气浮池计算

气浮池计算
气浮池计算

气浮池

1、设计参数:

处理水量Q=5m 3/h ,反应时间 t=6 分钟,接触室上升流速 V 0=10 mm/s ,气浮分离速度 V s =2.0mm/s ,分离室停留时间取t s =10min ,溶气水量占处理污水量的比值 R=30%,溶气压力采用 3kg/cm ,填料罐过流L=5000m/d.m

2、设计计算:

(1)气浮接触室直径d

V 0=10mm/s ,接触室表面积:

200m 1806.0310103600/3.015/1=-??+=+=)()()(V R Q A

接触室直径:m A d 48.02/)14.3/1806.04(2/)/4(=?=?=π,取 0.5m

(2)气浮池直径 D

选定分离速度 V s =2.0mm/s ,则分离室表面积:

m V R Q A s s 903.0)1023600/()3.01(5/)1(=??+=+=

气浮池直径

m A A D S 175.12/]14.3/)903.01806.0(4[2/]/)(4[0=+?=+?=π,取 1.2m

(3)分离室水深 H s

选取分离室停留时间 t s =10min ,则m t V H s s s 2.16010100.2=???=?=

接触室出口断面处的流速 V 1=7mm/s

则出口处水深 H 2

m V d t R Q H s 164.0)1075.014.33600/()3.01(5)/()1(12=????+?=??+=,

取0.17m

(4)接触室高度

m H H H 03.117.02.1230=-=-=

(5)气浮池容积

303.12.1)903.01806.0()(m H A A W s s =?+=?+=

(6)时间校核

接触室气、水接触时间s s V H t 60103)1010/(03.1/000>=?==

气浮池总停留时间:

min 0.12)]3.01(5/[3.160)]1(/[60=+??=+??=R Q W T

分离室停留时间:min 28.1060/1030.120=-=-t T ,与初选时间相符

(7)计算反应池体积V

21V V V +=,其中 V 1 的高度 h 1 为:

m d D h 2020.0577.02/)5.02.1(30tan 2/)(1=?-=??-=

m

h d D d D V 121.0)3/2020.014.3()]2/5.0()2/2.1()2/5.0()2/2.1[()

3/()]2/()2/()2/()2/[(11=???++=??++=π

设取圆台 V 2 的底 d 0=0.5m ,则 V 2 的高 h 2为:202.030tan 2/)(2=??-=d D h ∴321242.02121.0m V V V =?=+=,根据基本设计数据反应时间为t=6min 计算,反应池体积为:315.060/6560/m Q W t =?==, V 略小于 W 1,

其实际反应时间为:min 904.25/242.060/601=?=?=Q V t

(8)反应-气浮池高度

浮渣层高度 H 1 =5cm ,干舷 H 0=15cm ,则反应-气浮池高度 H 为:

m h h h H H H H 804.1202.0202.003.117.005.015.0210210=+++++=+++++=

(9)集水系统

气浮池集水采用 12 根均布的支管,每根支管流量为:

s m h m R Q q /000151.0/5417.012/)3.01(512/)1(33==+?=+=

查表得支管直径 d y =25mm ,管中流速为v=0.95m/s ,

支表中水的损失为:m

g

v h L 15.08.9/2/95.0)0.13.0025.0/80.102.05.0(2/=?++?+=+++=)(出阻进阻ξξλξ

出水总管直径 D g 取 DN80,管中流速v<0.54m/s ,总管上端装水位调节器 反应池进水管靠近池底(切面方向),其直径 D’=80mm ,管中流速v<1.0m/s 气浮池排渣管直径 DN100mm ,溶气释放器V 2=0.121m 3根据溶气压 3kg/m ,溶气水量

1.5m /h ,及接触室直径 d 0=0.5m 的情况,可选用 TJ-H 型释放器一台,释放器安置在离接触室底5cm 处的中心,压力溶气罐按过流密度 L=5000m /d.m 计算溶气罐直径m L QR D d 0917.0)]500014.3/(243.054[)]24//(4[=????==π,取标准直径 D d =100mm ,实际 I A 为:

d m D QR I d A /4586)1214.3/(43.0524)4//(2432=????=?=π,采用Φ25 阶梯环作填料,填料层高 Z 4 取0.5m ,则溶气罐高:

m Z Z Z Z Z 0.25.00.13.0075.0224321=+++?=+++=

溶气罐直径很小,不设布水装置,进水管直径DN 为 32mm 管中流速 V=1.3m/s ,出水管直径取DN50,管内流速 V=0.53m/s

气浮法设计计算

气浮法设计计算一.气浮法分类及原理 二.气浮法设计参数

三.气浮法设计计算

四.不同温度下的K T值和736K T值

例:2×75m3 / h气浮池 气浮池设置在絮凝池侧旁,沉淀池上方。气浮类型较多,有全部压力溶气气浮、分散空气气浮、电解凝聚气浮、内循环射流气浮等,这里选择适用于城镇给水处理的部分回流压力溶气气浮。 气浮适用于含藻类及有机杂质、水温较低、常年浊度低于100NTU的原水;它依靠微气泡粘附絮粒,实现絮粒强制性上浮,达到固、液分离,由于气泡的重度远小于水,浮力很大,促使絮粒迅速上浮,提高固、液分离速度。气浮依靠无数微气泡去粘附絮粒,对絮粒的重度、大小要求不高,能减少絮凝时间,节约混凝剂量;带气絮粒与水的分离速度快,单位面积产水量高,池容及占地减少,造价降低;气泡捕足絮粒的机率很高,跑矾花现象很少,有利于后级滤池延长冲洗周期,节约水耗;排渣方便,浮渣含水率低,耗水量小;池深浅,构造简单,可随时开、停,而不影响出水水质,管理方便。 ●结构尺寸: 取回流比R=20%,气浮池处理水量:Q3=(1+R)Q2=1.2×75=90m3/h 接触区底部上升段纵截面为矩形,上升流速10~20mm/s,取U J1=18mm/s=64.8m/h 接触区底部通水平面面积:F J1=90/64.8=1.389≈1.4m2 接触区宽与絮凝池相同,B=2m,接触区底部平面池长方向尺寸:L J1=1.4/2=0.7m 接触区上端扩散段纵截面为倒直角梯形,出口流速5~10mm/s,取U J2=7.5mm/s=27m/h 接触区上端扩散出口通水平面面积:F J2=90/27=3.333m2 接触区宽与絮凝池相同,B=2m,接触区上端扩散出口平面池长方向尺寸:L J2=3.333/2=1.6665≈1.7m 扩散段水平倾角α=35°,扩散段高:h K=(1.7-0.7)tan35°=0.7m 扩散段容积:V K=〔(1.7+0.7)/2〕×0.7×2=1.68m3 接触区停留时间需大于60s,取t J=90s=1.5min,接触区容积:V J=90×1.5/60=2.25m3 接触区底部上升段高:h D=(V J-V K)/F J1=(2.25-1.68)/1.4=0.4m

气浮池设计详细资料

目录 第一章设计任务书 (2) 1.1 设计题目 (2) 1.2 设计资料 (2) 1.3 设计内容 (2) 1.4设计成果 (2) 第二章设计说明与计算书 (3) 2.1 设计原理及方案选择 (3) 2.1.1设计原理 (3) 2.1.2方案选择 (5) 2.2设计工艺计算 (6) 2.2.1供气量与空压机选型 (6) 2.2.2溶气罐 (7) 2.2.3气浮池 (8) 2.2.4附属设备 (10) 第三章参考文献 (11) 第四章设计心得体会 (12) 第五章附图 (12) 气浮池的设计计算

第一章设计任务书 1.1 设计题目 加压溶气气浮设备的设计(平流式) 1.2 设计资料 某工厂污水工程拟用气浮设备代替二沉池,经气浮实验取得以下参数:溶气水采用净化后处理水进行部分回流,回流比0.2,气浮池内接触时间为5min,溶气罐内停留时间为3min,分离时间为15min,溶气罐压力为0.4Mpa,气固比0.02,温度30℃。设计水量850m3/d。 1.3 设计内容 (1)确定设计方案; (2)气浮设备的设计计算; (3)系统设备选型,包括水泵、溶气释放器、溶气压力罐、空压机及刮渣机等;(4)计算书编写,计算机绘图。 1.4设计成果 (1)设备工艺设计计算说明书;要求参数选择合理,条理清楚,计算准确,并附设计计算示意图;提交电子版和A4打印稿一份。 (2)气浮系统图和气浮设备结构详图(包括平面图、剖面图);要求表达准确规范;提交电子版和A3打印稿一份。

第二章设计说明与计算书 2.1 设计原理及方案选择 2.1.1设计原理 加压气浮法是在加压情况下,将空气溶解在废水中达饱和状态,然后突然减至常压,这时溶解在水中的空气就成了过饱和状态,以极微小的气泡释放出来,乳化油和悬浮颗粒就粘附于气泡周围而随其上浮,在水面上形成泡沫层,然后由刮泡器清除,使废水得到净化。 根据废水中所含悬浮物的种类、性质、处理水净化程度和加压方式的不同,基本流程有以下三种。 1、全部废水溶气气浮法 全部废水溶气气浮法是将全部废水用水泵加压,在泵前或泵后注入空气。如图1、图2所示。在溶气罐内空气溶解于废水中,然后通过减压阀将废水送入气浮池,废水中形成许多小气泡粘附废水中的乳化油或悬浮物而浮出水面,在水面上形成浮渣。用刮板将浮渣连续排入浮渣槽,经浮渣管排出池外,处理后的废水通过溢流堰和出水管排出。 图1 全部的废水加压容器气浮(泵前加气)

竖流沉淀池设计计算书

竖流沉淀池设计计算书 设 计:****** 1、 设计概述 为了使出水水质达到景观用水标准,减轻后续工艺的负担,在一般生物法处理工艺前面会设置一个初沉池,它可以去除部分的悬浮物,对SS 的去除率能达到50%,另外初沉池对COD,BOD 的去除率也能达到10%,较大的减轻了后续工艺的负担。 本设计采用竖流式沉淀池作为初沉池,为了降低施工的难度,该竖流沉淀池采用多个污泥斗,这可以降低沉淀池的高度。设计规模为100m3/h,为两池并联设计。 2、 竖流沉淀池构筑物工艺计算 根据《建筑中水设计规范》中的规定,初次沉淀池的设置应根据原水水质与处理工艺等因素确定。当原水为优质杂排水或杂排水时,设置调节池后可不再设置初次沉淀池。若设计水质生活污水,则需要在前期处理中采取设置初次沉淀池,减小后续工艺的负担。 在此设计中由于水量较小,且竖流沉淀池的广泛应用,在生产实践当中有较多的实际经验,故采取竖流沉淀池作为初次沉淀池。《建筑中水设计规范》上规 定:竖流式竖流式沉淀池的设计表面水力负荷宜采用h m m ?-23/2.18.0,中心管 流速不大于s mm /30,中心管下部应设喇叭口与反射板,板底面距泥面不小于m 3.0,排泥斗坡度应大于450。

图1 竖流沉淀池俯视图 设计计算: (1)中心管面积f(m 2) 取中心管流速为v=0、025m/s,沉淀池分两池并联、共壁合建,单池处理流量为:100/2=50m 3/h,以下设计以单池处理流量50m 3/h 来考虑, 则有单池中心管面积: 26.060 60025.050m V Q f =??== (2)中心管直径 0d (m 2) 由中心管面积可以得到: m m d 874.014 .36.040=?=,取d 0=900mm; (3)中心管下端(喇叭口)到反射板之间的缝隙高度h 3(m) 喇叭口的管径取中心管直径的1、35倍,则有 mm mm d d 121590035.135.101=?=?=,设喇叭口与反射板之间的缝隙 水流速度 v 1=0、02mm/s,则有 m m d v Q h 2.0215 .102.014.336005086400113=???=?=π;

沉淀池设计计算

沉淀池 沉淀池是利用重力沉降作用将密度比水大的悬浮颗粒从水中去除的处理构筑物,是废水处理中应用最广泛的处理单元之一,可用于废水的处理、生物处理的后处理以及深度处理。在沉砂池应用沉淀原理可以去除水中的无机杂质,在初沉池应用沉淀原理可以去除水中的悬浮物和其他固体物,在二沉池应用沉淀原理可以去除生物处理出水中的活性污泥,在浓缩池应用沉淀原理分离污泥中的水分、使污泥得到浓缩,在深度处理领域对二沉池出水加絮凝剂混凝反应后应用沉淀原理可以去除水中的悬浮物。 沉淀池包括进水区、沉淀区、缓冲区、污泥区和出水区五个部分。进水区和出水区的作用是使水流均匀地流过沉淀池,避免短流和减少紊流对沉淀产生的不利影响,同时减少死水区、提高沉淀池的容积利用率;沉淀区也称澄清区,即沉淀池的工作区,是沉淀颗粒与废水分离的区域;污泥区是污泥贮存、浓缩和排出的区域;缓冲区则是分隔沉淀区和污泥区的水层区域,保证已经沉淀的颗粒不因水流搅动而再行浮起。 沉淀池的原理 沉淀池是利用水流中悬浮杂质颗粒向下沉淀速度大于水流向卜流动速度、或向下沉淀时间小于水流流出沉淀池的时间时能与水流分离的原理实现水的净化。 理想沉淀池的处理效率只与表面负荷有关,即与沉淀池的表面积有关,而与沉淀池的深度无关,池深只与污泥贮存的时间和数量及防止污泥受到冲刷等因素有关。而在实际连续运行的沉淀池中,由于水流从出水堰顶溢流会带来水流的上升流速,因此沉淀速度小于上升流速的颗粒会随水流走,沉淀速度等于卜-升流速的颗粒会悬浮在池中,只有沉淀速度大于上升流速的颗粒才会在池中沉淀下去。而沉淀颗粒在沉淀池中沉淀到池底的时间与水流在沉淀池的水力停留时间有关,即与池体的深度有关。 理论上讲,池体越浅,颗粒越容易到达池底,这正是斜管或斜板沉淀池等浅层沉淀池的理论依据所在。为了使沉淀池中略大于上升流速的颗粒沉淀下去和防止已沉淀下去的污泥受到进水水流的扰动而重新浮起,因而在沉淀区和污泥贮存区之间留有缓冲区,使这些沉淀池中略大于上升流速的颗粒或重新浮起的颗粒之间相互接触后,再次沉淀下去。 用沉淀池的类型 按水流方向划分,沉淀池可分为平流式、辐流式和竖流式三种,还有根据“浅层理论”发展出来的斜板(管)沉淀池。各自的优缺点和适用范围见表3—3。

气浮池

气浮池 设计说明 气浮工艺主要处理对象为疏水性悬浮物(ss )及脱稳胶粒。选用加压溶气气浮系统,对密度小的纤维类、油类、微生物、表面活性剂的分离尤具优势。 加压容器气浮系统:依靠水泵将处理后的水加压,与加压空气一道被压入密闭的压力溶气罐,空气借助压力以及气、水接触产生的湍动溶解于水中,多余的未溶解空气则由防空阀排放。将溶气水通向溶气释放器,溶气释放器骤然消能减压致使微小气泡稳定释放至水中,供气浮之用。 配备的其它设备:泵两台(一台备用)、空压机、压力溶气罐及相应管道 设计计算 1.1主要工艺指标 (1)气浮池所需空气量Q g h kg fP C Q s g /049.01000 17.425.0)195.38.0(7.18164.11000)1(=??-???=-=γ 式中: Q g --气浮池池所需空气量,kg/h γ--空气容重,g/L (20℃时为1.164g/L ) C s --一定温度下,一个大气压时的空气溶解度,mL/L ·atm(20℃时为18.7 mL/L ·atm) f --加压溶气系统的溶气效率,取0.8 P --溶气压力,atm (2)溶气水量Q r h m K fP Q Q T g r /30009.0024 .095.38.0736049.0736=???== 式中,K T --溶解度系数,20℃时为0.024 1.2气浮池本体 气浮池用挡板或穿孔墙分为接触室和分离室。

1.2.1接触室 (1)接触室表面积A c m v Q Q A c r c 21.015 36001000)251.117.4(3600=??+=+= 式中:v c --水流平均速度,取15mm/s (2)接触室长度L m B A L c c 5.02.01.0=== 式中:B c --接触室宽度,m (3)接触室堰上水深H 2 m B H c 2.02== (4)接触室气水接触时间t c s v H H t c c 107151000)2.08.1(21=?-=-= 式中:H 1--气浮池分离室水深,取1.8m 1.2.2分离室 (1)分离室表面积A s m v Q Q A s r S 211 36001000)251.117.4(3600=??+=+= 式中:v s --分离室水流向下平均速度,取1mm/s (2)分离室长度L S m B A L S S s 43.17 .01=== 满足长宽比2:1~3:1 式中:B s --分离室宽度,m (3)气浮池水深h 2 m t v h S 8.110360205.12=-???==

平流式气浮池设计计算书

平流式气浮池设计计算书 一、设计说明 气浮法也称浮选法,其原理是设法使水中产生大量的微气泡,以形成水、气、及被去除物质的三相混合体,在界面张力、气泡上升浮力和静水压力差等多种力的共同作用下,促进微细气泡粘附在被去除的微小油滴上后,因粘合体密度小于水而上浮到水面,从而使水中油粒被分离去除。气浮法通常作为对含油污水隔油后的补充处理。即为生化处理之前的预处理,经过气浮处理,可将含油量降到30mg/L以下,再经过生化处理,出水含有可达到10mg/L以下。 设计选用目前最常用的平流式气浮池,废水经配水井进入气浮接触区,通过导流板实现降速,稳定水流。然后废水与来自溶气开释器释出的溶气水相混合,此时水中的絮粒和微气泡相互碰撞粘附,形成带气絮粒而上浮,并在分离区进行固液分离,浮至水面的泥渣由刮渣机刮至排渣槽排出。净水则由穿孔集水管汇集至集水槽后出流。部分净水经过回流水泵加压后进溶气罐,在罐内与来自空压机的压缩空气相互接触溶解,饱和溶气水从罐底通过管道输向开释器。 本设计采用加压溶气气浮法在国内外应用最为广泛。与其他方法相比,它具有以下优点:在加压条件下,空气的溶解度大,供气浮用的气泡数目多,能够确保气浮效果;溶进的气体经骤然减压开释,产生的气泡不仅微细、粒度均匀、密集度大、而且上浮稳定,对液体扰动微小,因此特别适用于对疏松絮凝体、细小颗粒的固液分离;工艺过程及设备比较简单,便于治理、维护;特别是部分回流式,处理效果明显、稳定,并能较大地节约能耗。 二、设计任务 完成一个城市污水处理中常用的典型构筑物的工艺设计,较完整地绘制该构筑物的工艺施工图纸。 构筑物——平流式气浮池(共壁合建) 设计流量——Qs=100m3/h 三、设计计算 1.污水水质情况 C = 700㎎/L 悬浮固体浓度o f= 90%空气饱和率Aa/S= 气固比

气浮池设计

2.1 压力溶气系统(包括压力溶气罐、空压机、水泵及其附属设备) 2.1.1 溶气系统占整个气浮过程能量消耗的50%,溶气罐价值占工厂总基建投资的12%,因此优化溶气系统的设计对缩小气浮操作费用是很重要的。 溶气罐多为园筒形,立式布置,容积按废水停留时间25~3min计算,罐中可装设有隔板,瓷环之类,也有用空罐的。 因为溶气罐内水、气相混合,所以一般按压力容器进行设计,罐顶设自动排气阀或罐底设自动减压阀平衡压力,罐内压力一般控制在0.45MPa左右为宜,据此可以确定提升泵、回流泵和空压机的参数。 在国外的设计资料和文献中,认为气水停留时间越长,溶气效率越高。这样就使得溶气罐的体积显得庞大,停留时间有时长达3~5min。国内的研究证实了液膜阻力控制着溶气速率,认为停留时间越长,溶气效果越好的观念不符合实际,因此国内设计参数不同于国外,是以预定的溶气效率为设计指标,以液相过流密度和液相总容量传质系数为参数。 所有研究都表明有填充床的溶气罐比没有填充床的有效,其效率最高可达到99%,但在实际运行中,经常需对溶气罐进行内部检查,因而在很多溶气气浮工艺中常选用没有填充床的系统,而且大部分无填充床的溶气罐常配有内部的或外部的喷射器以提高溶气效率。 第一种是泵前进气,流程图见图3。当空气吸入量小于空气在该温度下水中的饱和度时,由水泵压水管引出一支管返回吸水管,在支管上安装水力喷射器,废水经过水力喷射器时造成负压,将空气吸入与废水混合后,经吸水管、水泵送入溶气罐。这种方式省去了空压机,气水混合效果好,但水泵必须采用自引方式进水,而且要保持lm

以上的水头,其最大吸气量不能大于水泵吸水量的10%,否则,水泵工作不稳定,破坏了水泵应当具有的真空度,会产生气蚀现象。

竖流式沉淀池

竖流式沉淀池 设计概述 因本次设计的设计流量不大,拟采用竖流式沉淀池. 设计参数 ①池的直径或池的边长不大于8m ,通常为4~7m 。 ②池径与有效水深之比不大于3。 ③中心管管内流速不大于30mm/s。 ④中心管下端应设于喇叭口和反射板,反射板距地面不小于,喇叭口直径及高度为中心管直径的 倍,反射板直径为喇叭口直径的 倍,反射板表面与水平面的倾角为17°。 ⑤中心管下端至反射板表面之间的缝隙高在~ 范围内时,缝隙中污水流速,初次沉淀池中不大于30mm/s ,二沉池不大于20mm/s 。 ⑥池径小于7m 时,溢流沿周边流出,池径大于7m 时,应增设幅流式集水支渠。 ⑦排泥管下端距池底不大于,上端超出水面不小于。 ⑧浮渣挡板距集水槽~,淹没深度~。 设计计算 ⑴ 中心管面积 设中心管流速=m/s,采用池数n=2,则每池最大设计流量为 s m n Q q /029.02 058.03max max === 则中心管面积 20max 96.003 .0029.0m v q f === ⑵ 沉淀部分有效面积 设表面负荷q1=)/(2 3h m m ,则上升流速

s m h m u v /0007.0/52.20=== 2max 43.410007 .0029.0m v q A === ⑶ 沉淀池直径 ()()m m f A D 835.714 .396.043.4144<=+?=+= π ⑷ 沉淀池有效水深 设沉淀时间T =h,则 m vT h 78.336005.10007.036002=??=?= ⑸ 较核池径水深比 39.178 .335.72<==h D ∴符合要求 (6)校核集水槽每米出水堰的过水负荷 S L S L D q q /9.2/26.1100035.7029.0max 0<=??==ππ ∴符合要求 ⑹ 中心管直径 m f d 11.114 .396.0440=?==π ⑺ 中心管喇叭口下缘至反射板的垂直距离 m d v q h 31.05 .114.302.0029.011max 3=??=??=π 式中: h3 ——中心管喇叭口下缘至反射板的垂直距离,m v1 ——污水由中心管喇叭口与反射板之间缝隙流处的流速,m/s d1 —— 喇叭口直径; d1==×=m ⑻ 污泥斗及污泥斗高度 取α=60°,截头直径1 d =m,则

竖流式沉淀池的设计

竖流式沉淀池的设计 一、前言 竖流式沉淀池又称立式沉淀池,是池中废水竖向流动的沉淀池。池体平面图形为圆形或方形,水由设在池中心的进水管自上而下进入池内(管中流速应小于30mm/s),管下设伞形挡板使废水在池中均匀分布后沿整个过水断面缓慢上升(对于生活污水一般为0、5-0、7mm/s,沉淀时间采用1-1、5h),悬浮物沉降进入池底锥形沉泥斗中,澄清水从池四周沿周边溢流堰流出。堰前设挡板及浮渣槽以截留浮渣保证出水水质。池的一边靠池壁设排泥管(直径大于200mm)靠静水压将泥定期排出。竖流式沉淀池的优点是占地面积小,排泥容易,缺点是深度大,施工困难,造价高。常用于处理水量小于20000m3/d的污水处理厂。 理论依据:竖流式沉淀池中,水流方向与颗粒沉淀方向相反,其截留速度与水流上升速度相等,上升速度等于沉降速度的颗粒将悬浮在混合液中形成一层悬浮层,对上升的颗粒进行拦截和过滤。因而竖流式沉淀池的效率比平流式沉淀池要高。 二、设计内容:某小区的生活污水量为7000 m3/d,变化系数为1、65 ,CODCr450 mg/l,BOD5220 mg/l,SS370 mg/l,采用二级处理,处理后污水排入三类水体。通过上述参数设计该污水处理厂的生物处理工艺的初次沉淀池。

三、竖流式沉淀池的工作原理在竖流式沉淀池中,污水是从下向上以流速v作竖向流动,废水中的悬浮颗粒有以下三种运动状态:①当颗粒沉速u>v时,则颗粒将以u-v的差值向下沉淀,颗粒得以去除;②当u=v时,则颗粒处于随遇状态,不下沉亦不上升;③当u

平流式气浮分离池设计计算书

苏州科技学院 环境科学与工程学院课程设计说明书 课程名称:水处理构筑物课程设计 学生姓名:郁仁飞学号:0820103202 系别:环境科学与工程学院 专业班级:环工0812 指导老师:袁怡 2011年12月 一、设计说明

气浮法也称浮选法,其原理是设法使水中产生大量的微气泡,以形成水、气、及被去除物质的三相混合体,在界面张力、气泡上升浮力和静水压力差等多种力的共同作用下,促进微细气泡粘附在被去除的微小油滴上后,因粘合体密度小于水而上浮到水面,从而使水中油粒被分离去除。气浮法通常作为对含油污水隔油后的补充处理。即为生化处理之前的预处理,经过气浮处理,可将含油量降到30mg/L 以下,再经过生化处理,出水含有可达到10mg/L以下。 设计选用目前最常用的平流式气浮池,废水从池下部进入气浮接触区,保证气泡与废水有一定的接触时间,废水经隔板进入气浮分离区进行分离后,从池底集水管排出。浮在水面在的浮油用刮油设备刮入集油槽后排出。其优点是池身浅、造价低、构造简单、管理方便。 二、设计任务 完成一个废水处理中常用的典型构筑物的工艺设计,较完整地绘制该构筑物的工艺施工图纸。 构筑物——平流式气浮池(共壁合建) 设计流量——Q S=330m3/h 三、设计参数 1、加压水泵 加压水泵作用是提供一定压力的水量,本设计中采用离心泵 2、空气供给设备

压力溶气气浮的供气方式可分为泵前插管进气、水泵—射流器供气、水泵—空压机供气三种,本设计中采用水泵—空压机供气 3、气浮池设计参数控制范围及要点: (1)回流比5%~10% (2)接触区水流上升流速10~20mm/s (3)接触区水流停留时间>60s (4)接触室内的溶气释放器,需根据确定的回流水量、溶气压力及各种型号释放器的作用范围确定合适的型号与数量,并力求布置均匀。 (5)分离室流速 1.5~2.5mm/s (6)气浮池有效水深 2.0~2.5m (7)隔板下端的水流上升速度32mm/s (8)气浮池单宽<10m (9)池长<15m (10)气浮池排渣一般采用刮渣机定期排除。 (11)气浮池集水应力求均匀,一般采用穿孔集水管,集水管内的最大流速宜控制在0.5m/s左右。 基本设计数据的确定: 1)回流比取10% 2)接触室停留时间T2=2min 3)气浮分离速度采用1.5mm/s

竖流式沉淀池设计计算

竖流式沉淀池设计计算 按水流方向划分,沉淀池可分为平流式、辐流式和竖流式三种,还有根据“浅层理论”发展出来的斜板(管)沉淀池。 设置沉淀池的一般要求有哪些 (1)沉淀池的个数或分格数一般不少于2个,为使每个池子的人流量均等,要在人流口处设置调节阀,以便调整流量。池子的超高不能小于0.3m,缓冲层为0.3m~0.5m。 (2)一般沉淀池的停留时间不能小于1h,有效水深多为2~4m(辐流式沉淀池指周边水深),当表面负荷一定时,有效水深与沉淀时间之比也为定值。 (3)沉淀池采用机械方式排泥时,可以间歇排泥或连续排泥。不用机械

排泥时,应每日排泥,初沉池的静水头不应小于1.5m,二沉池的静水头,生物膜法后不应小于1.2m,活性污泥法后不应小于0.9m。 (4)采用多斗排泥时,每个泥斗均应没单独的排泥管和阀门,排泥管的直径不能小于200mm。污泥斗的斜壁与水平面的倾角,采用方斗时不能小于60°,采用圆斗时不能小于55 (5)当采用重力排泥时,污泥斗的排泥管一般采用铸铁管,其下端伸入斗内,顶端敞口伸出水面,以便于疏通,在水面以下1.5~2.0m处,由排泥管接出水平排泥管,污泥借静水压力由此管排出池外。 (6)使用穿孔排泥管排泥时,排泥管长度应在15m以内,排泥管管径150~200mm,孔径15~25mm,孔眼内流速4~5m/s,孔眼总面积与管截面积的比值为0.6~0.8,孔眼向下成45°~60°交错排列。为防止排泥管堵塞,应设压力水冲洗管,根据堵塞情况及时疏通。

(7)进水管有压力时,应设置配水井,进水管由配水井池壁接人,且应将进水管的进口弯头朝向井底。沉淀池进、出水区均应设置整流设施,同时具备刮渣设施。 (8)沉淀池的出水整流措施通常为溢流式集水槽,出水堰可用三角堰、孔眼等形式,普遍采用的是直角锯齿形三角堰,堰口齿深通常为50mm,齿距为200mm左右,正常水面应当位于齿高的1/2处。堰口设置可调式堰板上下移动机构,在必要时可以调整。 (9)沉淀池最大出水负荷,初沉池不宜大于2.9L/(s·m),二沉池不宜大于1.7 L/(s·m)。在出水堰前必须设置收集与排除浮渣的措施,如果使用机械排泥,排渣和排泥可以综合考虑。

气浮池设计书

两级气浮池 大庆油田水务公司含油污水应用技术项目部

目录 1两级气浮池设计说明书 (1) 1.1絮凝池 (1) 1.2回流比 (1) 1.3接触室 (1) 1.4分离室 (2) 1.5两级气浮装置的选择 (2) 2.两级气浮池设计计算书 (2) 2.1基础计算(溶气罐气浮) (2) 2.1.1回流水量 (2) 2.1.2理论空气用量[1] (2) 2.1.3设备提供气量 (3) 2.1.4接触室面积 (3) 2.1.5分离室面积 (3) 2.1.6池水深 (3) 2.1.7溶气罐直径 (4) 2.2池体及校核计算 (4) 2.2.1絮凝池 (4) 2.2.2接触室 (4) 2.2.3分离室 (5) 2.3 进、出水管线、排空及排渣管线和释放器设计及计算 (5)

2.3.1 进、出水管线设计 (5) 2.4释放器设计计算 (6) 2.4.1 一级气浮的释放器 (6) 2.4.2 二级气浮的释放器 (7) 2.5 空压机及气管线设计计算 (8) 2.5.1 空压机选择 (8) 2.5.2 气管线设计 (8) 2.6池体材质 (8) 3 材料表 (8) 4 设备表 (10) 5 图纸 (11) 6参考文献 (11)

1两级气浮池设计说明书 已知条件:来水流量Q=1(3)m3/h,来水含油≤230mg/L,含悬浮物≤600mg/L,处理后出水含油≤110mg/L,含悬浮物≤350mg/L。 1.1絮凝池 絮凝时间对气浮池的处理效果有重要影响,给排水设计手册[1]上絮凝时间采用10-20min。根据前期药剂筛选实验得出,处理含油废水时,其最佳絮凝时间为15min,本装置的絮凝池按此参数进行设计。 1.2回流比 回流比过低会导致无法产生足够的微气泡,从而不能有效去除石油类、悬浮物等指标;回流比过高易导致系统的能耗高,同时需选择较大的溶气罐或溶气泵,造成初期投入较大。为达到合适的回流比,根据相关文献[3],回流比采用40%。本设计选择50%。 1.3接触室 根据给排水设计手册[1],建议该室内水流上升速度10-20mm/s。本设计选择滤速ν=15mm/s。

竖流沉淀池设计计算书

竖流沉淀池设计计算书 设 计:****** 1. 设计概述 为了使出水水质达到景观用水标准,减轻后续工艺的负担,在一般生物法处理工艺前面会设置一个初沉池,它可以去除部分的悬浮物,对SS 的去除率能达到50%,另外初沉池对COD ,BOD 的去除率也能达到10%,较大的减轻了后续工艺的负担。 本设计采用竖流式沉淀池作为初沉池,为了降低施工的难度,该竖流沉淀池采用多个污泥斗,这可以降低沉淀池的高度。设计规模为100m3/h ,为两池并联设计。 2. 竖流沉淀池构筑物工艺计算 根据《建筑中水设计规范》中的规定,初次沉淀池的设置应根据原水水质和处理工艺等因素确定。当原水为优质杂排水或杂排水时,设置调节池后可不再设置初次沉淀池。若设计水质生活污水,则需要在前期处理中采取设置初次沉淀池,减小后续工艺的负担。 在此设计中由于水量较小,且竖流沉淀池的广泛应用,在生产实践当中有较多的实际经验,故采取竖流沉淀池作为初次沉淀池。《建筑中水设计规范》上 规定:竖流式竖流式沉淀池的设计表面水力负荷宜采用h m m ?-2 3/2.18.0,中 心管流速不大于s mm /30,中心管下部应设喇叭口和反射板,板底面距泥面不小于m 3.0,排泥斗坡度应大于450 。

图1 竖流沉淀池俯视图 设计计算: (1)中心管面积f(m 2) 取中心管流速为v=0.025m/s ,沉淀池分两池并联、共壁合建,单池处理流量为:100/2=50m 3/h ,以下设计以单池处理流量50m 3/h 来考虑, 则有单池中心管面积: 26.060 60025.050m V Q f =??== (2)中心管直径 0d (m 2) 由中心管面积可以得到: m m d 874.014 .36 .040=?= ,取d 0=900mm ; (3)中心管下端(喇叭口)到反射板之间的缝隙高度h 3(m ) 喇叭口的管径取中心管直径的1.35倍,则有 mm mm d d 121590035.135.101=?=?=,设喇叭口和反射板之间的缝隙 水流速度 v 1=0.02mm/s ,则有

沉淀池设计计算设计参数

平流式沉淀池的基本要求有哪些 平流式沉淀池表面形状一般为长方形,水流在进水区经过消能和整流进入沉淀区后,缓慢水平流动,水中可沉悬浮物逐渐沉向池底,沉淀区出水溢过堰口,通过出水槽排出池外。平流式沉 淀池基本要求如下: (1)平流式沉淀池的长度多为30~50m,池宽多为5~10m,沉淀区有效水深一般不超过3m,多为2.5~3.0m。为保证水流在池内的均匀分布,一般长宽比不小于4:1,长深比为8~12。 (2)采用机械刮泥时,在沉淀池的进水端设有污泥斗,池底的纵向污泥斗坡度不能小于0.01,一般为0.01~0.02。刮泥机的行进速度不能大于1.2m/min,一般为0.6~0.9m /min。 (3)平流式沉淀池作为初沉池时,表面负荷为1~3m3/(m·h),最大水平流速为7mm/s;作为二沉池时,最大水平流速为5mm/s。 (4)人口要有整流措施,常用的人流方式有溢流堰一穿孔整流墙(板)式、底孑L人流一挡板组合式、淹没孔人流一挡板组合式和淹没孔人流一穿孔整流墙(板)组合式等四种。使用穿孔整流墙(板)式时,整流墙上的开孔总面积为过水断面的6%~20%,孔口处流速为0.15~0.2m/s,孔口应当做成渐扩形状。 (5)在进出口处均应设置挡板,高出水面0.1~0.15m。进口处挡板淹没深度不应小于0.25m,一般为0.5~1.0m;出口处挡板淹没深度一般为0.3~0.4m。进口处挡板距进水口0.5~1.0m,出口处挡板距出水堰板0.25~0.5m。 (6)平流式沉淀池容积较小时,可使用穿孔管排泥。穿孔管大多布置在集泥斗内,也可布置在水平池底上。沉淀池采用多斗排泥时,泥斗平面呈方形或近于方形的矩形,排数一般不能超过两排。大型平流式沉淀池一般都设置刮泥机,将池底污泥从出水端刮向进水端的污泥斗,同时将浮渣刮向出水端的集渣槽。 (7)平流式沉淀池非机械排泥时缓冲层高度为0.5m,使用机械排泥时缓冲层上缘宜高出刮泥板0.3m。 例:某城市污水处理厂的最大设计流量Q=0.2m3/s,设计人数N=10万人,沉淀时间t=1.5h。采用链带式机刮泥,求平流式沉淀池各部分尺寸。 1.池子的总表面积 设表面负荷q'=2m3/m2.h A=Q*3600/q=360m2 2.沉淀部分有效水深h2=q't=2*1.5= 3.0m 3.沉淀部分有效容积V=Qt*3600=1080m3 4.池长设水平流速u=3.7mm/s L=3.7*1.5*3600/1000=20m 5.池子总宽度B=A/L=360/20=18m 6.池子个数,设每格池宽b=4.5m,n=B/b=18/4.5=4个 7.校核长宽比,长深比长宽比:L/B=20/4.5=4.4>4 (符合要求) 长深比:L/h2=20/2.4=8.3 (符合要求) 8.污泥部分所需的总容积

气浮池的设计

第一章设计任务书 1.1 设计题目 加压溶气气浮设备的设计(平流式) 1.2 设计资料 某工厂污水工程拟用气浮设备代替二沉池,经气浮实验取得以下参数:溶气水采用金花后处理水进行部分回流,回流比0.2,气浮池内接触时间为5min,溶气罐内停留时间为3min,分离时间为15min,溶气罐压力为0.4Mpa,气固比0.02,温度30℃。设计水量780m3/d。 第二章设计说明与计算书 2.1 设计原理及方案选择 2.1.1设计原理 气浮过程中,细微气泡首先与水中的悬浮粒子相粘附,形成整体密度小于水的“气泡——颗粒”复合体,使悬浮粒子随气泡一起浮升到水面。由此可见,实现气浮分力必须具备以下三个基本条件:一是必须在水中产生足够数量的细微气泡;二是必须使待分离的污染物形成不溶性的固态或液态悬浮体;三是必须使气泡能够与悬浮粒子相粘附。 气浮法的净水效果,只有在获得直径微小、密度大、均匀性好的大量细微气泡的情况下,才能得到良好的气浮效果。 1)气泡直径气泡直径愈小,其分散度愈高,对水中悬浮粒子的粘附能力和粘附量也就愈大。 2)气泡密度气泡密度是指单位体积释气水中所含微气泡的个数,它决定气泡与悬浮粒子碰撞的机率。由于气泡密度与气泡直径的3次方成反比,因此,在用气压受到限制的条件下,增大气泡密度的主要途径是缩小气泡直径。 3)气泡的均匀性气泡均匀性的含义,一是指最大气泡与最小气泡的直径差;二是指小直径气泡占气泡总量的比例。大气泡数量的增多会造成两种不利影响:一是使气泡密度和表面积大幅度减小,气泡与悬浮粒子的粘附性能和粘附量相应降低;二是大气泡上浮时会造成剧烈的水力扰动,不仅加剧了气泡之间的兼并,而且由此产生的惯性撞击力会将已粘附的气泡撞开。 4)气泡稳定时间气泡稳定时间,是将容器水注入1000ml量筒,从满刻度起到乳白色气泡消失为止的历时。优良的释放器释放的气泡稳定时间应在4min

【精品】竖流式沉淀池计算完整版

一、 1最大流量计算 Q=12.50m3/h q=0.00347m3/s 2中心管计算 v0=0.03m/s f=q/v00.12m2 d0=(4f/3.14) ^(1/2)0.38m 3喇叭口和反射板间隙计算 v1=0.02m/s h'=d1=1.35d00.52m h3=q/v1*3.14d10.11m 反射板d2=1.3d10.67m 4沉淀部分有效断面面积 q'= 1.20m3/(m2/h)表面负荷 v=q1/36000.00033m/s kz= 1.65 F=q/kz*v 6.31m 5沉淀池直径 D=√4(F+f)/3.14 2.86m 6校核 1)有效水深 t= 2.00h停留时间 h2=vt*3600 2.40m 3h2=7.20m 符合要求 池子直径与水深之比不大于3 1.19不大于3 2)水堰负荷计算 q*1000/3.14/D=0.39L/(s.m) 符合要求 7出水堰计算 堰上水头H'0.05m 出水堰个数n26.53928个 8集水槽计算 集水槽管内流速u0.100m/s

管径(宽度)d30.210m 雷诺数Re=1000d3*u21031.436 出水阻力系数0.026 水头损失(高度)0.00123m 9出水管流速0.80000m/s 出水管管径0.07436m 9进水管流速 1.80m/s 进水管管径d40.050m 10沉淀部分总容积 T= 2.00d S=0.50L/(人·d) 人口N=166.67人 V=SNT/10000.17m3 污泥排完时间t0.10h 排泥管直径0.14m 11圆截锥计算 r=0.20m R=D/2 1.43 tana55 1.43角度值需要改h5=(R-r)tana 1.76m V1=3.14*h5(R^2+r^2+R*r)/3 4.36m3 符合要求 12沉淀池总高度 超高h1=0.30m 缓冲层h4=0.30m H= 4.86m 13沉淀池总尺寸 直径D 2.86m 总高H 4.86m

浅层气浮设计

~浅层气浮池的主要设计参数 1. 气浮池有效水深0.5~0.6m ,圆形 2. 接触室上升流速下端取20mm/s ,上端取5~10mm/s 。水量接触时间1~1.5min 。 3. 分离区表面负荷3~5m 3/(m 2·h ),水力停留时间12~16min 。 4. 布水机构的出水处应设整流器,原水与溶气水德配水量按分离区单位面积布水量均有的原则设计计算。 5. 布水机构的旋转速度应满足微气泡浮升时间的要求,通常按8~12mim 选转一周计算 6. 溶气水回流比应计算确定,一般应大于30%。溶气罐通常可设计成立式。溶气水水力停留时间应计算确定,一般应大于3min 。设计工作压力0.4~0.5MPa 。 7. 浅层气浮的其它设计方法基本同压力溶气气浮法。 主要工艺设备与材料 1. 溶气泵应选用压力较高的多级泵,其工作压力为0.4~0.6MPa 。 2. 溶气罐为压力溶气设备,设计工作压力一般为0.6MPa ,溶气罐定都应设安全阀。溶气底部应设排污阀,溶气罐进水管应设除污器,溶气罐应具压力容器试验合格证方可使用。 3. 溶气罐供气采用空压机,其工作压力为0.6~0.7MPa ,供气量应满足溶气罐最大溶气量的要求。 4. 溶气罐的压力与水位均应自动控制,并与溶气水泵联动。 5. 释放器应满足水流量的要求,其与溶气罐连接管道应安装快开阀,释放管支管应安装快速拆卸管件,以利清洗。 6. 气浮池应设刮渣机,并设可调节行程开关及调速仪表自动控制。 设计计算: 1. 气浮池所需空气量g Q 1.1释放的空气量的计算,根据设计资料的数据知:Q =49003m /d ,a S =15003g /m ,a =0.006 A a S = a S QS = 00064900150044100a A as aQS .g /d ===??= 式中:S ——为悬浮物固体干重g /d ; Q ——气浮处理的废水量3m /d ; a S ——废水中的悬浮固体浓度3g /m ; A ——减压至101.325KPa 是释放的空气量,g /d ;

气浮法工艺原理及参数设计

水处理气浮工艺分类及参数设计 pH=6.5~8.5含油量<100mg/

500.014511.70

L J2=3.333/2=1.6665≈1.7m 扩散段水平倾角α=35°,扩散段高:h K=(1.7-0.7)tan35°=0.7m 扩散段容积:V K=〔(1.7+0.7)/2〕×0.7×2=1.68m3 接触区停留时间需大于60s,取t J=90s=1.5min,接触区容积:V J=90×1.5/60=2.25m3 接触区底部上升段高:h D=(V J-V K)/F J1=(2.25-1.68)/1.4=0.4m 分离区清水下降流速1.5~2.5mm,取U3=2.5mm/s=9m/h 分离区平面面积:F F=Q3/U3=90/9=10m2 分离区平面池长方向尺寸:L F=10/2=5m(<沉淀池长5.5m) 气浮池长度方向尺寸:L=5.5m 取分离区液深h Y=1.5m,分离区容积:V F=5.5×2×1.5=16.5m3 分离区清水下降时间:t F=h Y/U3=1.5/9=0.167h=10min 取分离区安全超高h A=0.5m,气浮池高H F=1.5+0.5=2m 复核分离停留时间:t F′=V F/Q3=16.5/90=0.183h=11min,满足停留10~15min的要求,并能满足清水到达池底所需时间。 ●溶气泵: 溶气水量即回流水量,Q R=RQ3=0.2×75=15m3/h,溶气压力P≈0.45MPa 溶气泵选用不锈钢离心泵,数量3台,2用1备;型号:DFHW50-200/2/5.5,流量:8.8~12.5~16.3m3/h,扬程:51~50~48.5m,电机功率: 5.5Kw,外形尺寸:长×宽×高=602×400×425mm ●空压机: 水中空气溶解量与温度和压力有关,水温20°C,压力0.1MPa(1bar)时空气在水中的饱和溶解度C K=0.0187L气/L水,溶气效率与溶气罐结构、气液传质填料、溶气压力和时间有关。溶气罐进水压力(表压)P=0.4MPa=4bar≈4Kg/cm2;水温变化校正系数一般为1.1~1.3,取校正系数m=1.2;安全和空压机效率系数一般为1.2~1.5,取效率系数k=1.5。 气浮所需压缩空气量:Q K2=mC K PQ R=1.2×0.0187×4.5×15=1.515m3/h 空压机额定排气量:Q P=kQ K/60=1.5×1.515/60=0.038m3/min 选用无油空气压缩机,数量3台,2用1备;型号:ZW0.05/7,排气量:0.05m3/min,排气压力:0.7MPa,电机功率:0.75Kw,外形尺寸:长×宽×高=825×368×651mm。 ●溶气罐: 溶气罐采用具有高效溶气效率的喷淋填料式,数量2台,碳钢制作;溶气接触停留时间2~4min,取T R=2.5min,溶气罐容积:V R=Q R T R/60=15×2.5/60=0.625m3

竖流沉淀池设计计算书

精心整理 竖流沉淀池设计计算书 设计:****** 1.设计概述 为了使出水水质达到景观用水标准,减轻后续工艺的负担,在一般生物法处理工艺前面会设置一个初沉池,它可以去除部分的悬浮物,对SS的去除率能达到50%,另外初沉池对COD,BOD 2. 图1竖流沉淀池 俯视图 设计计算:

(1)中心管面积f(m 2) 取中心管流速为v=0.025m/s ,沉淀池分两池并联、共壁合建,单池处理流量为:100/2=50m 3/h ,以下设计以单池处理流量50m 3/h 来考虑, 则有单池中心管面积: (2)中心管直径0d (m 2) 由中心管面积可以得到: (3d 1=(4(5(6)沉淀部分有效水深)(2m h 则有m m vt h 38.2233.06.36.32=??==,取2.35m (7)校核池径水深比 池子直径(或正方形的一边与水深之比不大于3),此池中, 97.235 .27==h L <3,符合要求; (8)校核集水槽出水负荷

此池,()m s L m s L L Q ?=????=496.0)/(3600 741000504<)/(29m s L ?,满足要求; (9)污泥斗设计计算 为减小池子高度,降低施工成本,单池采取多个污泥斗,此设计单池采用4个污泥斗,对称布置;设每个污泥斗的下端边长0.8m ,倾斜角度为045=α,则有: 污泥斗深=5h 045tan )4.04 7(?-m =1.35m , 污泥斗容积23225124.28)5.38.05.38.0(3 144m m h V V =?++??==; (10为55%其中,p (11H =(12水,自由跌落出水。采取三角堰板,尺寸设计如下: 设三角堰的堰上水深为h=0.03, 则单齿流量为:s m h q /1033.203.0343.1343.13447.247.2-?=?==; 则总的齿数为:6486400 1033.212914=??==-q Q n 个,一边采取16个三角堰;齿高0.05m 。下设排水管进入缺氧池,管径采取DN=100mm 。 (13)污泥泵选择

相关文档
最新文档