整数的整除性1

整数的整除性1
整数的整除性1

竞赛培训专题6---整数的整除性

1整数的整除性的有关概念、性质

(1)整除的定义:对于两个整数a、d(d≠0),若存在一个整数p,使得成立,则称d整除a,或a被d整除,记作d|a。

若d不能整除a,则记作d a,如2|6,4 6。

(2)性质

1)若b|a,则b|(-a),且对任意的非零整数m有bm|am

2)若a|b,b|a,则|a|=|b|;

3)若b|a,c|b,则c|a

4)若b|ac,而(a,b)=1((a,b)=1表示a、b互质,则b|c;

5)若b|ac,而b为质数,则b|a,或b|c;

6)若c|a,c|b,则c|(ma+nb),其中m、n为任意整数(这一性质还可以推广到更多项的和)

例1 (1987年北京初二数学竞赛题)x,y,z均为整数,若11|(7x+2y-5z),求证:11|(3x-7y+12z)。

证明∵4(3x-7y+12z)+3(7x+2y-5z)=11(3x-2y+3z)

而11|11(3x-2y+3z), 且11|(7x+2y-5z),

∴ 11|4(3x-7y+12z) 又 (11,4)=1 ∴11|(3x-7y+12z).

2.整除性问题的证明方法

(1) 利用数的整除性特征(见第二讲)

例2(1980年加拿大竞赛题)设72|的值。

解72=8×9,且(8,9)=1,所以只需讨论8、9都整除的值。

若8|,则8|,由除法可得b=2。

若9|,则9|(a+6+7+9+2),得a=3。

(2)利用连续整数之积的性质

①任意两个连续整数之积必定是一个奇数与一个偶数之一积,因此一定可被2整除。

②任意三个连续整数之中至少有一个偶数且至少有一个是3的倍数,所以它们之积一定可以被2整除,也可被3整除,所以也可以被2×3=6整除。

这个性质可以推广到任意个整数连续之积。

例3(1956年北京竞赛题)证明:对任何整数n都为整数,且用3除时余2。

证明

∵为连续二整数的积,必可被2整除. ∴对任何整数n均为整数,

∵为整数,即原式为整数.

又∵,

2n、2n+1、2n+2为三个连续整数,其积必是3的倍数,而2与3互质,

∴是能被3整除的整数.

故被3除时余2.

例4 一整数a若不能被2和3整除,则a2+23必能被24整除.

证明∵a2+23=(a2-1)+24,只需证a2-1可以被24整除即可.

∵2 .∴a为奇数.设a=2k+1(k为整数),

则a2-1=(2k+1)2-1=4k2+4k=4k(k+1).

∵k、k+1为二个连续整数,故k(k+1)必能被2整除,

∴8|4k(k+1),即8|(a2-1).

又∵(a-1),a,(a+1)为三个连续整数,其积必被3整除,即3|a(a-1)(a+1)=a(a2-1),

∵3 a,∴3|(a2-1).3与8互质, ∴24|(a2-1),即a2+23能被24整除.

(3)利用整数的奇偶性

下面我们应用第三讲介绍的整数奇偶性的有关知识来解几个整数问题.

例5 求证:不存在这样的整数a、b、c、d使:

a·b·c·d-a=①a·b·c·d-b=②

a·b·c·d-c=③a·b·c·d-d=④

证明由①,a(bcd-1)=.

∵右端是奇数,∴左端a为奇数,bcd-1为奇数.

同理,由②、③、④知b、c、d必为奇数,那么bcd为奇数,bcd-1必为偶数,则a(bcd-1)必为偶数,与①式右端为奇数矛盾.所以命题得证.

例6 (1985年合肥初中数学竞赛题)设有n个实数x1,x2,…,x n,其中每一个不是+1就是-1,

且试证n是4的倍数.

证明设(i=1,2,…,n-1),

则y i不是+1就是-1,但y1+y2+…+y n=0,故其中+1与-1的个数相同,设为k,于是n=2k.又y1y2y3…y n=1,即(-1)k=1,故k为偶数,∴n是4的倍数.

其他方法:

整数a整除整数b,即b含有因子a.这样,要证明a整除b,采用各种公式和变形手段从b中分解出因子a就成了一条极自然的思路.

例7 (美国第4届数学邀请赛题)使n3+100能被n+10整除的正整数n的最大值是多少?

解n3+100=(n+10)(n2-10n+100)-900.

若n+100能被n+10整除,则900也能被n+10整除.而且,当n+10的值为最大时,相应地n的值为最大.因为900的最大因子是900.所以,n+10=900,n=890.

例8 (上海1989年高二数学竞赛)设a、b、c为满足不等式1<a<b<c的整数,且(ab-1)(bc-1)(ca-1)能被abc整除,求所有可能数组(a,b,c).

解∵(ab-1)(bc-1)(ca-1)=a2b2c2-abc(a+b+c)+ab+ac+bc-1,①

∵abc|(ab-1)(bc-1)(ca-1). ∴存在正整数k,使

ab+ac+bc-1=kabc, ②

k=<<<<∴k=1.

若a≥3,此时1=-<矛盾.

已知a>1. ∴只有a=2. 当a=2时,代入②中得2b+2c-1=bc,

即1=<∴0<b<4,知b=3,从而易得c=5.

说明:在此例中通过对因数k的范围讨论,从而逐步确定a、b、c是一项重要解题技巧.

例9 (1987年全国初中联赛题)已知存在整数n,能使数被1987整除.求证数

都能被1987整除.

证明∵×××

(103n+),且能被1987整除,∴p能被1987整除.

同样,q=()

且∴

故、102(n+1)、被除,余数分别

为1000,100,10,于是q表示式中括号内的数被除,余数为1987,它可被1987整除,所以括号内的数能被1987整除,即q能被1987整除.

练习

1选择题

(1)(1987年上海初中数学竞赛题)若数n=20·30·40·50·60·70·80·90·100·110·120·130,则不是n的因数的最小质数是().

(A)19 (B)17 (C)13 (D)非上述答案

(2)在整数0、1、2…、8、9中质数有x个,偶数有y个,完全平方数有z个,则x+y+z 等于().

(A)14 (B)13 (C)12 (D)11 (E)10

(3)可除尽311+518的最小整数是().

(A)2 (B)3 (C)5 (D)311+518(E)以上都不是

2.填空题

(1)(1973年加拿大数学竞赛题)把100000表示为两个整数的乘积,使其中没有一个是10的整倍数的表达式为__________.

(2) 一个自然数与3的和是5的倍数,与3的差是6的倍数,这样的自然数中最小的是

_________.

(3) (1989年全国初中联赛题)在十进制中,各位数码是0或1,并且能被225整除的最小自然数是________.

3.求使为整数的最小自然数a的值.

4.(1971年加拿大数学竞赛题)证明:对一切整数n,n2+2n+12不是121的倍数.

5.(1984年韶关初二数学竞赛题)设是一个四位正整数,已知三位正整数与246的和是一位正整数d的111倍,又是18的倍数.求出这个四位数,并写出推理运算过程.

6.(1954年苏联数学竞赛题)能否有正整数m、n满足方程m2+1954=n2.

7.证明:(1)133|(11n+2+12n+1),其中n为非负整数.

(2)若将(1)中的11改为任意一个正整数a,则(1)中的12,133将作何改动?证明改动后的结论.

8.(1986年全国初中数学竞赛题)设a、b、c是三个互不相等的正整数.求证:在

a3b-ab3,b3c-bc3,c3a-ca3三个数中,至少有一个能被10整除.

9.(1986年上海初中数学竞赛题)100个正整数之和为101101,则它们的最大公约数的最大可能值是多少?证明你的结论.

练习答案

1.B.B.A2.(1)25·55.(2)27.

3.由2000a为一整数平方可推出a=5.

4.反证法.若是121的倍数,设n2+2n+12=121k(n+1)2=11(11k-1).∵11是素数且除尽(+1)2,

∴11除尽n+1112除尽(n+1)2或11|11k-1,不可能.

5.由是d的111倍,可能是198,309,420,531,642,753;又是18的倍数,∴只能是198.而198+246=444,∴d=4,是1984.

7.(1)11n+2+122n+1=121×11n+12×144n=121×11n+12×11n-12×11n+12×144n=…=133×11n+12×(144n-11n).第一项可被133整除.又144-11|144n-11n,∴133|11n+2+122n+1.

(2)11改为a.12改为a+1,133改为a(a+1)+1.改动后命题为a(a+1)+1|an+2+(a+1)2n+1,可仿上证明.

8.∵a3b-ab3=ab(a2-b2);同理有b(b2-c2);ca(c2-a2).若a

a、b、c中有偶数或均为奇数,以上三数总能被2整除.又∵在a、b、c中若有一个是5的倍数,则题中结论必成立.若均不能被5整除,则a2,b2,c2个位数只能是1,4,6,9,从而a2-b2,b2-c2,c2-a2的个位数是从1,4,6,9中,任取三个两两之差,其中必有0或±5,故题中三式表示的数至少有一个被5整除,又2、5互质.

9.设100个正整数为a1,a2,…,a100,最大公约数为d,并令

则a1+a2+…+a100=d(a1′+a2′+…+a′100)=101101=101×1001,故知a1′,a2′,a′100不可能都是1,从而a′1+a′2+…+a′100≥1×99+2=101,d≤1001;若取a1=a2=a99=1001,a100=2002,则满足a1+a2+…+a100=1001×101=101101,且d=1001,故d的最大可能值为1001.

专题02 数的整除性

专题02 数的整除性 阅读与思考 设a,b是整数,b≠0,如果一个整数q使得等式a=bq成立,那么称a能被b整除,或称 b整除a,记作b|a,又称b为a的约数,而a称为b的倍数.解与整数的整除相关问题常用到以下知识: 1.数的整除性常见特征: ①若整数a的个位数是偶数,则2|a; ②若整数a的个位数是0或5,则5|a; ③若整数a的各位数字之和是3(或9)的倍数,则3|a(或9|a); ④若整数a的末二位数是4(或25)的倍数,则4|a(或25|a); ⑤若整数a的末三位数是8(或125)的倍数,则8|a(或125|a); ⑥若整数a的奇数位数字和与偶数位数字和的差是11的倍数,则11|a. 2.整除的基本性质 设a,b,c都是整数,有: ①若a|b,b|c,则a|c; ②若c|a,c|b,则c|(a±b); ③若b|a,c|a,则[b,c]|a; ④若b|a,c|a,且b与c互质,则bc|a; ⑤若a|bc,且a与c互质,则a|b.特别地,若质数p|bc,则必有p|b或p|c. 例题与求解 【例1】在1,2,3,…,2 000这2 000个自然数中,有_______个自然数能同时被2和3整除,而且不能被5整除. (“五羊杯”竞赛试题) 解题思想:自然数n能同时被2和3整除,则n能被6整除,从中剔除能被5整除的数,即为所求. 【例2】已知a,b是正整数(a>b),对于以下两个结论: ①在a+b,ab,a-b这三个数中必有2的倍数; ②在a+b,ab,a-b这三个数中必有3的倍数.其中( ) A.只有①正确B.只有②正确 C.①,②都正确D.①,②都不正确 (江苏省竞赛试题) 解题思想:举例验证,或按剩余类深入讨论证明.

整数的整除性

整数的整除性 竞赛讲座02 - .的有关概念、性质 整除的定义:对于两个整数a、d,若存在一个整数p,使得成立,则称d整除a,或a被d整除,记作d|a。 若d不能整除a,则记作da,如2|6,46。 性质 )若b|a,则b|,且对任意的非零整数有b|a )若a|b,b|a,则|a|=|b|; )若b|a,c|b,则c|a )若b|ac,而=1=1表示a、b互质,则b|c; )若b|ac,而b为质数,则b|a,或b|c; )若c|a,c|b,则c|,其中、n为任意整数 例1x,y,z均为整数,若11|,求证:11|。 证明∵4+3=11 而11|11, 且11|, ∴11|4 又=1 ∴11|.

整除性问题的证明方法 利用数的整除性特征 例2设72|的值。 解72=8×9,且=1,所以只需讨论8、9都整除的值。 若8|,则8|,由除法可得b=2。 若9|,则9|,得a=3。 利用连续整数之积的性质 ①任意两个连续整数之积必定是一个奇数与一个偶数之一积,因此一定可被2整除。 ②任意三个连续整数之中至少有一个偶数且至少有一个是3的倍数,所以它们之积一定可以被2整除,也可被3整除,所以也可以被2×3=6整除。 这个性质可以推广到任意个整数连续之积。 例3证明:对任何整数n都为整数,且用3除时余2。 证明 ∵为连续二整数的积,必可被2整除. ∴对任何整数n均为整数, ∵为整数,即原式为整数. 又∵ n、2n+1、2n+2为三个连续整数,其积必是3的倍数,而2与3互质, ∴是能被3整除的整数.

故被3除时余2. 例4一整数a若不能被2和3整除,则a2+23必能被24整除. 证明∵a2+23=+24,只需证a2-1可以被24整除即可. ∵2.∴a为奇数.设a=2+1, 则a2-1=2-1=42+4=4. ∵、+1为二个连续整数,故必能被2整除, ∴8|4,即8|. 又∵,a,为三个连续整数,其积必被3整除,即3|a=a,∵3a,∴3|.3与8互质,∴24|,即a2+23能被24整除. 利用整数的奇偶性 下面我们应用第三讲介绍的整数奇偶性的有关知识来解几个整数问题. 例5求证:不存在这样的整数a、b、c、d使: a?b?c?d-a=① a?b?c?d-b=② a?b?c?d-c=③ a?b?c?d-d=④ 证明由①,a=. ∵右端是奇数,∴左端a为奇数,bcd-1为奇数. 同理,由②、③、④知b、c、d必为奇数,那么bcd为奇数,bcd-1必为偶数,则a必为偶数,与①式右端为奇数

最新小学奥数之数的整除性(题目+答案)

数的整除性 一、填空题 1. 四位数“3AA1”是9的倍数,那么A=_____. 2. 在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____. 3. 能同时被2、3、5整除的最大三位数是_____. 4. 能同时被2、5、7整除的最大五位数是_____. 5. 1至100以内所有不能被3整除的数的和是_____. 6. 所有能被3整除的两位数的和是______. 7. 已知一个五位数□691□能被55整除,所有符合题意的五位数是_____. 8. 如果六位数1992□□能被105整除,那么它的最后两位数是_____. 9. 42□28□是99的倍数,这个数除以99所得的商是_____. 10. 从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_____号. 二、解答题 11. 173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字, 所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少? 12.在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?

13.在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将100张黄油票换成100张香肠票,并且在整个交换过程中刚好出手了1991张票券? 14.试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.

整数(整除)性问题

整数(整除)性问题 【探究拓展】 探究1:(1)已知二项式) 1 n x ,其中n ∈N ,且20123≤≤n ,在其二项展 开式中,若存在连续三项的二项式...系数成等差数列,问这样的n 共有多少个? 解:连续三项的二项式系数分别为1-k n C 、k n C 、1+k n C (11-≤≤n k ),由题意 112+-+=k n k n k n C C C ,依组合数的定义展开并整理得024)14(22=-++-k n k n ,故 2 9 8142,1+±+= k k n ,则 2)12(98+=+m k 2 22-+=?m m k ,代入整理得 2)1(21-+=m n ,222-=m n ,1936442=Θ,2025452=,故n 的取值为2442-, 2432-,…,232-,共42个 (将所求参数求出,根据整数性质加以研究,尽量出现分式、根式等形式) (2)已知)1 31 1(3 1+- =n T n ,问是否存在正整数m ,n ,且1<m <n ,使得 T 1,T m ,T n 成等比数列?若存在,求出m ,n 的值,若不存在,说明理由? 解:∴31)1311(3 1<+- =n T n 1 3+= n n n T ∴1 3,411+= =m m T T m ,31n n T n =+ ∵n m T T T ,,1成等比数列.∴ 1211341)13( 2<+=+n n m m ,所以?? ? ??+∈2321,232-1m 又∵m 为正整数且2≥m ,∴2=m ,n =16,且1

整数与整除的基本性质一

第一讲 整数与整除的基本性质(一) 一、整数 基本知识: 关于自然数:1、有最小的自然数1;2、自然数的个数是无限的,不存在最大的自然数;3、两个自然数的和与积仍是自然数;4、两个自然数的差与商不一定是自然数。 关于整数:1整数的个数是无限的,既没有最小的整数,也没有最大的整数;2、两个整数的和、差、积仍是整数,两个整数的商不一定是整数。 十进制整数的表示方法 正整数可以用0,1,2,3,4,5,6,7,8,9十个数字中的一个或若干个组成一个排列表示,如67表示7106+?,四位数1254可以写成41051021012 3+?+?+?,同样地用字母表示的两位数ab b a +?=10,三位数f e d def +?+?=10102, n 位整数表示为121a a a a n n n --,(其中a i 是0,1,2,3,4,5,6,7,8,9中的某个数字,i= n , n – 1,…,2,1,其中a n 0≠)并且.1010 1211121a a a a a a a n n n n n n n ++?+?=----- 经典例题: 例1、用0、1、2、...、9这10个数字组成两个三位数和一个四位数,每个数字只用一次,要求它们的和是一个奇数,并且尽可能地小,那么这两个三位数及这个四位数的和是( ) )A 1995 )B 1683 )C 1579 )D 1401 解:为使和最小,四位数的千位应该是1,百位上的数为0,两个三位数上的百位应分别为2和3;若三个数十位上的数分别是4、5、6,则个位上的数分别是7、8、9,但7+8+9=18是个偶数,这与其和为奇数矛盾,故应调整为三个十位上的数应安排为4、5、7,个位分别为6、8、9,6+8+9为奇数,1046+258+379=1683,选 )B 例2、一个两位数,用它的个位、十位上的两个数之和的3倍减去2-,仍得原数,这个两位数是( ) )A 26 )B 28 )C 36 )D 38 解:设这个两位数为ab ,由题意,得b a b a +=++102)(3, 227+=∴b a 即 )1(27+=b a 由于)1(2+b 为偶数,∴a 必须为偶数,排

数的整除性讲解(一)(通用)

第4讲数的整除性(一) 我们在三年级已经学习了能被2,3,5整除的数的特征,这一讲我们将讨论整除的性质,并讲解能被4,8,9整除的数的特征。 数的整除具有如下性质: 性质1 如果甲数能被乙数整除,乙数能被丙数整除,那么甲数一定能被丙数整除。例如,48能被16整除,16能被8整除,那么48一定能被8整除。 性质2 如果两个数都能被一个自然数整除,那么这两个数的和与差也一定能被这个自然数整除。例如,21与15都能被3整除,那么21+15及21-15都能被3整除。 性质3 如果一个数能分别被两个互质的自然数整除,那么这个数一定能被这两个互质的自然数的乘积整除。例如,126能被9整除,又能被7整除,且9与7互质,那么126能被9×7=63整除。 利用上面关于整除的性质,我们可以解决许多与整除有关的问题。为了进一步学习数的整除性,我们把学过的和将要学习的一些整除的数字特征列出来: (1)一个数的个位数字如果是0,2,4,6,8中的一个,那么这个数就能被2整除。 (2)一个数的个位数字如果是0或5,那么这个数就能被5整除。 (3)一个数各个数位上的数字之和如果能被3整除,那么这个数就能被3整除。 (4)一个数的末两位数如果能被4(或25)整除,那么这个数就能被4(或25)整除。 (5)一个数的末三位数如果能被8(或125)整除,那么这个数就能被8(或125)整除。 (6)一个数各个数位上的数字之和如果能被9整除,那么这个数就能被9整除。 其中(1)(2)(3)是三年级学过的内容,(4)(5)(6)是本讲要学习的内容。 因为100能被4(或25)整除,所以由整除的性质1知,整百的数都能被4(或25)整除。因为任何自然数都能分成一个整百的数与这个数的后两位数之和,所以由整除的性质2知,只要这个数的后两位数能被4(或25)整除,这个数就能被4(或25)整除。这就证明了(4)。 类似地可以证明(5)。 (6)的正确性,我们用一个具体的数来说明一般性的证明方法。

竞赛讲座 02整数的整除性

竞赛讲座02 -整数的整除性 1.整数的整除性的有关概念、性质 (1)整除的定义:对于两个整数a、d(d≠0),若存在一个整数p,使得 成立,则称d整除a,或a被d整除,记作d|a。 若d不能整除a,则记作d a,如2|6,4 6。 (2)性质 1)若b|a,则b|(-a),且对任意的非零整数m有bm|am 2)若a|b,b|a,则|a|=|b|; 3)若b|a,c|b,则c|a 4)若b|ac,而(a,b)=1((a,b)=1表示a、b互质,则b|c; 5)若b|ac,而b为质数,则b|a,或b|c; 6)若c|a,c|b,则c|(ma+nb),其中m、n为任意整数(这一性质还可以推广到更多项的和) 例1 (1987年北京初二数学竞赛题)x,y,z均为整数,若11|(7x+2y-5z),求证:11|(3x-7y+12z)。 证明∵4(3x-7y+12z)+3(7x+2y-5z)=11(3x-2y+3z) 而 11|11(3x-2y+3z), 且 11|(7x+2y-5z), ∴ 11|4(3x-7y+12z) 又 (11,4)=1 ∴ 11|(3x-7y+12z). 2.整除性问题的证明方法

(1) 利用数的整除性特征(见第二讲) 例2(1980年加拿大竞赛题)设72|的值。 解72=8×9,且(8,9)=1,所以只需讨论8、9都整除的值。 若8|,则8|,由除法可得b=2。 若9|,则9|(a+6+7+9+2),得a=3。 (2)利用连续整数之积的性质 ①任意两个连续整数之积必定是一个奇数与一个偶数之一积,因此一定可被2整除。 ②任意三个连续整数之中至少有一个偶数且至少有一个是3的倍数,所以它们之积一定可以被2整除,也可被3整除,所以也可以被2×3=6整除。 这个性质可以推广到任意个整数连续之积。 例3(1956年北京竞赛题)证明:对任何整数n都为整数,且用3除时余2。 证明 ∵为连续二整数的积,必可被2整除. ∴对任何整数n均为整数, ∵为整数,即原式为整数.

(初中数学)数的整除性精选题练习及答案

(初中数学)数的整除性精选题练习及答案 阅读与思考 设a,b是整数,b≠0,如果一个整数q使得等式a=bq成立,那么称a能被b整除,或称b整除a,记作b|a,又称b为a的约数,而a称为b的倍数.解与整数的整除相关问题常用到以下知识:1.数的整除性常见特征: ①若整数a的个位数是偶数,则2|a; ②若整数a的个位数是0或5,则5|a; ③若整数a的各位数字之和是3(或9)的倍数,则3|a(或9|a); ④若整数a的末二位数是4(或25)的倍数,则4|a(或25|a); ⑤若整数a的末三位数是8(或125)的倍数,则8|a(或125|a); ⑥若整数a的奇数位数字和与偶数位数字和的差是11的倍数,则11|a. 2.整除的基本性质 设a,b,c都是整数,有: ①若a|b,b|c,则a|c; ②若c|a,c|b,则c|(a±b); ③若b|a,c|a,则[b,c]|a; ④若b|a,c|a,且b与c互质,则bc|a; ⑤若a|bc,且a与c互质,则a|b.特别地,若质数p|bc,则必有p|b或p|c. 例题与求解 【例1】在1,2,3,…,2 000这2 000个自然数中,有_______个自然数能同时被2和3整除,而且不能被5整除. (“五羊杯”竞赛试题) 解题思想:自然数n能同时被2和3整除,则n能被6整除,从中剔除能被5整除的数,即为所求. 【例2】已知a,b是正整数(a>b),对于以下两个结论: ①在a+b,ab,a-b这三个数中必有2的倍数; ②在a+b,ab,a-b这三个数中必有3的倍数.其中( ) A.只有①正确B.只有②正确 C.①,②都正确D.①,②都不正确(江苏省竞赛试题)解题思想:举例验证,或按剩余类深入讨论证明. ab能被198整除,求a,b的值.(江苏省竞赛试题) 【例3】已知整数13456 ab能被9,11整除,运用整除的相关特性建立a,b的等式,解题思想:198=2×9×11,整数13456 求出a,b的值. 【例4】已知a,b,c都是整数,当代数式7a+2b+3c的值能被13整除时,那么代数式5a+7b-22c的值是否一定能被13整除,为什么?

人教版初中数学《整数的整除性》竞赛专题复习含答案

人教版初中数学《整数的整除性》竞赛专题复习含答案 §19.1整除 19.1.1★证明:三个连续奇数的平方和加1,能被12整除,但不能被24整除. 解析 要证明一个数能被12整除但不能被24整除,只需证明此数等于12乘上一个奇数即可.设三个连续的奇数分别为21n -、21n +、23n +(其中n 是整数),于是 () ()()()2 2 2 22121231121n n n n n -+++++=++. 所以 ()()()222 12|212123n n n ??-++++?? . 又()2111n n n n ++=++,而n 、1n +是相邻的两个整数,必定一奇一偶,所以()1n n +是偶数,从而21n n ++是奇数,故 ()()()22224212123n n n ??-++++?? ?. 19.1.2★★若x 、y 为整数,且23x y +,95x y +之一能被17整除,那么另一个也能被17整除. 解析 设23u x y =+,95x y =+.若17|u ,从上面两式中消去y ,得 3517v u x -=. ① 所以 17|3v . 因为(17,3)=1,所以17|v 即17|95x y +. 若17|v ,同样从①式可知17|5u .因为(17,5)=1,所以17|u ,即17|23x y +. 19.1.3★★设n 是奇数,求证: 60|6321n n n ---. 解析 因为260235=??,22、3、5是两两互质的,所以只需证明22、3、5能整除6321n n n ---即可. 由于n 是奇数,有 22|62n n -,22|31n +, 所以22|6231n n n ---; 又有3|63n n -,3|21n +, 所以3|6321n n n ---; 又有5|61n -,5|32n n +, 所以5|6321n n n ---. 所以60|6321n n n ---. 评注 我们通常把整数分成奇数和偶数两类,即被2除余数为0的是偶数,余数为1的是奇数.偶数常用2k 表示,奇数常用21k +表示,其实这就是按模2分类.又如,一个整数a 被3除时,余数只能是0、1、2这三种可能,因此,全体整数可以分为3k 、31k +、32k +这三类形式,这是按模3分类.有时为了解题方便,还常把整数按模4、模5、模6、模8等分类,但这要具体问题具体处理. 19.1.4★★设n 为任意奇正整数,证明:15961000270320n n n n +--能被2006整除. 解析 因为200621759=??,所以为证结论成立,只需证n 为奇正整数时,15961000270320n n n n +--能被2、17、59整除.显然,表达式能被2整除. 应用公式,n 为奇数时, ()()121n n n n n a b a b a a b b ---+=+-++, ()()121n n n n n a b a b a a b b ----=-++ +. 由于159610005944+=?,2703205910+=?,所以15961000270320n n n n +--能被59整除. 又159627013261778-==?,10003206801740-==?,所以15961000270320n n n n +--能被17整除.

数的整除性规律

数的整除性规律 【能被2或5整除的数的特征】一个数的末位能被2或5整除,这个数就能被2或5 整除 【能被3或9整除的数的特征】一个数,当且仅当它的各个数位上的数字之和能被3 和9整除时,这个数便能被3或9整除。 例如,1248621各位上的数字之和是1+2+4+8+6+2+1=24 3|24,则3|1248621。 又如,372681各位上的数字之和是3+7+2+6+8+1=27 9|27,则9|372681。 【能被4或25整除的数的特征】一个数,当且仅当它的末两位数能被4或25整除时,这个数便能被4或25整除。 例如, 173824的末两位数为24,4|24,则4|173824。 43586775的末两位数为75,25|75,则25|43586775。 【能被8或125整除的数的特征】一个数,当且仅当它的末三位数字为0,或者末三位数能被8或125整除时,这个数便能被8或125整除。 例如, 32178000的末三位数字为0,则这个数能被8整除,也能够被125整除。 3569824的末三位数为824,8|824,则8|3569824。 214813750的末三位数为750,125|750,则125|214813750。 【能被7、11、13整除的数的特征】一个数,当且仅当它的末三位数字所表示的数,与末三位以前的数字所表示的数的差(大减小的差)能被7、11、13整除时,这个数就能被7、11、13整除。

例如,75523的末三位数为523,末三位以前的数字所表示的数是75,523-75=448,448÷7=64,即7|448,则7|75523。 又如,1095874的末三位数为874,末三位以前的数字所表示的数是1095,1095-874=221,221÷13=17,即13|221,则13|1095874。 再如,868967的末三位数为967,末三位以前的数字所表示的数是868,967-868=99,99÷11=9,即11|99,则11|868967。 此外,能被11整除的数的特征,还可以这样叙述:一个数,当且仅当它的奇数位上数字之和,与偶数位上数字之和的差(大减小)能被11整除时,则这个数便能被11整除。 例如,4239235的奇数位上的数字之和为4+3+2+5=14,偶数位上数字之和为2+9+3=14,二者之差为14-14=0,0÷11=0,即11|0,则11|4239235。

整除的性质和特征

整除的性质和特征 整除问题是整数内容最基本的问题。理解掌握整除的概念、性质及某些特殊数的整除特征,可以简单快捷地解决许多整除问题,增强孩子的数感。 一、整除的概念: 如果整数a除以非0整数b,除得的商正好是整数而且余数是零,我们就说a能被b整除(或b能整除a),记作b/a,读作“b整除a”或“a能被b整除”。a叫做b的倍数,b叫做a的约数(或因数)。整除属于除尽的一种特殊情况。 二、整除的五条基本性质: (1)如果a与b都能被c整除,则a+b与a-b也能被c整除; (2)如果a能被b整除,c是任意整数,则积ac也能被b整除; (3)如果a能被b整除,b能被c整除,则积a也能被c整除; (4)如果a能同时被b、c整除,且b与c互质,那么a一定能被积bc整除,反之也成立; (5)任意整数都能被1整除,即1是任意整数的约数;0能被任意非0整数整除,即0是任意非0整数的倍数。 三、一些特殊数的整除特征: 根据整除的基本性质,可以推导出某些特殊数的整除特征,为解决整除问题带来方便。 (1)如果一个数是整十数、整百数、整千数、……的因数,可以通过被除数末尾几位数字确定这个数的整除特征。 ①若一个整数的个位数字是2的倍数(0、2、4、6或8)或5的倍数(0、5),则这个数能被2或5整除; ②若一个整数的十位和个位数字组成的两位数是4或25的倍数,则这个数能被4或25整除; ③若一个整数的百位、十位和个位数字组成的三位数是8或125的倍数,则这个数能被8或125整除。 【推理过程】: 2、5都是10的因数,根据整除的基本性质(2),可知所有整十数都能被10、2、5整除。任意一个整数都可以看作一个整十数和它的个位数的和,如果一个数的个位数字也能被2或5整除,根据整除的基本性质(1),则这个数能被2或5整除。 又因为4、25都是100的因数,8、125都是1000的因数,根据整除的基本性质(2),可知任意整百数都能被4、25整除,任意整千数都能被8、125整除。同时,任意一个多位数都可以看作一个整百数和它末两位数的和或一个整千数和它的末三位数的和,根据整除的基本性质(1),可以推导出上面第②条、第③条整除特征。

2019数的整除性讲解(一)

2019数的整除性讲解(一) 我们在三年级已经学习了能被2,3,5整除的数的特征,这一讲我们将讨论整除的性质,并讲解能被4,8,9整除的数的特征。 数的整除具有如下性质: 性质1 如果甲数能被乙数整除,乙数能被丙数整除,那么甲数一定能被丙数整除。例如,48能被16整除,16能被8整除,那么48一定能被8整除。 性质2 如果两个数都能被一个自然数整除,那么这两个数的和与差也一定能被这个自然数整除。例如,21与15都能被3整除,那么21+15及21-15都能被3整除。 性质3 如果一个数能分别被两个互质的自然数整除,那么这个数一定能被这两个互质的自然数的乘积整除。例如,126能被9整除,又能被7整除,且9与7互质,那么126能被9×7=63整除。 利用上面关于整除的性质,我们可以解决许多与整除有关的问题。为了进一步学习数的整除性,我们把学过的和将要学习的一些整除的数字特征列出来: (1)一个数的个位数字如果是0,2,4,6,8中的一个,那么这个数就能被2整除。 (2)一个数的个位数字如果是0或5,那么这个数就能被5整除。 (3)一个数各个数位上的数字之和如果能被3整除,那么这个数就能被3整除。

(4)一个数的末两位数如果能被4(或25)整除,那么这个数就能被4(或25)整除。 (5)一个数的末三位数如果能被8(或125)整除,那么这个数就能被8(或125)整除。 (6)一个数各个数位上的数字之和如果能被9整除,那么这个数就能被9整除。 其中(1)(2)(3)是三年级学过的内容,(4)(5)(6)是本讲要学习的内容。 因为100能被4(或25)整除,所以由整除的性质1知,整百的数都能被4(或25)整除。因为任何自然数都能分成一个整百的数与这个数的后两位数之和,所以由整除的性质2知,只要这个数的后两位数能被4(或25)整除,这个数就能被4(或25)整除。这就证明了(4)。 类似地可以证明(5)。 (6)的正确性,我们用一个具体的数来说明一般性的证明方法。 837=800+30+7 =8×100+3×10+7 =8×(99+1)+3×(9+1)+7 =8×99+8+3×9+3+7 =(8×99+3×9)+(8+3+7)。 (8x99因为99和9都能被9整除,所以根据整除的性质1和性质2知, +3x9)能被9整除。再根据整除的性质2,由(8+3+7)能被9整除,就能判断837能被9整除。

数学竞赛辅导(初2)第24讲 整数的整除性

第二十四讲* 整数的整除性 整数的整除性问题,是数论中的最基本问题,也是国内外数学竞赛中最常出现的内容之一.由于整数性质的论证是具体、严格、富有技巧,它既容易使学生接受,又是培养学生逻辑思维和推理能力的一个有效课题,因此,了解一些整数的性质和整除性问题的解法是很有必要的. 1.整除的基本概念与性质 所谓整除,就是一个整数被另一个整数除尽,其数学定义如下. 定义设a,b是整数,b≠0.如果有一个整数q,使得a=bq,那么称a能被b整除,或称b整除a,并记作b|a.如果不存在这样的整数q,使得a=bq,则称a不能被b整除,或称b不整除a,记作b a. 关于整数的整除,有如下一些基本性质: 性质1若b|a,c|b,则c|a. 性质2若c|a,c|b,则c|(a±b). 性质3若c|a,c b,则c(a±b). 性质4若b|a,d|c,则bd|ac. 性质5若a=b+c,且m|a,m|b,则m|c. 性质6若b|a,c|a,则[b,c]|a(此处[b,c]为b,c的最小公倍数).特别地,当(b,c)=1时,bc|a(此处(b,c)为b,c的最大公约数). 性质7若c|ab,且(c,a)=1,则c|b.特别地,若p是质数,且p|ab,则p|a或p|b. 性质8若a≠b,n是自然数,则(a-b)|(a n-b n). 性质9若a≠-b,n是正偶数,则(a+b)|(a n-b n). 性质10若a≠-b,n是正奇数,则(a+b)|(a n+b n). 2.证明整除的基本方法 证明整除常用下列几种方法:(1)利用基本性质法;(2)分解因式法; (3)按模分类法;(4)反证法.下面举例说明. 例1证明:三个连续奇数的平方和加1,能被12整除,但不能被24整除. 分析要证明一个数能被12整除但不能被24整除,只需证明此数等于12乘上一个奇数即可.

整数的整除性1

竞赛培训专题6---整数的整除性 1整数的整除性的有关概念、性质 (1)整除的定义:对于两个整数a、d(d≠0),若存在一个整数p,使得成立,则称d整除a,或a被d整除,记作d|a。 若d不能整除a,则记作d a,如2|6,4 6。 (2)性质 1)若b|a,则b|(-a),且对任意的非零整数m有bm|am 2)若a|b,b|a,则|a|=|b|; 3)若b|a,c|b,则c|a 4)若b|ac,而(a,b)=1((a,b)=1表示a、b互质,则b|c; 5)若b|ac,而b为质数,则b|a,或b|c; 6)若c|a,c|b,则c|(ma+nb),其中m、n为任意整数(这一性质还可以推广到更多项的和) 例1 (1987年北京初二数学竞赛题)x,y,z均为整数,若11|(7x+2y-5z),求证:11|(3x-7y+12z)。 证明∵4(3x-7y+12z)+3(7x+2y-5z)=11(3x-2y+3z) 而11|11(3x-2y+3z), 且11|(7x+2y-5z), ∴ 11|4(3x-7y+12z) 又 (11,4)=1 ∴11|(3x-7y+12z). 2.整除性问题的证明方法 (1) 利用数的整除性特征(见第二讲) 例2(1980年加拿大竞赛题)设72|的值。 解72=8×9,且(8,9)=1,所以只需讨论8、9都整除的值。

若8|,则8|,由除法可得b=2。 若9|,则9|(a+6+7+9+2),得a=3。 (2)利用连续整数之积的性质 ①任意两个连续整数之积必定是一个奇数与一个偶数之一积,因此一定可被2整除。 ②任意三个连续整数之中至少有一个偶数且至少有一个是3的倍数,所以它们之积一定可以被2整除,也可被3整除,所以也可以被2×3=6整除。 这个性质可以推广到任意个整数连续之积。 例3(1956年北京竞赛题)证明:对任何整数n都为整数,且用3除时余2。 证明 ∵为连续二整数的积,必可被2整除. ∴对任何整数n均为整数, ∵为整数,即原式为整数. 又∵, 2n、2n+1、2n+2为三个连续整数,其积必是3的倍数,而2与3互质, ∴是能被3整除的整数. 故被3除时余2.

初中数学竞赛专题:整数的整除性

初中数学竞赛专题:整数的整除性 §19.1整除 19.1.1★证明:三个连续奇数的平方和加1,能被12整除,但不能被24整除. 解析 要证明一个数能被12整除但不能被24整除,只需证明此数等于12乘上一个奇数即 可.设三个连续的奇数分别为21n -、21n +、23n +(其中n 是整数),于是 ()() ()()22 2 22121231121n n n n n -+++++=++. 所以 ()()()222 12|212123n n n ??-++++?? . 又()2111n n n n ++=++,而n 、1n +是相邻的两个整数,必定一奇一偶,所以()1n n +是偶数,从而 21n n ++是奇数,故 ()()()222 24212123n n n ??-++++?? . 19.1.2★★若x 、y 为整数,且23x y +,95x y +之一能被17整除,那么另一个也能被17整除. 解析 设23u x y =+,95x y =+.若17|u ,从上面两式中消去y ,得 3517v u x -=. ① 所以 17|3v . 因为(17,3)=1,所以17|v 即17|95x y +. 若17|v ,同样从①式可知17|5u .因为(17,5)=1,所以17|u ,即17|23x y +. 19.1.3★★设n 是奇数,求证: 60|6321n n n ---. 解析 因为260235=??,22、3、5是两两互质的,所以只需证明22、3、5能整除6321n n n ---即 可. 由于n 是奇数,有 22|62n n -,22|31n +, 所以22|6231n n n ---; 又有3|63n n -,3|21n +, 所以3|6321n n n ---; 又有5|61n -,5|32n n +, 所以5|6321n n n ---.

数的整除特性练习题

数的整除专题训练 知识梳理: 性质1.如果一个自然数的末两位数能被4(或25)整除,那么这个自然数就能被4(或25)整除,否则这个数就不能被4(或25)整除。 性质2.如果一个自然数的末三位数能被8(或125)整除,那么这个自然数就能被8(或125)整除,否则这个数就不能被8(或125)整除。 性质3.如果一个数的各个数位上的数字和能被9整除,那么这个数就能被9整除,否则这个数就不能被9整除。 性质4.如果一个自然数的奇数位上数字和与偶数位上数字和的差能被11整除,那么这个数便能被11整除,否则这个数便不能被11整除。 性质5.如果一个数的末三位数字所表示的数与末三位以前的数字所表示的数的差能被11(7、13)整除,那么这个数就能被11(7、13)整除,否则这个数就不能被11(7、13)整除。 例题精讲: 1. 三年级共有75名学生参加春游,交的总钱数为一个五位数“2□7□5”元,求每位学生最多可能交多少元 解:先求出满足条件的最大五位数。75=25 ×3,则这个五位数是25和3的倍数。 因为是25的倍数,所以十位为7或2,设千位为x, 如十位为7,则使2+x+7+7+5=21+x为3的倍数的x最大为9,得此五位数为29775;如十位为2,则使2+x+7+2+5=16+x为3的倍数的x最大为8,得此五位数为28725。所以,满足题意的最大五位数为29775。 29775÷75=397(元), 即每位学生最多可能交397元。

2. 小勤想在电脑上恢复已经删除掉的72个文件,可是他只记得这些文件的总大小是“*679.*KB”,“*”表示小勤忘掉的第一个和最后一个数字(两个数字可能不同),你能帮他算出这两个数字吗 解:“*679. *”能被72除尽,则“*679*”应是72的倍数。72=8 ×9,先考虑8,末三位数字79*应满足被8整除,所以十分位数字是2;考虑9,已知数字之和是6+7+9+2=24,所以原数的千位上应是3,即这两个数字分别是3和2。 3. 有三个连续的四位数,它们的和也是四位数,并且是3333的倍数,求中间那个数可能的最小取值。 解:设中间的数为a,则另外两个数是(a-1)和(a+1),所以要a+(a+1)+(a-1)=3a是3333的倍数,那么a是1111的倍数,又3a<10000,所以a≤3333,所以a可取1111、2222、3333。所以。取可能的最小的值为1111。 4. 一个整数的末三位数字组成的数与其末三位以前的数字组成的数之间的差是7的倍数时,这个整数可以被7整除吗请证明你的判断。 解:设末三位数字组成的数为m,末三位以前数字组成的数为n,则m-n=7d(d 为整数),即n=m-7d,原数为m+1000n=m+1000 ×(m-7d)=1001m-7000d,1001=13 ×11 ×7,7000d=7 ×1000d,所以原数是7的倍数。 5. 小明有一些数字卡片,现在要从这些卡片中挑出2、4、5、7、8这几张,任选4张,能组成可以被75整除的没有重复数字的四位数,它能组成几种呢 解:75=3 ×5 ×5, 要被75整除,必可被3整除,所以有4、5、7、8,2、4、7、8和2、4、5、7三种选法; 又要被25整除,所以未两位为25或75,所以排除2、4、7、8的选法。 则4、5、7、8的选法有2种组合,2、4、5、7的选法有4种组合,所以共可

数的整除特性

2013国家公务员考试行测数学运算冲刺:数的整除特性 在国家公务员考试中,数学运算题目通常是给出一段表达数量关系的文字,考生需要做的就是找到题干中各个数字之间的联系,然后运用基本的运算法则,计算出结果。中公教育专家发现,国家公务员考试中,数学运算题干中的数字之间都有着千丝万缕的联系,最基础的体现就是两个数之间的整除关系。在考试中,如果能够顺利的发现数字之间存在整除关系,那么我们就可以利用数字的整除特性,快速、简单地得到答案。 一、整除判定 在解题过程中,如果经过分析、判断后,你已经确定题目的正确答案能被某个数整除,那么在进行具体计算之前,只需要对四个选项逐个进行判定,哪个选项能被这个特殊数字整除,即可得到结果。 在行测考试中,被2、3、5、8、9整除的判定较为常见,考生需要熟练掌握并灵活应用。 被2、3、4、5、8、9整除的判断依据 (1)被2整除的判断依据:个位数字能被2整除的数能被2整除。 (2)被3整除的判断依据:各位数字和是3倍数的数可被3整除。 (3)被4整除的判断依据:末两位可被4整除的数能被4整除。 (4)被5整除的判断依据:个位是0、5的数可被5整除。 (5)被8整除的判断依据:末三位可被8整除的数能被8整除。 (6)被9整除的判断依据:各位数字和是9倍数的数可被9整除。 【例题1】为了打开保险箱,首先要输入密码,密码由7个数字组成,它们不是2就是3,在密码中的数字2比3多,而且密码能被3和4整除,试求出这个密码? A.2323232 B.2222232 C.2222332 D.2322222 中公解析:此题答案为B。此题的题干中明确说明,要求密码能够同时被3和4整除。考虑被3、4整除的判断依据。 能被4整除的数字,其后两位数字能够被4整除。所以四个选项中,首先排除D项。 能被3整除的数,要求各位数字和是3的整倍数,剩余三个选项中,A项所有数字和为17,B项所有数字和为15,C项所有数字和为16,符合条件的只有B项。 因此密码为2222232。 【例题2】某单位有工作人员48人,其中女性占总人数的37.5%,后来又调来女性若干人,这时女性人数恰好是总人数的40%,问调来几名女性? A.1人B.2人C.3人D.4人

快速验证整除性的方法

快速验证整除性的方法文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

快速验证整除性的方法: 截尾法,或从个位数开始的割尾法: 1位截尾,1倍割数差(即「截尾、1倍大、相减、验差」):11 1位截尾,2倍割数差(即「截尾、2倍大、相减、验差」):7 1位截尾,2倍割数和(即「截尾、2倍大、相加、验差」):19 1位截尾,4倍割数和(即「截尾、4倍大、相加、验差」):13 1位截尾,5倍割数差(即「截尾、5倍大、相减、验差」):17 2位截尾,1倍割数差:101 3位截尾,1倍割数差:7,11,13若原数大于三位,则末三位与前面剩余数的差,验证 3位截尾,3倍剩数差:17若原数大于三位,则末三位与与3倍前面的剩余数的差被17整除,验证 3位截尾,719,若一个整数的末三位与7倍的前面的剩余数的差能被19整除 4位截尾,173,137,若一个整数的末四位与剩余数的差能被73,137整除(熟悉10001=73x137) 4位截尾,1倍割数和:101若一个整数的末四位与前面1倍的剩余数的和能被101整除 4位截尾,5倍剩数差:23,29,若一个整数的末四位与前面5倍的剩余数的差能被23,29整除 5位截尾,1倍割数差:9091,若一个整数的末四位与前面剩余数的差能被9091整除 截断(分段)法: 一.截断求和法9,99及其约数(两位截断),999(及其约数37,111,333等)(三位截断),9999(及其约数101,9,11,909等)(四位截断)截断,各段和,验证 二.截断奇偶位求差法:11,101,1001或其约数7,11,13,143,77,91 两位、两位截断,各段分类,各类求和,差,验证ep。 7和13的倍数同样也用三位截断法来判断: ababab=10101 x ab,abcabc=1001 x abc,abcabcabc=1001001 x abc,abcdabcdabcd 其中10101(7,13),1001,甚至更多类似形式的数都很容易被证明是7和13的倍数。 其中1001=7x11x13,所以abcabc一定能被7,11,13整除 10001=73x137,所以abcdabcd,能被73,137整除 17x11x13x1000001,所以abcabcabc一定能被7,11,13整除 分解判定法:如63,要分解成熟悉的质因数,再分别判断;如不易分解,则尝试倍乘,如667x3=2001 (3)若一个整数的数字和能被3整除,则这个整数能被3整除。(1位截断求和) (7)a:1位截尾,2倍割数差; b:3位截尾,1倍割数差 (8)先看是不是偶数,若是,再看末尾三位数能被8,125整除,则这个数能被8,125整除。 (9)a(1位截断求和)10^2004-1要能可能出它是9的倍数 类推:N进制里,某数若每位数字(0~N)之和能被N-1除尽,则该数能被N-1整除 b(9的无敌乱切)把一个整数分成若干段(无序不均匀长度)之和能被9整除,则这个数能被9整除 (11)a奇位和、偶位和的差,若能被11整除,则原数能被11整除 b: 1位截尾,1倍割数差 c(无敌乱切)把原数无序不均匀随便分段,每段的末尾数字在原数中排奇数位的归一类,偶数位的归一类,两类各自的和相减,差能被11整除,则原数能被11整除。 推论:偶数个连续相同数字组成的数;首尾相同,中间都是0,且0有偶数个的数; (13)a:1位截尾,4倍割数和 b:3位截尾,1倍割数差(14):7的倍数中的偶数。 (15):3的倍数中末位为0或5。 (16):后四位能被16整除。16=2^4,所以看末4位。类推32512,1024. (17)a: 1位截尾,5倍割数差 b: 3位截尾,3 (18):9的倍数中的偶数。 (19)a: 1位截尾,2倍割数和 b 7 (23):若一个整数的末四位与前面5倍的剩余数的差能被2323整除(25):最后两位数字是00;25;50;75 (27):对原数,从个位不断做截取三位,分段相加,直至数字规模较小,然后验证。 (29):若一个整数的末四位与前面5倍的剩余数的差能被29整除,则这个数能被29整除(73):若一个整数的末四位与前面的数的差能被73整除,则这个数能被73整除 (99,或其约数3,9,11,33)(2位截断求和) (101):a若一个整数的末4位与前面的数的和能被101整除,则这个数能被101整除 b若一个整数的末2位与前面的数的差能被101整除,则这个数能被101整除(2位截尾,1倍割数差)

数的整除性知识分享

数的整除性

数的整除性 我们在三年级已经学习了能被2,3,5整除的数的特征,这一讲我们将讨论整除的性质,并讲解能被4,8,9整除的数的特征。 数的整除具有如下性质: 性质1 如果甲数能被乙数整除,乙数能被丙数整除,那么甲数一定能被丙数整除。例如,48能被16整除,16能被8整除,那么48一定能被8整除。 性质2 如果两个数都能被一个自然数整除,那么这两个数的和与差也一定能被这个自然数整除。例如,21与15都能被3整除,那么21+15及21-15都能被3整除。 性质3 如果一个数能分别被两个互质的自然数整除,那么这个数一定能被这两个互质的自然数的乘积整除。例如,126能被9整除,又能被7整除,且9与7互质,那么126能被9×7=63整除。 利用上面关于整除的性质,我们可以解决许多与整除有关的问题。为了进一步学习数的整除性,我们把学过的和将要学习的一些整除的数字特征列出来: (1)一个数的个位数字如果是0,2,4,6,8中的一个,那么这个数就能被2整除。(2)一个数的个位数字如果是0或5,那么这个数就能被5整除。 (3)一个数各个数位上的数字之和如果能被3整除,那么这个数就能被3整除。 (4)一个数的末两位数如果能被4(或25)整除,那么这个数就能被4(或25)整除。(5)一个数的末三位数如果能被8(或125)整除,那么这个数就能被8(或125)整除。(6)一个数各个数位上的数字之和如果能被9整除,那么这个数就能被9整除。 例1在下面的数中,哪些能被4整除?哪些能被8整除?哪些能被9整除? 234,789,7756,8865,3728,8064。 例2在四位数56□2中,被盖住的十位数分别等于几时,这个四位数分别能被9,8,4整除?例3从0,2,5,7四个数字中任选三个,组成能同时被2,5,3整除的数,并将这些数从小

相关文档
最新文档