的简谐运动方程与简谐运动方程的一般形式x A cos t 作比较,即可求得各特征量。运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果。 1 t 解(l )将x (0.10m) c os[( 20 s ) 0 .25 ] 与x A cos t 比较后可得:振幅A= 0.10 m,角频率 1 20 s ,初相0.25 ,则周期T 2 / 0 .1s ,频率1/ T 10 H z 。 (2)t= 2s 时的位移、速度、加速度分别为 2 x ( 0. 10m) c os(40 0.25 ) 7.07 10 m

相关文档
最新文档