苯-乙苯常压精馏塔设计

苯-乙苯常压精馏塔设计
苯-乙苯常压精馏塔设计

目录

1课程设计任务书- - - - - - - - - - - - - - - - - - - - - - - - - - - - -3 2前言- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3

2.1塔设备的化工生产中的作用和地位- - - - - - - - - - - - - 3

2.2设计方案- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4

2.3符号说明- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5 3物料衡算- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -5

3.1进料组成- - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - 5

3.2全塔物料衡算- - - - - - - - - - - - - - - - - - - - - - - - - - - - -3

3.3相对挥发度确定- - - - - - - - - - - - - - - - - - - - - - - - - - - 6

3.4理论塔板数和进料位置确定- - - - - - - - - - - - - - - - - - -7

3.5实际板数和实际进料位置确定- - - - - - - - - - - - - - - - - 8

3.6精馏塔的气液负荷- - - - - - - - - - - - - - - - - - - - - - - - -- 9 4热量衡算- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -11

4.1塔顶冷却水用量- - - - - - - - - - - - - - - - - - - - - - - - - - - 11

4.2塔釜饱和水蒸气用量- - - - - - - - - - - - - - - - - - - - - - - -11

4.3液体平均表面张力- - - - - - - - - - - - - - - - - -- - - - - - - -12 5塔板工艺尺寸计算- - - - - - - - - - - -- - - - - - - - - - - -- - - - -12

5.1塔径计算- - - - - - - - - - - -- - - - - - -- - -- - - - - - -- - - - -12

5.2溢流装置- - - - - - - - - - - -- - - - - - -- - - - -- - - - - - - - - 13

5.3弓形降液管宽度和截面- -- - - - - - -- - - - -- - - - - - - - - 15

5.4降液管底隙高度- - - - - - - - -- - - - - - -- - - - -- - - - - - - 17

5.5筛孔计算及其排列- - - - - - -- - - - --- - - - - - - - - - - - - -17

5.6塔有效高度的计算- - - - - -- - - - ---- - - - --- - - - - - - - - 18 6塔板流体力学验算- - - - - - - - - - - - - - - - - - - - - - - - - - - - 19

6.1气相通过浮阀塔板的压强降- - - - - - - - - - - - - - - - - - -19

6.2淹塔- - - - - - - - - - - - - - - -- -- - -- - - - -- - - - - - -- - - - --20

6.3雾沫夹带- - - - - - - - - - - - -- -- - -- - - - -- - - - - - -- - - - -21

7塔板负荷性能图- - - - - - - - - - - - - - - - - - - - - - - - - - - - - 21

7.1、雾沫夹带线- - - - - - - - - - - - - - - - - - - - - - - - - - - - -21

7.2、液泛线- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 22

7.3、液相负荷上限线- - - - - - - - - - - - - - - - - - - - - - - - --23

7.4、漏液线- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 23

7.5、液相负荷下限线- - - - - - - - - - - - - - - - - - - - - - - - - - 25 9 辅助设备的计算及选型- - - - - - - - - - - - - - - - - - - - - - - - - -26

9.1、裙座- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - -26

9.2、吊柱- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - -26

9.3、冷凝器的选择- - - - - - - - - - - - - - - - - - - - - - - - - - -- 26

9.3、再沸器的选择- - - - - - - - - - - - - - - - - - - - - - - - - - -- 27

10 计算结果列表(参考资料)- - - - - - - - - - - - - - - - - - - - - -28 附表:性能负荷图等- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -29

第1节设计任务书

题目:苯-乙苯双组分均相混合液常压精馏塔设计。

工艺条件及数据:

⑴原料液量10000kg/h,含苯57%(质量分率,下同),料液可视为理想溶液;

⑵馏出液含苯95%,残液含乙苯98%;

⑶泡点进料。

操作条件:

⑴常压操作;

⑵回流液温度为塔顶蒸汽露点;

⑶间接蒸汽加热,加热蒸汽压力为5kgf/cm2(绝压);

⑷冷却水进口温度25℃,出口温度50℃;

⑸设备热损失为加热蒸汽供热量的5%。

设计成果:

设计说明书一份

设计图纸包括负荷性能图、塔盘布量图、浮阀塔(或筛板塔)工艺条件图。

第2节前言

2.1塔设备的化工生产中的作用和地位

塔设备是化工、石油化工和炼油等生产中最重要的设备之一。它可使气(或汽)液或液液两相进行紧密接触,达到相际传质及传热的目的。可在塔设备中完成的常见操作有:精馏、吸收、解吸和萃取等。此外,工业气体的冷却与回收、气体的湿法静制和干燥,以及兼有气液两相传质和传热的增湿、减湿等。

在化工厂、石油化工厂、炼油厂等中,塔设备的性能对于整个装置的产品产量、质量、生产能力和消耗定额,以及三废处理和环境保护等各个方面,都有重大的影响。据有关资料报道,塔设备的投资费用占整个工艺设备投资费用的较大比例;它所耗用的钢材重量在各类工艺设备中也属较多。因此,塔设备的设计和研究,受到化工炼油等行业的极大重视。

2.2设计方案

本设计任务为分离苯-乙苯双组分均相混合液。对于二元混合物的分离,

应采用连续精馏。精馏过程的流程设计如下:

如图1所示。原料液由高位槽经过预热器预热后进入精馏塔内。操作时

连续的从再沸器中取出部分液体作为塔底产品(釜残液)再沸器中原料液部

分汽化,产生上升蒸汽,依次通过各层塔板。塔顶蒸汽进入冷凝器中全部冷凝或部分冷凝,然后进入贮槽再经过冷却器冷却。并将冷凝液借助重力作用送回塔顶作为回流液体,其余部分经过冷凝器后被送出作为塔顶产品。为了使精馏塔连续的稳定的进行,流程中还要考虑设置原料槽。产品槽和相应的泵,有时还要设置高位槽。且在适当位置设置必要的仪表(流量计、温度计和压力表)。以测量物流的各项参数。

设计方案简介:

设计中采用泡点进料,塔顶上升蒸汽采用全冷凝器冷凝,冷凝液在泡点

下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。该物系属易

分离物系,最小回流比较小,故操作回流比取最小回流比的1.5倍。塔釜采

用间接蒸汽加热,塔底产品经冷却后送至储罐。加料方式采用直接流入塔内,

采用泡点进料,即热状态参数q=1.0。具体如下:

塔型的选择:

本设计中采用筛板塔。筛板塔的优点是结构比浮阀塔更简单,易于加工,造价约为泡罩塔的60%,为浮阀塔的80%左右。处理能力大,比同塔径的泡罩塔可增加10~15%。塔板效率高,比泡罩塔高15%左右。压降较低。缺点是塔板安装的水平度要求较高,否则气液接触不匀。

设计的依据与技术来源:

本设计依据于精馏的原理(即利用液体混合物中各组分挥发度的不同并借助于多次部分汽化和部分冷凝使轻重组分分离),并在满足工艺和操作的要求,满足经济上的要求,保证生产安全的基础上,对设计任务进行分析并做出理论计算。

2.3符号说明

英文字母

L s——液体体积流量,m3/h

A a——塔板开孔区面积,m2 n——筛孔数目

A f——降液管截面积,m2

P——操作压力,kPa

A o——筛孔区面积,m2

?P——气体通过每层筛板的压降,kPa

A T——塔的截面积,m2

T——理论板层数

C——负荷因子,无因次

t——筛孔的中心距,m

C20——表面张力为20mN/m的u——空塔气速,m/s

d o——筛孔直径,m

D——塔径,m

u o'——液体通过降液体系的速度,m/s

e v——液沫夹带量,kg液/kg气R——回流比

V s——气体体积流量,m/s

R min——最小回流比

W c——边缘无效区宽度,m

H T——塔板间距,m

K——稳定系数

H——板式塔高度,m

H d——降液管内清夜层高度,m

H F——进料处塔板间距,m

l w——堰长,m

L h——液体体积流量,m3/h M——平均摩尔质量,kg/kmol W d——弓形降液管高度,m T——平均温度,℃

W s——破沫区宽度,m

g——重力加速度,m/s2

F o——筛孔气相动触因子

h l——出口堰与沉降管距离,m h c——与平板压强相当的液柱高度,m

希腊字母

δ——筛板厚度,m

τ——液体在降液管内停留时间,s h d——与液体流过降液管压强降μ——粘度mPa·s相当的液柱高度

m ρ——密度,kg/m3 h f——板上清液高度,m

σ——表面张力,mN/m

h o——降液管的底隙高度,m h ow——堰上液层高度,m

H w——出口堰高度,m

L——液相

V——气相

第3节 物料衡算

3.1进料组成:

6430.0106

43

785778

57=+

=

F X

9627

.0106

578957895=+=

D X

0270

.0106

106782782=+=

W

X

原料液的平均摩尔质量:

M F = 0.6430×78 +(1-0.6430)×106 = 87.996

3.2全塔的物料衡算:

6430

.0996

.8710000==

F

F= D+W

F X F =D X D +W X W

把已知数据带入上式,得 113.64=D+W

113.64×0.6430=D ×0.9627+W ×0.0270 解得:D=74.8135 Kmol/h , W=38.8265 Kmol/h 3.3相对挥发度:

C

t B A Lgp o +-

= ①

查表得苯、乙苯的安托因常数如下:

则将常压P=101.325 KPa 代入①式,即可分别求得常压下苯的沸点为80.0488℃,乙苯的沸点为136.1520℃。

设计塔顶温度为露点温度t 1,塔釜温度为泡点温度t N 。 所以: 由

t 1计算的苯与乙苯的气液平衡常数P P Ki 0

=应满足归一方程ΣXi/Ki=1

由t N 计算的苯与乙苯的气液平衡常数P

P Ki 0

=应满足归一方程ΣKiXi=1

即:

1

325

.1010373.0325.1019627.0=?+?乙苯苯P P

1

325

.1019730.0325

.1010270.0=?+

?乙苯

苯P P

由X D =0.9627,X W =0.0270 计算得:塔顶t 1=85.5℃ 塔底t N =132.9℃,

则:全塔平均相对挥发度α苯-乙苯=(5.79×5.44×4.36)1/3=5.16 3.4理论塔板数和进料板确定 理论板数确定:

??????--?-?-=F D F

D X X X X R 1111

min

αα

??

????--?-?-=

6430.019627.0116.56430.09627

.0116.51 =0.25

α

Lg X X X X Lg N W W D D ?

?????-?-=

11min

95.50270.00270.019627.019627.0Lg Lg ??????-?

-=

= 4.27

取回流比375.025.05.15.1min =?==R R 根据吉利兰关系式: X=

1

+-R Rm R Y=

1

+-N Nm N

Y=0.75-0.75×X 0.5668

得出:N=10.9 ,即实际理论塔板数为11 理论进料位置确定:

假设精馏段塔板数为N R ,提馏段塔板数为Ns

则,根据krikride 经验式:206

.02

,,,,?

??

???????? ?????

? ??????

??=D W X X Z

Z N N D

HK W LK F

LK F

HK S R 计算得出=S

R

N N 0.68 从而得出精馏段塔板数为5,提馏段塔板数为6,理论进料板为第5板 3.5实际板数和实际进料位置确定

由内差法求得在塔顶、进料、塔底温度下的粘度,如下表:

μ顶 = 0.2934×X D +0.3392×(1—X D ) =0.2951 m Pa·s μ底 = 0.1950× X W +0.2377×(1—X W ) = 0.2365 m Pa·s

μ进料=0.2688×X F +0.3140×(1—X F )=0.2849 m Pa·s

2630.03

=++=

进料

塔釜塔顶μμμμ m Pa·

s 全塔效率 E T =0.49(αμ)-0.245 =0.4618 N P =

T

T

E N =11/0.4618 =24块 即,实际塔板数为24 计算实际塔板数 精馏段114618.05

E N T T ≈==

精P N 提馏段134618

.06

E N T T ≈==

提P N 实际加料板位置在第11块 3.6精馏塔的气液负荷

苯与乙苯在某些温度下的密度如下表:

精馏段:

M 塔顶=78×X D +106×(1-X D )=78×0.9627+106×(1-0.9627) = 79.04 g/mol M 进料=78×X F +106×(1-X F )=78×0.6430+106×(1-0.6430) = 88.0 g/mol 则,精馏段平均摩尔质量52.832

M M =+=

进料

塔顶M g/mol

精馏段平均温度15.902

94.885.5=+=t ℃

查得90℃时, ρ苯 =792.5 Kg/m 3 ,ρ乙苯 =795.2 Kg/m 3

ρL =792.5 X D +795.2(1-X D )=792.5×0.9627+795.2×(1-0.9627)=792.6Kg/m 3

73.2)

15.90273(314.852

.83325.101RT PM v +??==

ρ Kg/m 3 对精馏段进行物料衡算:

/h 102.87kmol 74.8135)1375.0()1(=?+=+=D R V

h 28.06kmol/74.8135375.0=?==RD L

8742.073.2360052

.8387.1023600V =??=??=

ρM V V R m 3 / S

0010.06

.792360052

.8306.283600L =??=??=

ρM L L R m 3 / S

提馏段:

M 塔底=78×X W +106×(1-X W )=78×0.0270+106×(1-0.0270) = 105.24 g/mol 则,提馏段平均摩尔分数M’=(M 塔底+ M 进料)=96.62 g/mol 提馏段平均温度8.1132

8

.949.132=+=

t ℃ ρ’L =792.5X W +795.2(1-X W )=792.5×0.0270+795.2×(1-0.0270)=795.13Kg/m 3

97.2)

8.113273(314.862

.96325.101RT PM ,=+??==

V

ρ Kg/m 3 提馏段:

kmol/h

87.102)1('=?--=F q V V /h 141.70kmol 113.6428.06'=+=+=qF L L

9296.097.2360062.9687.1023600,

,v =??=??=ρM V V t m 3 / S 0048.013.795360062

.9670.1413600,

,V

=??=??=ρM V L t m 3 / S 求取操作线方程

精馏段操作线方程:

7.0273.01

11+=+++=

+D D n n x R x x R R

y 提馏段操作线方程: 0102.0377.1'

''1-=-=+m W m m x x V W

x V L y

第4节 热量衡算

4.1塔顶冷却水用量

塔顶采用泡点回流,则计算回流温度t’=81.1℃ 查得苯、乙苯比热容和汽化热如下表:

在塔顶85.5℃的汽化热γ苯=390 KJ/Kg ,γ乙苯=367 KJ/Kg ; 则,平均汽化热γ= X D ×γ苯+(1- X D )×γ乙苯=389 KJ/Kg 比热容为Cp 苯 =1.92KJ/Kg.k ,Cp 乙苯=1.95 KJ/Kg.k 则,平均比热容Cp= X D ×Cp 苯+(1- X D )× Cp 乙苯=1.92

馏出液D 的质量Q D =X D ×D ×M 苯+(1- X D )×D ×M 乙苯=5913.26Kg/h 回流液质量Q L =R*Q D =2217.47 Kg/h

则冷凝器热负荷Q=(Q D +Q L )×γ+(Q D +Q L )×Cp ×△T

=(5913.26+2217.47)

×389+(5913.26+2217.47× 1.92×

(85.5-81.1)

=3.23×106 KJ/h 水的比热容可认为Cp 水=4.2 KJ/Kg.k 则,冷却水用量

46

1008.325-502.41023.3t -t ?=??=?=)

()(进口出口水冷水

p C Q m Kg/h 4.2塔釜饱和蒸汽用量

由上表估算塔釜温度132.9℃时汽化热γ苯=351.7 KJ/Kg ,γ乙苯=340.1 KJ/Kg 则,塔釜平均汽化热γ塔釜= X w ×γ苯+(1- X w )×γ乙苯=340.4 KJ/Kg 釜液的质量流量Q w =10000-Q D =4086.74 Kg/h

则,塔底再沸器的热负荷Q 再沸器=Q w ×γ塔釜=340.4×4086.74=1.39×106 KJ/h

再沸器采用间接蒸汽加热,加热蒸汽压力为5kgf/cm2(绝压),即约490KPa 。 查得:

可近似估算5kgf/cm2下的汽化热γ蒸汽=2115.64KJ/kg ,密度ρ蒸汽=2.6169 kg/m3 则,所需蒸汽

h kg Q m /43.40834

.3401039.16=?==

塔釜再沸器

蒸汽γ

h V /m 41.15606169

.243

.4083m 3==

=

密度

蒸汽

蒸汽ρ

4.3液体平均表面张力 由公式i i n

i m x σσ1=∑=进行计算

则,由内差法求得塔顶、进料、塔釜温度下苯与乙苯的表面张力如下:

进料板表面张力m mN m /50.2039.213730.048.196430.0=?+?=进σ 塔顶表面张力/m m 66.2035.220373.060.209627.0N m =?+?=顶σ 塔底表面张力m mN m /46.1753.17973.099.14027.0=?+?=底σ 精馏段液体平均表面张力m mN m m m /58.202

66

.2050.202

)(=+=

+=

进精σσσ

提馏段液体平均表面张力m mN m m m /06.192

46

.1766.202

)(=+=

+=底

进提σσσ

全塔液体平均表面张力

m mN m

m m /82.192

06.1958.202

)(=+=

+=

(提)精σσσ

第5节 塔板工艺尺寸计算:

5.1塔径计算

塔径的计算按照下式计算:

D =

式中 D —— 塔径m ;

V s —— 塔内气体流量m 3/s ; u —— 空塔气速m/s 。

空塔气速u 的计算方法是,先求得最大空塔气速u max ,然后根据设计经验,乘以一定的安全系数,即

max (0.6~0.8)u u =

因此,需先计算出最大允许气速max u 。

max u =式中 u max ——允许空塔气速,m/s ;

ρV ,ρL ——分别为气相和液相的密度,kg/m 3 ; C ——气体负荷系数,m/s ,

对于气体负荷系数C 可用史密斯关联图(如下)确定;而史密斯关联图是按液体的表面张力为σ=0.02N/m 时绘制的,故气体负荷系数C 应按下式校正:

2

.020)02

.0(σC C =

精馏段塔径的计算

由以上的计算结果可以知道:精馏段的气,液相体积流率为: s V s R R /0.8472m /0.0010m L 33==、 精馏段的汽,液相平均密度为:

33/73.2/6.792m kg m kg V L ==ρρ、

板间距与塔径的关系 3

塔径D/mm

300~500

500~800

800~1600

1600~2400

板间距H T /mm 200~300 250~350 300~450 350~600

那么分离空间,初选板间距m H T 45.0=,取板上液层高度m h L 07.0=。

m h H L T 39.007.045.0=-=-

0195.073.26.7928472.00010.05

.05

.0=??

? ?????? ??=???

? ??????? ??S

L s

s V L ρρ

查上图smith 关联图,得085.020=C ,依式2

.02020??

?

??=σC C 校正到物系表面张力

为20.58mN/m 时的C

086.02058.202

.020=?

?

?

??=C C

s m C

u V V L /463.173

.273

.26.792086.0max =-?=-=ρρρ 取安全系数为0.7,则

s m u u /02.1463.17.07.0max =?==

m u V D s 05.102

.114.38472.044=??==

π 调整塔径为1.2m; 提馏段塔径的计算

s V s s /0.9296m /0.0048m L 33s ==、

提馏段的汽,液相平均密度为:

33/97.2/13.795m kg m kg V L ==ρρ、

0845.097.213.7959296.00048.05

.05

.0=??

?

?????? ??=????

?

?????? ??v V L L s

s ρρ

查上图smith 关联图,得08.0'20=C ,依式2

.02020??

?

??=σC C 校正到物系表面张力

为19.06mN/m 时的C

078.02006.19''2

.020=?

?

?

??=C C

s m C u V V L /27.197

.297

.213.795078.0''''

'max =-?=-=ρρρ s m u u /889.027.17.0'7.0'max =?==

m u V D s 15.1889

.014.39296.04''4'=??==

π 调整塔径为1.2m ,综上,则取塔径为1.2m 5.2溢流装置

采用单溢流,弓形降液管,平行受液盘及平行溢流堰,不设进口堰。 溢流堰长l w

取堰长为0.6D ,则m L W 72.02.16.0=?= 出口堰高h w

由w l ow h h h =-,选用平直堰,堰上液层高度3

2

100084.2'??

?

????=Lw Ls E h ow 式中 h ow ──堰上液流高度,m ; l s ──塔内平均液流量,m 3/h ; l w ──堰长,m ;

E ──液流收缩系数。如右图一般情况下可取E =1,对计算结果影响不大。

近似取E=1,则 精馏段:

m E h ow 0083.072.06.3100084.23

2

=??

?

????=

提馏段:

m E h ow 0266.072.0166.24100084.2'3

2

=??

?

????=

5.3弓形降液管宽度Wd 和截面Af

6.0=D

l w

查右图得: 05.0=T

f A A 、

1.0=D

W d

则有

m W d 12.02.11.0=?=

22057.02.14

14

.305.0m A f =??

= 计算液体在降液管中停留时间, 以检验降液管面积

s s L H A t s T f 565.25001

.045

.0057.0>=?=

=

s s L H A t s T f 534.50048

.045

.0057.0'

>=?=

=

故符合要求。

取边缘区宽度 W C =0.035 m ,破沫区宽度 W S =0.065 m 。

开孔区面积按?????

?

+-=-R x R x R x A a 1222sin 1802π计算 ()()565.00.0352

1.2

2R 545.0065.012.022.12=-=-==--=--=

Wc D W W D x S d 、

故2

122283.0565.0545.0sin 565.0180545.0565.0545.02m A a =????????+-?=-π 5.4降液管底隙高度

'

0s

o w l h l u =

式中u 0 ──降液管底隙处液体流速,m/s 根据经验一般u 0=0.07-0.25m/s

取降液管底隙处液体流速为0.08m/s ,则

m l h w o

0174.008

.072.00010

.008.0L R =?=?=(精)

m l h w o

0833.008

.072.00048

.008.0L s =?=?=(提)

5.5筛孔计算及其排列

采用F1型重阀,重量为33g ,孔径为39mm

一般正常负荷情况下,希望浮阀是在刚全开时操作,实验结果表明此时阀孔动能因子F o 为8 ~11。所以,取阀孔动能因子 F o = 10 , 用式 F

u 21o

o ρ

V

=求孔速

ρV 为气相密度。 精馏段:m/s 6.05 2.73

10 F

u 2

1

2

1

o

o ===ρ

V

提馏段:

m/s 5.80 2.97

10 F

u 2

1

2

1

o

o ===ρ

V

依式N =0.232×0u V h

求塔板上的理论浮阀数,即

精馏段:

N = 0.232×0u V h = 0.232×05

.612

.3147=121

提馏段:

N = 0.232×0u V h = 0.232×80

.556

.3346=134

浮阀排列方式采用等腰三角形叉排(如图)。取同

一横排的孔心距t = 75 mm=0.075 m ,则可按下式估算排间距t’, 精馏段:

mm 97 m 0.097

0.0751210.83 t N Aa

,==?=?=t 提馏段:

mm 85 m 0.085

0.0751310.83

t N Aa

t ,==?=?= 考虑到塔的饿直径较大,必须采用分快式塔板,而各分快板的支承与衔接也要占去一部分鼓泡区面积,因此排间距应小于此值,故取 精馏段:t’ = 90mm = 0.09 m 。 提馏段:t’ = 80mm = 0.08 m

按t=75 mm ,t’= 90 mm 和t’= 80 mm 以等腰三角形叉排方式作图,见附图,排得精馏段实际阀数 118 个、提馏段实际阀数133个

5.6精馏塔有效高度的计算

精馏段有效高度的计算:Z1错误!未找到引用源。 = 10×0.45=4.5m 错误!未找到引用源。

提馏段有效高度的计算:Z2 = 13×0.45=5.85m

人孔数目根据塔板安装方便和物料的清洗程度而定。 对于处理不需要经常清洗的物料,可隔8~10块塔板设置一个人孔;对于易结垢、结焦的物系需经常清洗,则每隔4~6块塔板开一个人孔。人孔直径通常为450-550mm 。 此处每隔5层塔板开一人孔,人孔高度为0.5m 人孔直径H T ,为0.5m. 人孔数:S= (24/5)-1 = 3.8

塔顶空间指塔内最上层塔板与塔顶空间的距离。为利于出塔气体夹带的液滴沉降,其高度应大于板间距,塔顶空间高度通H D 常取1.0-1.5m :此处取1.2m

塔底空间指塔内最下层塔板到塔底间距。其值视具体情况而定:当进料有15分钟缓冲时间的容量时,塔底产品的停留时间可取3~5分钟,否则需有10~15分钟的储量,以保证塔底料液不致流空。塔底产品量大时,塔底容量可取小些,停留时间可取3~5分钟;对易结焦的物料,停留时间应短些,一般取1~1.5分钟。

此处塔底空间高度H B 取1.5m 。

进料段高度H F 取决于进料口得结构形式和物料状态,一般比H T 大,此处取0.5m 塔高:H =H D +(N-2-S) H T +SH T ,+H F +H B =1.2+(24-2-3)×0.45+4×0.5+0.5+1.5 =13.75m

第6节 塔板流体力学验算

6.1气相通过浮阀塔板的压强降

气相通过塔板的压降h f 包括:干板压降h d 、液层助力h L 以及克服液体表面张力的阻力项,最后一项一般很小,可以忽略。 所以可以根据h f =h d +h L 计算压降。 ① 干板阻力h d :

对F1重型阀,质量为34g ,阀孔直径39mm,阀片全开有,

g u h l v d ????=234.50

2ρρ

则, 精馏段:

034.081.926.79205.673.234.5234.52

02=????=????=g u h L v d ρρ m 液柱

提馏段:

034.081.9213.7958.597.234.5234.52

02=????=????=g u h L v d ρρ m 液柱

② 板上充气液层阻力h L :

对浮阀塔:h L=εo ×(h w +h ow )

本设备分离苯和乙苯的混合液,即液相为碳氢化合物,可取充气系数 εo = 0.5。 精馏段:h L=εo ×(h w +h ow )=0.5×(0.06+0.0083)=0.0342 m 液柱 提馏段;h L=εo ×(h w +h ow )=0.5×(0.06+0.0241)=0.0421 m 液柱 则单板压降 △P P = h f ×ρL ×g

精馏段:△P P = h f ×ρL ×g=0.0682×792.6×9.81=529.7Pa 提馏段:△P P = h f ×ρL ×g=0.0761×795.1×9.81=593.0Pa 6.2淹塔

为了防止淹塔现象的发生,要求控制降液管中清液层高度,H d ≤φ(H T + h W ) H d 可用下式计算,即H d = h w + h ow + h f +h of +Δ

式中:h w 为堰高,m 。h ow 为堰上液层高,m 。h f 为气相塔板压降,m 液柱。 h of 为液相在降液管内的阻力损失,m 液柱。Δ为板上液面落差,一般很小,可以忽略。

① 气相通过浮阀塔板的压强降h f : 精馏段:h f =0.0682 m 液柱 提馏段:h f =0.0761 m 液柱

② 液体通过降液管的压头损失:不设进口堰,故按式h of =0.153×2

0???

??

??h Lw Ls 计

算 精馏段

h of = 0.153×2

0???????h Lw Ls = 0.153×2

0174.072.0001.0??

?

????= 0.0010 m 液柱 提馏段

h of = 0.153×2

0???????h Lw Ls = 0.153×2

0833.072.00048.0??

?

????= 0.0010 m 液柱 ③堰上液层高h ow :

相关主题
相关文档
最新文档