正余弦定理难点突破

 正余弦定理难点突破
 正余弦定理难点突破

<教师备案>本板块主要都是一星和二星的题.因为在寒假预习的时候,我们已经讲了一讲“正弦定理

和余弦定理”,只不过当时讲的比较简单,就是直接运用公式,例题都是一星和二星的.而在本讲会对知识进行加深,例题都在二星、三星和四星之间,老师在讲正余弦定理时,可能需要照顾班里学生的情况,也需要一些简单的题,所以老师在讲概念的时候,也可以让学生做做本板块的题.1、2是正弦定理的题;3、4是余弦定理的题;5、6是正余弦定理的综合运用.

1.在ABC △中,若8a =,60B =?,75C =?,则b =_______. 【解析】

2.在ABC △中,60A =?

,a =

b =B 等于( )

A .45?或135?

B .135?

C .45?

D .以上答案都不对 【解析】 C

3.在ABC △中,若8360b c A ===?,,,则a =___.

知识切片

寒假知识回顾

第1讲 正余弦定理

难点突破

【解析】 7.

4.在ABC △

中,已知222a c b -+,则C =( )

A .60?

B .45?

C .120?

D .30? 【解析】 B .

5.在ABC △中,若sin :sin :sin 7:8:13A B C =,则C =___.

【解析】 2π

3.

6.在ABC △

中,如果sin A C ,30B =?,那么角A 等于( )

A .30?

B .45?

C .60?

D .120? 【解析】 D

<教师备案>本讲的正余弦定理是同步课程,在预习时我们已经讲了正余弦定理,只不过当时只是讲公式的运用,而本讲会在这个基础上进行加深.在做正余弦定理的时候我们会发现,有一种做题思想会一直运用,就是边角互化,本讲不会把边角互化这个做题思想单独列出来,老师可以在讲题的时候给学生进行讲解.所以本讲会从头到尾都贯穿边角互化的做题思想.

考点1:正弦定理

在ABC △中的三个内角A ,B ,C 的对边,分别用a ,b ,c 表示. 1.正弦定理:在三角形中,各边的长和它所对的角的正弦的比相等,即

2sin sin sin a b c

R A B C

===. ① 2sin a R A =,2sin b R B =,2sin c R C =;

② sin 2a A R = ,sin 2b B R = ,sin 2c

C R

= ;

③ ::sin :sin :sin a b c A B C =.

④ 面积公式:111

sin sin sin 222

S ab C bc A ac B ===.

2.正弦定理用于两类解三角形的问题:

① 已知三角形的任意两个角与一边,求其它两边和另一角;

② 已知三角形的两边与其中一边的对角,计算另一边的对角,进而计算出其它的边与角.

知识点睛

1.1正余弦定理

【教师备案】在预习时我们已经把求三角形面积作为一个板块,所以建议老师在同步讲正弦定理时,把三角形面积放到一块去讲,而且三角形的多解情况我们在预习的时候也讲过,老师这

【例1】⑴在ABC

△中,若2sin

b a B

=,则A等于()

A.30?或60?B.45?或60?C.120?或60?D.30?或150?

⑵在ABC

△中,角A B C

,,所对的边分别为a b c

,,.若301

A b a

∠=?==

,,则C

∠等于.

⑶ABC

△中,AB=,1

AC=,30

B

∠=?,则ABC

△的面积等于()

A B C D

【解析】⑴D

⑵105?或15?

⑶D

【例2】⑴(2012天津理6)在ABC

△中,内角A B C

,,所对的边分别是a b c

,,,已知85

b c

=,=2

C B,则cos C=()

A.

7

25

B.

7

25

-C.

7

25

±D.

24

25

⑵(2013年新课标II)ABC

△内角A B C

,,的对边分别为a b c

,,,已知cos sin

a b C c B

=+则B=________.

⑶若ABC

△为钝角三角形,其中角C为钝角,若

3

A C

+=,则

AB

BC

的取值范围是()A.()

12

,B.()

2+∞

,C.()

3+∞

,D.[)

3+∞

【解析】⑴A

⑵π

4

⑶B

经典精讲

考点2:余弦定理

1.余弦定理:三角形任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的两倍,

即:222222

222

2cos ,2cos ,2cos .c a b ab C b a c ac B a b c bc A ?=+-?=+-??=+-? 变形式为:222

222222

cos ,2cos ,2cos .2a b c C ab a c b B ac b c a A bc ?+-=??

?+-=???+-=

??

2.余弦定理及其变形常用来解决这样两类解三角形的问题:

① 已知两边和任意一个内角解三角形; ② 已知三角形的三边解三角形.

<教师备案>相对于正弦定理,因为余弦函数在()0π,

上单调减,所以用余弦定理求三角形角度时没有多解的情况,因此可以用余弦定理来判断三角形的形状(锐角、直角或钝角三角形). 勾股定理是余弦定理的特例,余弦定理可以用勾股定理来证明.

【例3】 ⑴ 在ABC △中,角A ,B ,C

所对的边分别为a =4b =,3c =,则边AC 上的高

为______.

⑵(2012北京理11)在ABC △中,若2a =,7b c +=,1

cos 4

B =-,

则b = . ⑶在ABC △中,三个角A B C ,,的对边边长分别为346a b c ===,,, 则cos cos cos bc A ca B ab C ++的值为 .

⑷(2012湖北理11)设ABC △的内角A ,B ,C 所对的边分别是a ,b ,c .若

()()a b c a b c ab +-++=,则角C =______________.

(2010北京卷7)某班设计了一个八边形的班徽(如图),它由腰 长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成, 该八边形的面积为( ). A .2sin 2cos 2αα-+ B

.sin 3αα+

C

.3sin 1αα+ D .2sin cos 1αα-+ 【解析】 ⑴

⑵ 4

⑶ 612

⑷2π3

⑸ A

知识点睛

经典精讲

考点3: 判断三角形形状

1.解决三角形的综合问题时,要注意以下关系式的运用 ① πA B C ++=.

② ()sin sin A B C +=;()cos cos A B C +=-.

③ sin

cos 22A B C +=;cos sin 22

A B C

+=. ④ sin sin a b A B A B >?>?>. <教师备案>除了正弦定理和余弦定理,三角形中的这些很明显的恒等式的熟练应用是很重要的细节,

将它们和正余弦定理串联起来,是解三角形问题能解决的基础.

2.与三角形形状相关的几个结论

① 在ABC △中,若cos cos a A b B =,则ABC △为等腰三角形或直角三角形;

② 在ABC △中,若cos cos cos a b c

A B C

==

,则ABC △为等边三角形; ③ 在ABC △中,若222sin sin sin A B C +=,则ABC △为直角三角形; ④ 在ABC △中,若cos cos sin a B b A c C +=,则ABC △为直角三角形;

⑤ 在ABC △中,若()sin cos cos sin sin A B C B C +=+,则ABC △为直角三角形. 【教师备案】这些结论在B 版教材必修5中都出现了,也不需要强记. ①②③④利用正弦定理易证.

④可以和学生介绍一下:在ABC △中,有cos cos c a B b A =+成立. ⑤的证明略有难度.思路有两种.

方法一:由三角恒等变换进行变形.注意到()sin sin sin cos cos sin B A C A C A C =+=+,以及()sin sin sin cos cos sin C A B A B A B =+=+,可将题中的等式进行化简. ()sin cos cos sin sin A B C B C

+=+

()sin cos sin cos sin sin sin sin cos cos sin A B A C B A B B A B A B

+=++=++ sin cos sin cos sin A C B A B =+

()sin cos sin cos sin sin cos cos sin cos sin A C A C A B A C A C A B

=++=++

cos sin cos sin 0A C A B +=,所以()cos sin sin 0A B C +=,从而推出cos 0A =,π

2A =.

方法二:由正余弦定理将边化为角. ∵()sin cos cos sin sin A B C B C +=+ ∴22222222a c b a b c a b c

ac ab ??

+-+-+=+ ??? ∴22222222a c b a b c b c

c b +-+-+=+

∴()()

()2222222b a c b c a b c bc b c +-++-=+

∴22322322

22a b bc b a c b c c b c bc +-++-=+

知识点睛

1.2解三角形题型归纳

∴3322220b c a b a c b c bc +--++=

∴()()

2220b c b c a ++-=

∵0b c +> ∴222

b c a += 故ABC △为直角三角形.

<教师备案>求三角形形状一般有两种思路:一种是由角化边,然后通过分解因式得出边之间的关系,

如下面例题的⑴⑵⑶;一种是由边化角,得出角度之间的关系或者最大角的大小来判断,如下面例题的⑷.

【铺垫】⑴ 在ABC △中,2cos a b C =,则这三角形一定是( )

A .等腰三角形

B .直角三角形

C .等腰直角三角形

D .等腰或直角三角形

⑵ 在ABC △中,22tan tan a B b A =,则这三角形一定是( )

A .等腰三角形

B .直角三角形

C .等腰直角三角形

D .等腰或直角三角形 【解析】 ⑴ A

⑵ D

【例4】

判断满足下列条件的三角形的形状

⑴ sin 2cos sin C A B =?;⑵ cos cos a b

A B c

++=; ⑶sin b a C =,cos c a B =; ⑷

cos

cos

cos

2

2

2

a b c A B C =

=

【解析】 ⑴ ABC △为等腰三角形.

⑵ ABC △为直角三角形. ⑶ ABC △为等腰直角三角形. ⑷ ABC △为等边三角形.

【点评】解这类问题,首先是要考虑用“边”算还是用“角”算,因为我们处理问题要求统一的对象,

不能边和角都有.如果用“边”算的话,一般来说是三个未知量,也就是a b c ,

,三个,我们一般需要对其进行因式分解之类的化简.如果用“角”算的话,一般来说是处理两个角的问题,如果遇到三个角都有的情况,一般我们可以通过三角公式来减少角的数量,比较常见的就是()sin sin C A B =+.

经典精讲

考点4:解平面几何

<教师备案>用正余弦定理解决平面几何时,需要将问题转移到一个个具体的三角形中去解决,很多时候要用到三角恒等变换,题目都有一定的难度.这部分不是高考的重点,不用深究.

【铺垫】(2010年陕西17)如图,已知45B ∠=?,10AD =,6CD =,14AC =,则AB = . 【解析】

【例5】 ⑴如图,90ABC ADC ∠=∠=?,60BAD ∠=?,22BC CD ==,求AC .

⑵已知圆内接四边形ABCD 的边长分别为2AB =,6BC =,4CD DA ==,求四边形ABCD 的面积.

D

C

B

A

【解析】 ⑴

AC =.

⑵ 16sin120

S =??=

考点5:解三角形应用题

【例

6】

(2010陕西卷理17)

如图,A ,B 是海面上位于东西方向相距(53+海里的两个观测点,现位于A 点北偏东45?,B

点北偏西60?的D 点有一艘轮船

发出求救信号,位于B 点南偏西60?且与点B 相距海里的C 点的救援船立即前往营救,其航行速度为30海里/小时,该救援船达到D 点需要多长时间?

【解析】

救援船到达D 点需要1小时.

经典精讲

经典精讲

D C B A

【备选】(2013江苏18)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿

直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m /min .在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为

130m /min ,山路AC 长为1260m ,经测量,12cos 13A =

,3cos 5

C =. ⑴ 求索道AB 的长;

⑵ 问乙出发多少分钟后,乙在缆车上与甲的距离最短?

⑶ 为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?

A

B

C

【解析】 ⑴ 索道AB 的长为1040m .

⑵ 当()35

min 37

t =

时,甲、乙两游客距离最短. ⑶ 乙步行的速度应控制在12506254314??

????,(单位:m/min )范围内.

考点6: 正余弦定理的综合运用

1.3正余弦定理综合运用

知识点睛

角的互相转化.

【铺垫】(2010浙江卷理18)

在ABC △中,角A 、B 、C 所对的边分别为a ,b ,c .已知1

cos24

C =-.

⑴ 求sin C 的值;

⑵ 当2a =,2sin sin A C =时,求b 及c 的长.

【解析】 ⑴

sin C

4b c ?=??=??

或 4.

b c ?=??=??

【例7】 ⑴(2010江苏卷)

在锐角三角形ABC 中,A B C 、、的对边分别为a b c 、、,6cos b a

C a b

+=,

则tan tan tan tan C C A B +=_______. ⑵(2013北京理)

在ABC △中,3a =

,b =2B A ∠=∠. ① 求cos A 的值; ② 求c 的值.

【解析】 ⑴ 4

①cos A . ② 5c =.

【拓展】在ABC △中,角A B C ,,所对应的边分别为a b c ,,

,a =tan

tan 422

A B C

++=, 2sin cos sin B C A =,求A B ,

及b c ,. 【解析】

π6B C ==

,2π

3

A =, 2b c ==.

经典精讲

1.已知ABC △的三边长为a b c ,

,,内切圆和外接圆的半径分别是r 和R , 求证:2abc

Rr a b c =++.

【解析】 由正弦定理2sin sin sin a b c R A B C ===得,sin sin sin 222a b c

A B C R R R ===

,, ∵11sin 222ABC c S ab C ab R ==?△,又∵()1

2

ABC S a b c r =++△,

∴()42

a b c r

abc R ++=

,即2abc Rr a b c =++.

2.对于正三角形,是否存在既平分周长又平分面积的直线?若存在,这样的直线有几条?

证明你的结论. 【解析】 存在,有3条

如图,设ABC △的边长为1,则3ABC C =△

,ABC S =△,假设一条

直线既平分周长又平分面积,与三角形的两条边AB AC ,相交于两

点M N ,,设AM x AN y ==,,

则12

32

xy x y ?

=????+=??,∴112x y =???=??或121x y ?=??

?=?, ∴有3条线满足题意,且分别是每条边的中线.

【演练1】(2010西城一模13)在ABC △中,C 为钝角,

32AB BC =,1

sin 3

A =,则角C =____, sin

B =_____.

【解析】 150?

【演练2】已知a b c ,,为ABC △的三个内角A B C ,,的对边,向量)

1m =-u r

()cos sin n A A =r ,.若m n ⊥u r r ,且cos cos sin a B b A c C +=,则角B = .

【解析】 π

6

【演练3】在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,若

)

cos cos c A a C -=,

实战演练

y x N

M

C

B

A

则cos A =______.

【解析】

【演练4】在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,设S 为ABC △

的面积,满足

)2

22S a b c =

+-. ⑴ 求角C 的大小;

⑵ 求sin sin A B +的最大值.

【解析】 ⑴

所以π

3

C =. ⑵

sin sin A B +

【演练5】(2010石景山一模理15)

在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且1a =

,c =3cos 4

C =. ⑴ 求()sin A B +的值; ⑵ 求sin A 的值;

⑶ 求CB CA ?uu r uu r

的值.

【解析】 ⑴

(

)sin A B +=

sin A =. ⑶

32

CB CA ?=uu r uu r .

(2010年全国高中数学联合竞赛湖北省高二年级预赛)

在ABC △中,已知B ∠的平分线交AC 于K .若2BC =,1CK =

,2

BK =

,则ABC △的面积为__________. 【解析】

法一:如图,在BCK △中,由余弦定理可得:

大千世界

α

β

αK

A

B C

2

2

21

cosα

+-

==

2

22

12

cosβ

+-

==

2

22

12

1

cos

2128

C

+-

??

==

??

∴sinα=

,sinβ=

sin C=,

则sin2sin cos

ABCαα

∠=

sin sin(π)sin()sin cos cos sin

Aαββαβαβα

=+-=-=-=

在ABC

△中,由正弦定理可得:

sin sin

BC AC

A ABC

=

,即5

2

AC==,

所以15

2

22

ABC

S=??=

法二:

由角平分线定理可知:BC BA

CK AK

=,即

2

2

1

BA

AK

==,设AK x

=,则2

AB x

=,

在ABK

中,由余弦定理可得

2

22

(2)

cos

x x

α

+-

==

在CBK

中,由余弦定理可得

2

2

21

cosα

+-

==

=,解得

3

2

x=或1

x=,检验1

x=不满足题意,舍去.

所以5

2

AC AK CK

=+=,

3

23

2

AB=?=,

在ABC

△中,设1515

32

224

p

??

=?++=

?

??

为半周长,则由海伦—秦九韶公式可得:

ABC

S==

正余弦定理的综合应用

正余弦定理的综合应用教学设计 课题名称正余弦定理的综合应用 科目数学(高三)授课人耿向娜 一、教学内容分析 本节课为高三一轮复习中的解三角形部分的习题课。解三角形的知识在历年的高考中与三角函数向量等知识相结合,频繁出现在选择、填空和17题的位置,是学生们的重要得分点之一。本节课对2013年中出现的解三角形问题的分析解答,强化学生对解三角形的理解和巩固,同时消除他们对高考的畏惧感,提升其自信心。 二、教学目标 1、知识目标:熟练掌握正余弦定理、三角形面积公式、边角关系互化,同时熟练结合三角函数知识求相关函数的最值等。 2、能力目标:培养学生分析解决问题的能力,提高学生的化简计算能力 3、情感目标:让学生在直接面对高考真题的过程中,体会解决问题的快乐,提升他们的自信心,提高他们的备战能力! 三、学情分析 我所任课的班级是高三22班是文科普通班,他们的数学基础整体上很薄弱,计算能力有待提高。通过三个多月的一轮复习,越来越多的学生对数学产生了兴趣,同时也品尝到数学成绩提高带来的喜悦,具有了一定的函数知识和解决问题的能力。 四、教学重点难点 重点正余弦定理的应用 难点公式的转化和计算

五、教法分析 本节课我利用多媒体辅助教学,采用的是教师引导下的学生自主探究式学习法。 六、教学过程 教学环节教学内容设计意图 一、基 础 知 识 回 顾回顾正弦定理:k C c B b A a = = = sin sin sin ; C k c B k b A k a sin , sin , sin= = = 余弦定理: ? ? ? ? ? - + = - + = - + = C ab b a c B ac c a b A bc c b a cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 2 ? ? ? ? ? ? ? ? ? - + = - + = - + = ab c b a C ac b c a B bc a c b A 2 cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 三角形面积公式:A bc B ac C ab S sin 2 1 sin 2 1 sin 2 1 = = = 通过对公式的 回顾,为本节 课解答问题提 供工具。 二、例 题 讲 解类型一:判定三角形形状 1、设在ABC ?中,若B b A a cos cos=,判定该三角形 的形状。 该题的设置目 的在于训练学 生对边角混合 式的转化。此 题可以边化 角,也可角化 边,让学生体 会正余弦定理 的应用和边角 转化的魅力。 形 直角三角形或等腰三角 或 法二:(角化边) 角形 为等腰三角形或直角三 , 或 ) 解析:法一:(边化角 ? = = + ? = - - + ? - = - ? - + = - + ? - + = - + ? = + = + = ? = ? = b a c b a o b a c b a c b a b a b c a b a c b a ac b c a b bc a c b a B A B A B A B A B A A 2 2 2 2 2 2 2 2 2 2 2 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ) )( ( ) ( ) ( ) ( 2 2 . 2 2 2 2 sin 2 1 2 sin 2 1 sinBcos cos sin π π

正余弦定理练习题(答案)

1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) D .26 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( ) A .45°或135° B .135° C .45° D .以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5 D .不确定 解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6. 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( ) A .1 C .2 6.在△ABC 中,若cos A cos B =b a ,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( ) 或 3 或3 2 8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) B .2 C. 3 9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π 3,则A =________. 10.在△ABC 中,已知a =43 3,b =4,A =30°,则sin B =________. 11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________. 13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +c sin A +sin B +sin C =________,c =________. 14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C =________. 15.在△ABC 中,已知a =32,cos C =1 3,S △ABC =43,则b =________. 16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解. 17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°, 航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少 18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A 2,求A 、B 及b 、c . 19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值. 20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.

正弦定理和余弦定理的应用举例(解析版)

正弦定理和余弦定理的应用举例 考点梳理 1. 用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 2. 实际问题中的常用角 (侧角和俯角 与目标线在同一铅垂平面内的水平■视线和目标视线的火角,目标视线在水平■视线白勺角叫仰角,目标视线在水平■视线下方的角叫俯角(如图①). (2) 方向角:相对丁某正方向的水平■角,如南偏东30°,北偏西45°,西偏北60等; (3) 方位角 指从正北方向顺时针转到目标方向线的水平■角,如B点的方位角为g如图②). (4) 坡度:坡面与水平■面所成的二面角的度数. 【助学微博】 解三角形应用题的一般步骤 (1) 阅读理解题意,弄活问题的实际背景,明确已知与未知,理活量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力. (2汁艮据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3汁艮据题意选择正弦定理或余弦定理求解.

(4)#三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等. 解三角形应用题常有以下两种情形 (1) 实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2) 实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有 时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 考点自测 1. (2012江苏金陵中学)已知^ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等丁 - 解析记三角形三边长为a-4, a, a+ 4,则(a + 4)2 = (a-4)2 + a2— 2a(a-4)cos 1 120,解得a= 10,故S= 2 X 10x 6X sin 120 = 15寸3. 答案15 3 2. 若海上有A, B, C三个小岛,测得A, B两岛相距10海里,/ BAC= 60°, / ABC= 75°,则B, C问的距离是__________ 渔里. ................................ BC AB - 解析由正弦正理,知sin 60° = sin 1800-60°-75°.解侍BC= 5V6(海里)? 答案5 6

正余弦定理题型总结(全)

平面向量题型归纳(全) 题型一:共线定理应用 例一:平面向量→ →b a ,共线的充要条件是( )A.→ →b a ,方向相 同 B. → →b a ,两向量中至少有一个为零向量 C.存在 ,R ∈λ→→=a b λ D 存在不全为零的实数0,,2121=+→ →b a λλλλ 变式一:对于非零向量→→b a ,,“→→→=+0b a ”是“→ →b a //”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 变式二:设→ →b a ,是两个非零向量( ) A.若→→→→=+b a b a _则→→⊥b a B. 若→→⊥b a ,则→ →→→=+b a b a _ C. 若→ →→→ =+b a b a _,则存在实数λ,使得 →→ =a b λ D 若存在实数λ,使得→ →=a b λ,则 → →→→ =+b a b a _ 例二:设两个非零向量→ → 21e e 与,不共线, (1)如果三点共线;求证:D C A e e e e e e ,,,28,23,212121--=+=-= (2)如果三点共线,且D C A e k e CD e e BC e e AB ,,,2,32,212121-=-=+=求实数k 的值。 变式一:设→ → 21e e 与两个不共线向量,,2,3,2212121e e CD e e CB e k e AB -=+=+=若三点A,B,D 共线,求实数k 的值。 变式二:已知向量→ →b a ,,且,27,25,2b a CD b a BC b a AB +=+-=+=则一定共线的三点是( ) A.A,B,D B.A,B,C C.B,C,D D.A,C,D 题型二:线段定比分点的向量形式在向量线性表示中的应用 例一:设P 是三角形ABC 所在平面内的一点,,2+=则( ) A. += B. += C. += D. ++= 变式一:已知O 是三角形ABC 所在平面内一点,D 为BC 边的中点,且++=2,那么( )A. A =

正余弦定理实际应用

三角恒等变换与解三角形 学习目标: 1.三角函数的化简与求值是高考的命题热点,其中同角三角函数的基本关系、诱导公式是解决计算问题的工具,三角恒等变换是利用三角恒等式(两角和与差、二倍角的正弦、余弦、正切公式)进行变换,“角”的变换是三角恒等变换的核心,试题多为选择题或填空题. 2.利用正弦定理或余弦定理解三角形、判断三角形的形状或求值等,并经常和三角恒等变换结合进行综合考查. 重难点:利用正弦定理或余弦定理解三角形、判断三角形的形状或求值等,并经常和三角恒等变换结合进行综合考查. 真 题 感 悟 1.若tan α=2tan π5,则cos ? ??? ? α-3π10sin ? ??? ?α-π5=( ) A.1 B.2 C.3 D.4 2.(2015·广东卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π 6 ,则b =________. 3.在△ABC 中,a =4,b =5,c =6,则sin 2A sin C =________. 4.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________. 考 点 整 合 1.三角函数公式 (1)同角关系:sin 2 α+cos 2 α=1,sin α cos α =tan α. (2)诱导公式:在k π 2 +α,k ∈Z 的诱导公式中“奇变偶不变,符号看象 限”. (3)两角和与差的正弦、余弦、正切公式: sin(α±β)=sin αcos β±cos αsin β;cos(α±β)=cos αcos β?sin αsin β;tan(α±β)=tan α±tan β 1?tan αtan β . (4)二倍角公式:sin 2α=2sin αcos α,cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. 2.正、余弦定理、三角形面积公式

正余弦定理的应用_三角形面积公式公开课一等奖

正余弦定理的应用——三角形面积公式 一、教学容解析 本课教学容出自人教版《普通高中课程标准实验教科书必修数学5》第一章1.2节。 1.教材容 本节容是正弦定理与余弦定理知识的延续,借助正弦定理和余弦定理,进一步解决一些有关三角形面积的计算。教材中先结合已知三角形面积公式推导新的三角形面积公式,然后借助正弦定理和余弦定理求三角形面积,最后给出三角形面积实际问题的求解过程。 2.教学容的知识类型 在本课教学容中,包含了四种知识类型。三角形面积公式的相关概念属于概念性知识,三角形面积公式的符号语言表述属于事实性知识,利用正弦定理和余弦定理求解三角形面积的步骤属于程序性知识,发现问题——提出问题——解决问题的研究模式,以及从直观到抽象的研究问题的一般方法,属于元认知知识。 3.思维教学资源与价值观教育资源 已知三角形两边及其夹角求三角形面积的探索过程能引发提出问题——分析问题——解决问题的研究思维;生活实际问题求解三角形面积,是培养数学建模思想的好契机;引出海伦公式和秦九韶“三斜求积”公式,激发学生学习数学的兴趣,探究数学史材料,培养学生对数学的喜爱。 二、学生学情分析 主要从学生已有基础进行分析。 1.认知基础:从学生知识最近发展区来看,学生在初中已经学习过用底和高表示的三角形面积公式,并且掌握直角三角形中边和角的关系。现在进一步探究两边及其夹角表示的面积公式符合学生的认知规律。此外在前面两节的学习中学生已经掌握了正余弦定理,这为求解三角形的边和角打下了坚持基础。 2.非认知基础:通过小学、初中和高中阶段三角函数和应用题的学习,学生具有一定的分析问题、类比归纳、符号表示的能力。具备相当的日常生活经验,能够从实际问题抽象出数学问题并建立数学模型解决问题。 三、教学策略选择 《普通髙中数学课程标准(2017年版)》强调基于核心素养的教学,特别重视

新课标高考数学题型全归纳正余弦定理常见解题类型典型例题

正余弦定理常见解题类型 1. 解三角形 正弦定理常用于解决以下两类解斜三角形的问题:①已知两角和任一边,求其他两边和一角;②已知两边和其中一边的对角,求另一边的对角及其他的边和角. 余弦定理常用于解决以下两类解斜三角形的问题:①已知三边,求三个角;②已知两边和它们的夹角,求第三边和其他两个角. 例1 已知在ABC △中,4526A a c ∠===,,,解此三角形. 解:由余弦定理得22(6)26cos 454b b +-=, 从而有31b =±. 又222(6)222cos b b C =+-?, 得1cos 2 C =±,60C ∠=或120C ∠=. 75B ∴∠=或15B ∠=. 因此,31b =+,60C ∠=,75B ∠= 或31b =-,120C ∠=,15B ∠=. 注:此题运用正弦定理来做过程会更简便,同学们不妨试着做一做. 2. 判断三角形的形状 利用正余弦定理判断三角形的形状主要是将已知条件中的边、角关系转化为角的关系或

边的关系,一般的,利用正弦定理的公式2sin 2sin 2sin a R A b R B c R C ===,,,可将边转化为角的三角函数关系,然后利用三角函数恒等式进行化简,其中往往用到三角形内角和定理: A B C ++=π;利用余弦定理公式222222 cos cos 22b c a a c b A B bc ac +-+-==,, 222 cos 2a b c C ab ++=,可将有关三角形中的角的余弦转化为边的关系,然后充分利用代数知识来解决问题. 例2 在ABC △中,若2222sin sin 2cos cos b C c B bc B C +=,判定三角形的形状. 解:由正弦定理2sin sin sin a b c R A B C ===,为ABC △外接圆的半径, 可将原式化为22228sin sin 8sin sin cos cos R B C R B C B C =, sin sin 0B C ≠∵, sin sin cos cos B C B C ∴=,即cos()0B C +=. 90B C ∴+=,即90A =,故ABC △为直角三角形. 3. 求三角形中边或角的范围 例3 在ABC △中,若3C B ∠=∠,求c b 的取值范围. 解: A B C ∠+∠+∠=π,4A B ∴∠=π-∠. 04B π∴<∠<.可得210sin 2 B <<. 又2sin sin 334sin sin sin c C B B b B B ===-∵, 2134sin 3B ∴<-<.故13c b <<. 点评:此题的解答容易忽视隐含条件B ∠的范围,从而导致结果错误.因此,解此类问题应注意挖掘一切隐含条件. 4. 三角形中的恒等式证明 根据所证等式的结构,可以利用正、余弦定理化角为边或角的关系证得等式. 例4 在ABC △中,若2()a b b c =+,求证:2A B =. 证明:2222cos 2222a c b bc c b c a B ac ac a b +-++====∵, 222222 22222cos 22cos 1214222a a b b bc b c b B B b b b b -+--∴=-=?-===.

(完整版)解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

正余弦定理在实际生活中的应用

正余弦定理在实际生活中的应用 正、余弦定理在测量、航海、物理、几何、天体运行等方面的应用十分广泛,解这类应用题需要我们吃透题意,对专业名词、术语要能正确理解,能将实际问题归结为数学问题. 求解此类问题的大概步骤为: (1)准确理解题意,分清已知与所求,准确理解应用题中的有关名称、术语,如仰角、俯角、视角、象限角、方位角等; (2)根据题意画出图形; (3)将要求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识建立数学模型,然后正确求解,演算过程要简练,计算要准确,最后作答. 1.测量中正、余弦定理的应用 例1 某观测站C 在目标A 南偏西25?方向,从A 出发有一条南偏东35?走向的公路,在C 处测得公路上与C 相距31千米的B 处有一人正沿此公路向A 走去,走20千米到达D ,此时测得CD 距离为21千米,求此人所在D 处距A 还有多少千米? 分析:根据已知作出示意图,分析已知及所求,解CBD ?,求角B .再解ABC ?,求出AC ,再求出AB ,从而求出AD (即为所求). 解:由图知,60CAD ∠=?. 22222231202123 cos 22312031BD BC CD B BC BD +-+-===???, 3 s i n B =. 在ABC ?中,sin 24sin BC B AC A ?= =. 由余弦定理,得222 2cos BC AC AB AC AB A =+-??. 即2223124224cos60AB AB =+-????. 整理,得2243850AB AB --=,解得35AB =或11AB =-(舍). 故15AD AB BD =-=(千米). 答:此人所在D 处距A 还有15千米. 评注:正、余弦定理的应用中,示意图起着关键的作用,“形”可为“数”指引方向,因此,只有正确作出示意图,方能合理应用正、余弦定理. 2.航海中正、余弦定理的应用 例2 在海岸A 处,发现北偏东45?方向,距A 1海里的B 处有一艘走私船,在A 处北偏西75?方向,距A 为2海里的C 处的缉私船奉命以/小时 A C D 31 21 20 35? 25? 东 北

正余弦定理题型归类

高二数学《正余弦定理》知识与题型总结 1、 正弦定理:_________=_________=_________=2R (R 为____________) 变形:________a =;________b =;________c = sinA :sinB:sinC ______________ = 2、 余弦定理:2 ______________a =;2 ______________b =;2 ______________c = 变形:cos ________________A =;cosB ________________=;cosC ________________= 3、 三角形面积公式: (1)12S a h =g (2)1 sin _________________________2S ab C === (3)1 ()2 S r a b c =++(r 为内切圆半径) 4、常用公式及结论: (1)倍角公式:sin 2__________α=; cos 2_______________________________________α=== tan 2____________α= 降幂公式:2 sin ____________α=;2 cos ____________α= (2)在ABC ?中,sin()sinC A B +=;cos()cosC A B +=-;tan()tanC A B +=-; (3)在ABC ?中,最小角的范围为0, 3π?? ?? ? ;最大角的范围为,3ππ???? ?? ; (4)在ABC ?中,A B C sinA sinB sinC >>?>>; (5)sin sin sin sin sin sin sin sin sin sin sin sin a b c a b c b a c A B C A B C B A C a b c A B C +++===== +++++= ++。 类型一:正余弦定理的综合应用 1.在△ABC 中,4a b =,= 30A ?=,则角B 等于( ). A .30° B .30°或150° C .60° D .60°或120° 2.在△ABC 中,三内角A ,B ,C 成等差数列,b =6,则△ABC 的外接圆半径为( ) 3.在ABC ?中,角,,A B C 的对边分别为,,a b c ,向量,(cos ,sin )n A A =v , 若m n ⊥u v v ,且cos cos sin a B b A c C +=,则角A ,B 的大小为( ). 4.在ABC ?中,角C B A ,,所对应的边分别为c b a ,,,B B A C 2sin 3)sin(sin =-+. ) 5.ABC ?各角的对应边分别为c b a ,,,满足 ,则角A 的范围是( ) A 6.在△ABC 中,内角A,B,C ,C B sin 3sin 2=, =( ) A 7.在△ABC 中,内角A , B , C 的对边分别为a ,b ,c.,且b a >,则∠B =( ) A 8.在△ABC 中,根据下列条件解三角形,则其中有两个解的是 A .0 75,45,10===C A b B .0 80,5,7===A b a C .0 60 ,48,60===C b a D . 45,16,14===A b a 9.已知ABC ?中,a b 、分别是角A B 、所对的边,且()0,2,a x x b A =>==60°,若三角形有两解,则 x 的取值范围是( ) A 、02x << C

正余弦定理的应用举例

正余弦定理的应用举例 正、余弦定理的应用举例 知识梳理 一、解斜三角形应用题的一般步骤: 分析:理解题意,分清已知与未知,画出示意图 建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解 检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解 二.测量的主要内容是求角和距离,教学中要注意让学生分清仰角、俯角、张角、视角和方位角及坡度、经纬度等概念,将实际问题转化为解三角形问题. 三.解决有关测量、航海等问题时,首先要搞清题中有关术语的准确含义,再用数学语言表示已知条件、未知条件及其关系,最后用正弦定理、余弦定理予以解决. 典例剖析 题型一距离问题 例1.如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲

船的北偏西方向的处,此时两船相距海里,当甲船航行分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里? 解:如图,连结,由已知, 又,是等边三角形, 由已知,,, 在中,由余弦定理,.. 因此,乙船的速度的大小为.答:乙船每小时航行海里.题型二高度问题 例2、在某点B处测得建筑物AE的顶端A的仰角为,沿BE方向前进30,至点c处测得顶端A的仰角为2,再继续前进10至D点,测得顶端A的仰角为4,求的大小和建筑物AE的高。 解法一:由已知可得在AcD中, Ac=Bc=30,AD=Dc=10,ADc=180-4, =。sin4=2sin2cos2 cos2=,得2=30=15,在RtADE中,AE=ADsin60=15 答:所求角为15,建筑物高度为15 解法二:设DE=x,AE=h 在RtAcE中,+h=30在RtADE中,x+h= 两式相减,得x=5,h=15在RtAcE中,tan2== =30,=15

最全正余弦定理题型归纳.

正弦定理和余弦定理 一、题型归纳 〈一>利用正余弦定理解三角形 【例1】在△ABC中,已知a=3,b=2,B=45°,求A、C和c。【例2】设ABC ?的内角A、B、C的对边长分别为a、b、c,且32b+32c-32a2b c. (Ⅰ)求sinA的值;(Ⅱ)求2sin()sin() 44 1cos2 A B C A ππ +++ - 的值。 【练习1】 (2011·北京)在△ABC中,若b=5,∠B=错误!,tan A=2,则sin A=________;a=________. 【练习2】在△ABC中,a、b、c分别是角A、B、C的对边,且\f(cos B,cosC)=-错误!. (1)求角B的大小;

(2)若b =错误!,a +c =4,求△AB C的面积. 〈二〉利用正余弦定理判断三角形的形状 【例3】1、在△ABC 中,若(a2+b 2)sin (A -B )=(a 2-b2)sin C ,试判断△AB C的形状. 2、在△AB C中,在ABC ?中,a,b,c 分别是角A 、B 、C 所对的边,bcosA=a c os B,则ABC ?三角形的形状为__________________ 3、在△ABC 中,在ABC ?中,a,b,c 分别是角A 、B、C 所对的边,若c os AcosB =\f(b,a ) , 则ABC ?三角形的形状为___________________ 【练习】1、在△ABC 中,2cos 22A b c c +=(,,a b c 分别为角,,A B C 的对边),则△AB C的形状为( ) A 、正三角形 B 、直角三角形 C 、等腰三角形或直角三角形 D、等腰直角三角形 2、已知关于x 的方程22cos cos 2sin 02 C x x A B -?+=的两根之和等于两根之积的一半,则ABC ?一定是() A、直角三角形B、钝角三角形C 、等腰三角形D 、等边三角形 3、在△ABC 中,2222()sin()()sin()a b A B a b A B +-=-+,则△ABC 的

专题 正余弦定理的应用

正余弦定理的应用 1、【2019年高考全国Ⅱ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________. 2、【2019年高考浙江卷】在ABC △中,90ABC ∠=?,4AB =,3BC =,点D 在线段AC 上,若 45BDC ∠=?,则BD =___________,cos ABD ∠=___________. 3、【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b ,cos B =2 3 ,求c 的值; (2)若sin cos 2A B a b =,求sin()2 B π +的值. 4、【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥 AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线 段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径. 已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长; (2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由; (3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离. 5、【2019年高考全国Ⅲ卷文数】ABC △的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin 2 A C a b A +=. (1)求B ; (2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.

最全正余弦定理题型归纳

正弦定理和余弦定理 、题型归纳 < 一>利用正余弦定理解三角形 【例1】在^ ABC中,已知 a = J3, b=J2,B=45 ° ,求 A C 和c. 【例2】设的内角A B、C的对边长分别为a、b、c,且3+3-3=4b c . (I )求sinA的值; ( n )求的值. n 【练习 1】(2011 ?北京)在^ ABC中,若b= 5,Z B=_4, tan A= 2, 则 sin A= ;a= cos B 【练习2】在厶ABC中, a、b、c分别是角A B、c的对边'且cosE b 2a+ c" (1)求角B的大小; ⑵若b=品,a + c= 4,求^ ABC勺面积.

<二 >利用正余弦定理判断三角形的形状 【例 3】1、在^ABC 中,若(a 2+ b 2)sin( A — B)= (a 2— b 2)sin C,试判断△ ABC 的形状. 2、在^ ABC 中,在 ABC 中,a,b,c 分别是角 A B 、C 所对的边,bcosA =a COSB,则ABC 三角形的形状为 cosA 3、<△ ABC 中,在 ABC 中, a ,b ,c 分别是角 A B C 所对的边,若CosA 则ABC 三角形的形状为 2 A b c 【练习】1、在^ABC 中, cos - £( a,b,c 分别为角A,B,C 的对边), 则^ ABC 的形状为() A 、正三角形 B 、直角三角形 C 、等腰三角形或直角三角形 D 等腰直角三角形 的形状为 2、已知关于x 的方程 于两根之积的一半,则 A 、直角三角形 B 边三角形 3、在^ ABC 中,(a 2 2 . 2 C x xcosA cos B 2sin ~ 0的两根之和等 ) C 、等腰三角形 D 、等 ABC —定是 ( 、钝角三角 b 2)s in (A B) (a 2 b 2)sin( A B),则△ ABC

正余弦定理的应用举例教案

天津职业技术师范大学 人教A版数学必修5 1.2正弦定理余弦定理 的应用举例 理学院 数学0701 田承恩

一、教材分析 本课是人教A版数学必修5 第一章解三角形中1.2的应用举例中测量长度问题。因为在本节课前,同学们已经学习了正弦定理、余弦定理的公式及基本应用。本节课的设计,意在复习前面所学两个定理的同时,加深对其的了解,以便能达到在实际问题中熟练应用的效果。同学们在学习时可以考虑,题中为什么要给出这些已知条件,而不是其他条件?要注意的是在某种特殊的实际问题下哪些条件可以测量,哪些不能。这节课我们就跟同学们共同研究这个问题。 (一)重点 1.正弦定理、余弦定理各自的公式记忆。 2.解斜三角形问题的实际应用以及全章知识点的总结归纳。 (二)难点 1.根据已知条件如何找出最简单的解题方法。 2.用应用数学的思想解决实际问题。 (三)关键 让学生灵活运用所学正弦定理、余弦定理。并具备解决一些基本实际问题的能力。 二、学情分析 学生已经学习了高中数学大部分内容,已经有了必要的数学知识储备和一定的数学思维能力;作为高中高年级学生,也已经具有了必要的生活经验。因此,可以通过生活中的例子引入如何用正弦定理、余弦定理解决实际问题。让学生自然而然地接受一些固定解法,这样,学生既学习了知识又培养了能力。 三、学习目标 (一)知识与技能 1.熟练掌握正弦定理、余弦定理的公式 2.掌握应用正弦定理、余弦定理解题的基本分析方法和步骤 (二)过程与方法 1.通过应用举例的教学,培养学生的推理能力,优化学生的思维品

质 2.通过教学中的不断设问,引导学生经历探索、解决问题的过程 (三)情感、态度与价值观 让同学找到学习数学的乐趣,让同学们感受到数学在现实中应用的广泛性。 四、教学手段 计算机,ppt,黑板板书。 五、教学过程(设计)

正余弦定理的综合应用及答案

正余弦定理的综合应用 1.【河北省唐山一中2018届二练】在ABC ?中,角,,A B C 的对边分别为,,a b c ,且 ()()3,cos sin sin cos 0b A B c A A C =+-+=. (1)求角B 的大小;(2)若ABC ?的面积为3 2 ,求sin sin A C +的值. 2. 【北京市海淀区2018届高三第一学期期末】如图,在ABC ?中,点D 在AC 边上,且 3AD DC =, 7AB =, 3 ADB π ∠= , 6 C π ∠= . (Ⅰ)求DC 的值; (Ⅱ)求tan ABC ∠的值. 【解决法宝】对解平面图形中边角问题,若在同一个三角形,直接利用正弦定理与余弦定理求解,若图形中条件与结论不在一个三角形内,思路1:要将不同的三角形中的边角关系利用中间量集中到一个三角形内列出在利用正余弦定理列出方程求解;思路2:根据图像分析条件和结论所在的三角形,分析由条件可计算出的边角和由结论需要计算的边角,逐步建立未知与已知的联系. 3. 【海南省2018届二模】已知在ABC ?中, a , b , c 分别为内角A , B , C 的对边,且3cos sin cos b A a A C + sin cos 0c A A +=. (1)求角A 的大小; (2)若3a =, 12 B π =,求ABC ?的面积. 4.【湖北省天门等三市2018届联考】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos cos cos 3sin cos C A B A B +=.

(Ⅰ)求cos B 的值;(Ⅱ)若1a c +=,求b 的取值范围. 5.【山东省淄博市2018届高三3月模拟】在 中,角 对边分别为 ,已知 . (1)求角的大小;(2)若,求 的面积. 6. 【福建省南平市2018届第一次质检】在中, 分别为角 的对边,且 . (1)若,求及; (2)若在线段 上,且 ,求 的长. 7.【山东省实验中学2017届高三第一次诊,16】在△ABC 中,a ,b ,c 分别是角A ,B , C 的对边, cos 2cos C a c B b -=,且2a c +=. (1)求角B ;(2)求边长b 的最小值. 8. 【河北衡水中学2017届上学期一调,17】(本小题满分12分) 在ABC ?中,a ,b ,c 分别为角A ,B ,C 所对的边,且cos 2cos 3cos a b c A B C ==. (1)求角A 的大小; (2)若ABC ?的面积为3,求a 的值.

(完整word版)正弦定理与余弦定理练习题

正弦定理与余弦定理 1.已知△ABC 中,a=4,ο 30,34==A b ,则B 等于( ) A .30° B.30° 或150° C.60° D.60°或120° 2.已知锐角△ABC 的面积为33,BC=4,CA=3,则角C 的大小为( ) A .75° B.60° C.45° D.30° 3.已知ABC ?中,c b a ,,分别是角C B A ,,所对的边,若0cos cos )2(=++C b B c a ,则角B 的大小为( ) A . 6 π B . 3 π C . 32π D .6 5π 4.在?ABC 中,a 、b 、c 分别是角A 、B 、C 的对边.若 sin sin C A =2,ac a b 322=-,则B ∠=( ) A. 030 B. 060 C. 0120 D. 0150 5.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知a=5,c=10,A=30°,则B 等于( ) A .105° B.60° C.15° D.105° 或 15° 6.已知ABC ?中,75 6,8,cos 96 BC AC C ===,则ABC ?的形状是( ) A .锐角三角形 B .直角三角形 C .等腰三角形 D .钝角三角形 7.在ABC ?中,内角,,A B C 的对边分别为,,a b c ,且2B C =,2cos 2cos b C c B a -=,则角A 的大小为( ) A . 2π B .3π C .4π D .6 π 8.在△ABC 中,若sin 2 A +sin 2 B <sin 2 C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 9.在ABC ?中,sin :sin :sin 3:2:4A B C =,那么cos C =( ) A. 14 B.23 C.23- D.14 - 10.在ABC ?中,a b c ,,分别为角A B C ,,所对边,若2cos a b C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等腰或直角三角形 11.在△ABC 中,cos 2 =,则△ABC 为( )三角形. A .正 B .直角 C .等腰直角 D .等腰 12.在△ABC 中,A=60°,a=4,b=4 ,则B 等于( ) A .B=45°或135° B .B=135° C .B=45° D .以上答案都不对 13.在ABC ?,内角,,A B C 所对的边长分别为,,.a b c 1 sin cos sin cos ,2 a B C c B A b += 且a b >,则B ∠=( )

正弦定理和余弦定理知识点与题型归纳

正弦定理和余弦定理知识点与题型归纳 Pleasure Group Office【T985AB-B866SYT-

●高考明方向 掌握正弦定理、余弦定理, 并能解决一些简单的三角形度量问题. ★备考知考情 1.利用正、余弦定理求三角形中的边、角问题是高考 考查的热点. 2.常与三角恒等变换、平面向量相结合出现在解答题 中,综合考查三角形中的边角关系、三角形形状的 判断等问题. 3.三种题型都有可能出现,属中低档题. 一、知识梳理《名师一号》P62 知识点一 正弦定理 (其中R 为△ABC 外接圆的半径) 变形1:2sin ,2sin ,2sin ,===a R A b R B c R C 变形2:sin ,sin ,sin ,222= ==a b c A B C R R R 变形3:∶∶∶∶sinA sinB sinC=a b c 注意:(补充) 关于边的齐次式或关于角的正弦的齐次式 均可利用正弦定理进行边角互化。 知识点二 余弦定理

222 222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2?+-=??=+-?+-??=+-?=??=+-???+-?=?? b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab 注意:(补充) (1)关于边的二次式或关于角的余弦 均可考虑利用余弦定理进行边角互化。 (2)勾股定理是余弦定理的特例 (3)在?ABC 中,222090?? <+?<

相关文档
最新文档