光电测量系统设计

光电测量系统设计
光电测量系统设计

光电测量系统设计

----基于干涉方法测量压电陶瓷微小伸长量

指导老师:朱海东樊敏

姓名:陈权

学号:2013031053

班级:电科132班

时间:2016年11月7 日

摘要

本次实验为光电测量系统设计,从而测量压电陶瓷由于加热而产生的微小形变量,故需要掌握干涉和衍射的基本原理和产生条件,结合相关仪器软件完成对光电探测器的设计。首先是对通过杨氏双缝干涉,夫琅禾费衍射,PSD微小位移测量实验对理论知识的补充和了解,并对测量系统的搭建有一个大概的构思。然后在机房通过仿真软件ZMAX完成扩束准直系统的设计,ZW CAD绘制出探测器的光学结构(探头主体、底座、支杆等);最后,进行了光纤端面处理和光纤传感综合实验。

关键词:光电测量系统;干涉;衍射;探测器;光纤实验

目录

论文总页数:11页1. 简介 (1)

1.1.实验目的及内容 (1)

2. 干涉及衍射原理 (1)

2.1.干涉 (1)

2.1.1. 干涉原理 (1)

2.1.2. 干涉条件 (2)

2.1.3. 实现光束干涉的基本方法 (2)

2.2.衍射 (2)

2.2.1. 衍射原理 (2)

2.2.2. 衍射分类 (2)

3. 干涉仪 (3)

4. 整体结构 (4)

5. 上机 (5)

5.1.ZMAX仿真设计 (5)

5.1.1. 单透镜 (5)

5.1.2. 双透镜 (5)

5.1.3. 扩束准直系统 (6)

5.2.探测器设计 (7)

6. 总结 (10)

6.1.实验结果及分析 (10)

6.2.问题分析 (11)

6.3.实验改进 (11)

结语 (11)

参考文献 (11)

1. 简介

1.1. 实验目的及内容

1、基于光的干涉、衍射原理,理解干涉、衍射测量法的原理及方法,了解各部分的作用并能综合运用;

2、了解探测器的设计原理及探测器的分类,综合应用所学的光学知识,利用干涉测量法测量压电陶瓷的微小伸长量;

3、通过相关实验仪器和软件的操作完成对光电探头的设计;

2. 干涉及衍射原理

2.1. 干涉

2.1.1. 干涉原理

只有两列光波的频率相同,相位差恒定,振动方向一致的相干光源,才能产生光的干涉。由两个普通独立光源发出的光,不可能具有相同的频率,更不可能存在固定的相差,因此,不能产生干涉现象。

光的干涉是指两束或多束光在空间相遇时,在重叠区内形成稳定的强弱强度分布的现象。

例如,两列单色线偏振光

)cos(0111011?ω+?-=r k t E E )(cos 0222022?ω+?-=r k t E E

在空间p 点相遇,它们的振动方向间夹角为θ,则在p 点处得总光强为

?θcos cos 22121I I I I I ++=

12212I I I ++=

式中,1I ,2I 是二光束的光强,?是两光束的相位差,且有

t r k r k ω????+-+?-?=020122

21ωωω-=?

?θcos cos 2112I I I =

由此可见,两光束叠加后的总强度并不等于这两列波的强度和,而是多了一项交叉项12I ,它反映了这两束光的干涉效应,通常称为干涉项。干涉现象就是指这两束光在重叠区内形成的稳定的光强分布。所谓稳定,就是用肉眼或记录仪器能观察到或者记录到条纹分布,即在一定时间内存在着相对稳定的条纹

分布。显然,如果干涉项

I远小于两光束中较小一个,就不容易观察到干涉现

12

象,如果两光束的相位差随时间变化,是光强度条纹图样产生移动,且当条纹移动的速度快到肉眼或记录仪器不能分辨出条纹图样时,就观察不到干涉现象了。

2.1.2.干涉条件

(1)两束光的频率应当相同

(2)两束光在相遇处的振动方向应当相同

(3)两束光在相遇处应有固定不变的相位差

2.1.

3.实现光束干涉的基本方法

(1)分波面法:将一个波列的波面分成两部分或几部分,由这一部分发出的波再相遇时,必然会产生干涉现象。杨氏双缝干涉实验就是应用的这种原理。

(2)分振幅法:利用透明薄板的第一、二表面对入射光的依次反射,将入射光的振幅分解成若干部分,当这些部分的光波相遇时就产生干涉。这是一种很常见的获得相干光、产生干涉的方法。

2.2. 衍射

2.2.1.衍射原理

光波遇到障碍物以后或多或少的偏离几何光学传播定律的现象。光在传播路径中,遇到不透明或透明的障碍物或者小孔(窄缝),绕过障碍物,产生偏离直线传播的现象称为光的衍射。衍射时产生的明暗条纹或光环。

2.2.2.衍射分类

衍射现象一般分两类:菲涅尔衍射和夫琅和费衍射。其中夫琅和费衍射是指光源和观察者屏离开衍射物体都为无穷远时的衍射。但因为实际做不到无穷远,所以一般要求满足光源和观察屏离开衍射物体之间的距离S都远大于λ

/

2a就能观察到夫琅和费衍射现象。其中a为衍射物体的孔径,λ为光源的波长。

3.干涉仪

图 1

上图是迈克尔逊干涉仪的光路示意图。

图中M1和M2是在相互垂直的两臂上放置的两个平面反射镜,其中M2是固定的;

M1由精密丝杆控制,可沿臂轴前、后移动,移动的距离由刻度转盘(由粗读和细读2组刻度盘组合而成)读出。在两臂轴线相交处,有一与两轴成45°角的平行平面玻璃板G1,它的第二个平面上镀有半透(半反射)的银膜,以便将入G2也是平行平面玻璃板,与G1平行放置,厚度和折射率均与G1相同。由于它补偿了光线⑴和⑵因穿越G1次数不同而产生的光程差,故称为补偿板。从扩展光源S射来的光在G1处分成两部分,反射光⑴经G1反射后向着M1前进,透射光⑵透过G1向着M2前进,这两束光分别在M1、M2上反射后逆着各自的入射方向返回,最后都达到E处。因为这两束光是相干光,因而在E处的观察者就能够看到干涉条纹。

由M1反射回来的光波在分光板G1的第二面上反射时,如同平面镜反射一样,使M1在M2附近形成M1的虚像M2′,因而光在迈克尔逊干涉仪中自M1和M2的反射相当于自M1和M2′的反射。由此可见,在迈克尔逊干涉仪中所产生的干涉与空气薄膜所产生的干涉是等效的。当M1和M2′平行时(此时M1和M2严格互相垂直),将观察到环形的等倾干涉条纹。一般情况下,M1和M2形成一空气劈尖,因此将观察到近似平行的等厚干涉条纹。

4. 整体结构

图 2

如原理图所示,He-Ne 激光器发出的激光经过聚焦、扩束、准直后得到一束平行光,平行光入射到半反镜上分成两束光,一束为参考光束,一束为测量光。两束光分别经过1M 与2M 回到G ,并在G 处发生干涉。其干涉条纹被聚光后被光电器件接收,形成脉冲信号。反射镜2M 的位置移动量的模拟信息载于脉冲信号中。全反射1M 固定,而全反射镜2M 与钢丝紧密接触,这样就可以根据2M 的移动量与被测钢丝长度增长量的线性关系可以测量钢丝的微小增长量。参考光束和和测量光束的光程不相等。当光程差?是波长λ的整数倍,即...)3,2,1,0(=±=?k k λ时,两束光波的相位相同,光强度最大,在3M 上出现亮条纹,光电接收器得到经聚光后的亮度信号;当光程差λ)(2/1+±=?k 时,两束光波的相位差为π,光强度为零,在3M 上出现暗条纹,光电接收器上无光信号入射,输出信号为零。这样,当可动反射镜2M 因为钢丝受热增长而移动时,在3M 上将出现亮暗交替的干涉条纹。其光强度的变化规律为)/2cos(λπ?+=I OV OV V K I I I ,式中,OV I 为平均光强度,I K 为干涉条纹的对比度。从上式可知,光程差每变化波长λ时,干涉条纹暗亮变化一次;干涉条纹变化n 次,则光程差λn =?。对于图1所示结构,光程差?是动镜2M 位移量L 的2倍。因此,被测位移量2/λn L =。

5.上机

5.1. ZMAX仿真设计

通过对单透镜,双透镜的光路仿真设计,学会对扩束准直系统的仿真设计。

5.1.1.单透镜

图3

图 4

5.1.2.双透镜

图5

图 6 5.1.3.扩束准直系统

图7

5.2. 探测器设计

图8 探头主体

图9 探头后盖

图10 玻璃窗口压片

图11 硅光压圈帽

图12 底座

图13 硅光螺旋柱

图14 锁紧螺纹

图15 外支柱

图16 小支杆

6.总结

6.1. 实验结果及分析

1.干涉/衍射实验

利用双缝干涉,单缝衍射验证了条纹间距公式的正确性,并了解干涉仪的工作原理及使用方法。

误差分析:测量工具(直尺)精度不够,读数有误;明暗条纹不够明显等。

3.PSD位移传感实验

验证了位移与电压的关系。

4.光纤端面处理

掌握了对光纤端口的处理方法:使用米勒钳、或者燃烧,氢氟酸溶液腐蚀等方式,剥离保护层,再将光纤表面处理平整;了解了判断其好坏的标准:利用显微镜观察光纤表面是否平整,端口(旋转一周)是否整齐。

6.2. 问题分析

1.干涉条纹间隔对测量的影响

由于条纹之间的偏差所表示的波面偏差为:△W=(h/H)(λ/n)式中,H是最适合条纹间隔,n是干涉仪的通道数。条纹之间的间隔变化H,会影响波面偏差。

2.激光干涉测量误差

1)系统误差:主要指受到激光干涉测量方法及测量系统元部件制造精度的限制。

2)环境误差:干涉仪工作过程中,环境的波动(空气温度、压力及相对湿度的变化)引起空气折射率的变化,由此导致的误差。

3)人为误差:人眼读数,记录数据错误,测量方法的错误等所造成的误差。

6.3. 实验改进

1.添加防震系统

若实验台有振动,则它将影响干涉图案,实验设计应设计防震系统。

2.减弱对流

空气的流动,细小的微风也会对条纹产生影响,使干涉图案出现飘移或颤动。

3.抑制反射镜的移动

绝大部分发生在反射镜可移动范围的两端。

结语

通过次光电测量系统设计,对干涉及衍射的原理和产生条件有了更深刻的了解,对整个测量系统的搭建,还有途中遇到的问题都有大概的解决方案。在机房对仿真软件ZMAX和ZW CAD制图软件都有一定的学习和运用。最后在实践操作中学习了对光纤的处理,丰富了自己的知识面。在这几周的设计中,虽然遇到一些困难,团队的,个人的,都想办法去解决,而不是束手待毙,这是一次很好的收获。

参考文献

[1] 羡一民,双频激光干涉仪的原理与应用[J],《工具技术》,1996年04期

[2]周炳琨高以智编著《激光原理》.国防工业出版社.2004

[3]李林编著《应用光学》.北京理工大学出版社.2010

[4]郭培源付扬编著《光电检测技术与应用》北京航空航天大学出版社.2006

[5] 百度文库

用zemax设计光学显微镜光学系统设计实验报告

课 程 设 计 光学显微镜设计 设计题目 学 号 专业班级 指导教师 学生姓名 测量显微镜

根据学号得到自己设计内容的数据要求: 1.目镜放大率10(即焦距25) 2.目镜最后一面到物面距离110 3.对准精度1.2微米 按照实验步骤,先计算好外形尺寸。然后根据数据要求选取目镜与物镜。 我先做物镜。因为这个镜片比较少。按物镜放大率选好物镜后,将参数输入。简单优化,得到比较接近自己要求的物镜。 然后做目镜,同样的做法,这个按照焦距选目镜,将参数输入。将曲率半径设为可变量,调入默认的优化函数进行优化。发现“优化不了”,所有参数均没有变化。而且发现把光源放在“焦点”位置,目镜出射的不是平行光。我百思不得其解。开始认为镜头库的参数可能有问题。最后我问老师,老师解释,那个所谓的“焦点”其实不是焦点,我错误的把“焦点”到目镜第一个面的距离当成了焦距。这个目镜是有一定厚度的,不能简单等效成薄透镜。焦点到节点的距离才是焦距。经过老师指点后,我尝试调节光源到目镜第一面的距离,想得到出射平行光,从而找到焦点。但这个寻找是很费力气的,事倍功半。老师建议我把目镜的参数倒着顺序输入参数。然后用平行光入射,然后可以轻松找到焦点。 但是,按照这个方法,倒着输入参数,把光源放在无限

远的地方(平行光入射),发现光线是发散的。不解。还是按照原来的方法。把光源放在目镜焦点上,尽量使之出射平行光。然后把它与优化好的物镜拼接起来。后来,加入理想透镜(会聚平行光线),加以优化。 还有一个问题,就是选物镜的时候,发现放大倍率符合了自己的需求,但工作距离与共轭距,不符合自己的要求。这个问题在课堂上问过老师,后来经老师指点,通过总体缩放解决。 物镜参数及优化函数

光电测量系统设计报告

光电测量系统设计报告

光电测量系统设计报告

一、干涉的基本原理 干涉现象是波动独有的特征,如果光真的是一种波,就必然会观察到光的干涉现象.1801年,英国物理学家托马斯·杨(1773—1829)在实验室里成功地观察到了光的干涉.两列或几列光波在空间相遇时相互叠加,在某些区域始终加强,在另一些区域则始终削弱,形成稳定的强弱分布的现象。 由一般光源获得一组相干光波的办法是,借助于一定的光学装置(干涉装置)将一个光源发出的光波(源波)分为若干个波。由于这些波来自同一源波,所以,当源波的初位相改变时,各成员波的初位相都随之作相同的改变,从而它们之间的位相差保持不变。同时,各成员波的偏振方向亦与源波一致,因而在考察点它们的偏振方向也大体相同。一般的干涉装置又可使各成员波的振幅不太悬殊。于是,当光源发出单一频率的光时,上述四个条件皆能满足,从而出现干涉现象。当光源发出许多频率成分时,每一单频成分(对应于一定的颜色)会产生相应的一组条纹,这些条纹交叠起来就呈现彩色条纹。 1、劈尖的等厚干涉测细丝直径 见图7.2.1-2,两片叠在一起的玻璃片,在它们的一端夹一直径待测的细丝,于是两玻璃片之间形成一空气劈尖。当用单色光垂直照射时,如前所述,会产生干涉现象。因为程差相等的地方是平行于两玻璃片交线的直线,所以等厚干涉条纹是一组明暗相间、平行于交线的直线。 设入射光波为λ,则第m级暗纹处空气劈尖的厚度 由上式可知,m=0时,d=0,即在两玻璃片交线处,为零级暗条纹。如果在细丝处呈现m=N级条纹,则待测细丝直径 具体测量时,常用劈尖盒,盒内装有两片叠在一起玻璃片,在它们的一端夹一细丝,于是两玻璃片之间形成一空气劈尖,见图7.2.1-2。使用时木盒切勿倒置或将玻璃片倒出,以免细丝位置变动,给测量带来误差。

落点实时光学测量系统的设计与实现

落点实时光学测量系统的设计与实现 飞行器落点的测量是某部队一项重要的任务,落点测量是否及时准确将对飞行试验结果的判别、后续残骸的搜索等产生很大的影响。但受飞行试验落点区域条件限制和机动性要求,超声波、雷达或无线电等定位设备在本文中并不适合,简易的光学测量系统最适合本文的应用。 传统的落点光学测量主要依靠某型望远镜捕获目标,利用人工读数的方式获得角度值信息,再通过数传电台将各观测点的信息传输至计算中心,中心操作手再手工将角度信息录入计算软件,得出交会结果,最后进行结果复核计算。这种传统的方式存在时效低、人为误差大等缺点,需要构建更加自动化、精确度更高的落点实时光学测量系统。 本论文正式针对上述实际问题,将比较成熟的光电编码技术与易于操作的望远镜进行组合,增加微处理器控制电路及收发数据、交会处理的软件,使操作手确认捕获到目标后,能自动完成角度信息采集、传输、交会计算和向上级指挥所发送结果的全过程,提高了测量速度、效率和精度。本文的主要内容为:1.落点实时光学测量系统的关键技术研究。 介绍了该系统中的关键技术,两点前向交会方法、高斯投影、光电编码技术等,并通过推导计算得出一种基于最小二乘法的交会算法的优化方法。2.落点实时光学测量系统的需求分析。 基于落点测量的实际情况,对落点测量的环境、条件及主要流程进行了全面分析。对需要开发的落点实时光学测量系统的需求进行分析。 3.落点实时光学测量系统的设计。在需求分析的基础上,完成系统设计,主要包括体系架构、功能结构、网络拓扑等。

4.落点实时光学测量系统的实现。搭建系统环境,采购并接入光电编码器、数传电台等硬件,完成了数据通信、数据处理、交会计算和辅助决策等功能的实现。 在此基础上,通过模拟计算对优化算法进行了验证。5.落点实时光学测量系统的测试。 为确保系统有较高的可靠性,对系统进行相关测试,发现并解决系统中存在的问题。目前,该系统已实际应用,机动性强、受环境干扰小、性能稳定,实现了提高落点测量速度,减小人为差错的目标。

光学系统设计七个例子

光学系统设计(Zemax初学手册) 蔡长青 ISUAL 计画团队 国立成功大学物理系 (第一版,1999年7月29日) 前言 整个中华卫星二号“红色精灵”科学酬载计画,其量测仪器基本上是个光学仪器。所以光学系统的分析乃至于设计与测试是整个酬载发展重要一环。 这份初学手册提供初学者使用软体作光学系统设计练习,整个需要Zemax光学系统设计软体。它基本上是Zemax使用手册中tutorial的中文翻译,由蔡长青同学完成,并在Zemax E. E. 7.0上测试过。由于蔡长青同学不在参与“红色精灵”计画,所以改由黄晓龙同学接手进行校稿与独立检验,整个内容已在Zemax E. E. 8.0版上测试过。我们希望藉此初学手册(共有七个习作)与后续更多的习作与文件,使团队成员对光学系统设计有进一步的掌握。(陈志隆注) (回内容纲目) 习作一:单镜片(Singlet) 你将学到:启用Zemax,如何键入wavelength,lens data,产生ray fan,OPD,spot diagrams,定义thickness solve以及variables,执行简单光学设计最佳化。 设想你要设计一个F/4单镜片在光轴上使用,其focal length 为100mm,在可见光谱下,用BK7镜片来作。 首先叫出ZEMAX的lens data editor(LDE),什么是LDE呢?它是你要的工作场所,譬如你决定要用何种镜片,几个镜片,镜片的radius,thickness,大小,位置……等。 然后选取你要的光,在主选单system下,圈出wavelengths,依喜好键入你要的波长,同时可选用不同的波长等。现在在第一列键入0.486,以microns为单位,此为氢原子的F-line 光谱。在第二、三列键入0.587及0.656,然后在primary wavelength上点在0.486的位置,primary wavelength主要是用来计算光学系统在近轴光学近似(paraxial optics,即first-order optics)下的几个主要参数,如focal length,magnification,pupil sizes等。 再来我们要决定透镜的孔径有多大。既然指定要F/4的透镜,所谓的F/#是什么呢?F/#就是光由无限远入射所形成的effective focal length F跟paraxial entrance pupil的直径的比值。所以现在我们需要的aperture就是100/4=25(mm)。于是从system menu上选general data,在aper value上键入25,而aperture type被default为Entrance Pupil diameter。也就是说,entrance pupil的大小就是aperture的大小。 回到LDE,可以看到3个不同的surface,依序为OBJ,STO及IMA。OBJ就是发光物,即光源,STO即aperture stop的意思,STO不一定就是光照过来所遇到的第一个透镜,你在设计一组光学系统时,STO可选在任一透镜上,通常第一面镜就是STO,若不是如此,则可在STO这一栏上按滑鼠,可前后加入你要的镜片,于是STO就不是落在第一个透镜上了。而IMA就是imagine plane,即成像平面。回到我们的singlet,我们需要4个面 (surface),于是在STO栏上,选取insert cifter,就在STO后面再插入一个镜片,编号为2,通常OBJ 为0,STO为1,而IMA为3。 再来如何输入镜片的材质为BK7。在STO列中的glass栏上,直接打上BK7即可。又

光电系统课程设计报告

光电系统课程设计报告 设计题目:光电心率计 指导老师:吴xx 班级: 10XX 设计者: XXX 设计者学号: ************* 同组者姓名: ****************************** ****************************** ********************************* 设计者联系电话: ****************** 目录 一.摘要 (4) 二.技术指标 (4) 三.设计原理 (5) 3.1、光电探测电路 (5) 3.2、电源电路 (6) 3.3、滤波放大电路及虚拟地电路 (6) 3.4、单片机电路 (7) 3.5、显示电路 (8) 3.6、蜂鸣器电路 (9) 四.设计方案论证 (9)

4.1、心率计的软件实现方法 (9) 4.2、滤波放大电路的实现 (9) 4.3、光电探测电路的实现 (10) 4.4、心率值的显示方法 (10) 五. 硬件电路设计 (11) 5.1、电源电路设计 (11) 5.2、光电探测电路 (12) 5.3、“虚拟地”电路 (12) 5.4、滤波放大电路 (12) 5.5、单片机电路 (13) 5.6、译码显示电路 (15) 5.7、蜂鸣器电路 (16) 六.软件设计 (16) 6.1 总流程图 (17) 6.2 主函数流程图 (18) 6.3 采样比较程序 (19) 6.4 心率计算与显示警报模块 (20) 七.结论 (21) 八.课程设计的心得体会 (21) 参考文献 (22) 附录 (23) 附录一、程序代码 (23)

附录二、原理图 (28) 附录三、PCB所有层图 (29) 附录四、顶层PCB图 (30) 附录五、底层PCB图 (30) 附录六、元件清单 (31) 一.摘要 随着现代社会,人们对自己的健康越来越关心,因此对各种医疗设备的需要也越来越大。其中心率测量仪是最常见的医疗设备之一,它能应用于医疗、 健康、体育以及我们生活中的方方面面,因此一个简单便宜而又有较高精度的 心率测量仪是很有市场的。 我们无法通过直接测量来获取人的心率,但是由于人的脉搏是与心跳直接相关的。因此,我们可以通过测量脉搏来间接测量人的心率。我们小组的光电 系统课程设计制作的光电心率测量仪是用光电传感器测量经手指尖反射的信号,然后经过滤波放大后送到51单片机进行信号处理并将计算所得到的心率值通过动态扫描的方式显示出来。 关键词:51单片机;光电测量;A/D采样;动态扫描显示;响铃提醒。二.技术指标 利用光电方法测量人体心率,并通过显示器显示出来,具体要求 如下: 1、采用51 系列单片机 2、制作光电测量头 3、通过A/D 采样方式测定人体心率(不能整形成方波计数)

光学测量技术详解

光学测量技术详解(图文) 光学测量是生产制造过程中质量控制环节上重要的一步。它包括通过操作者的观察进行的快速、主观性的检测,也包括通过测量仪器进行的自动定量检测。光学测量既可以在线下进行,即将工件从生产线上取下送到检测台进行测量;还可以在线进行,即工件无须离开产线;此外,工件还可以在生产线旁接受检测,完成后可以迅速返回生产线。 人的眼睛其实就是一台光学检测仪器;它可以处理通过晶状体映射到视网膜上的图像。当物体靠近眼球时,物体的尺寸感觉上会增加,这是因为图像在视网膜上覆盖的“光感器”数量增加了。在某一个位置,图像达到最大,此时再将物体移近时,图像就会失焦而变得模糊。这个距离通常为10英寸(250毫米)。在这个位置上,图像分辨率大约为0.004英寸(100微米)。举例来说,当你看两根头发时,只有靠得很近时才能发现它们之间是有空隙的。如果想进一步分辨更加清楚的细节的话,则需要进行额外的放大处理。 本部分设定了隐藏,您已回复过了,以下是隐藏的内容 人的眼睛其实就是一台光学检测仪器;它可以处理通过晶状体映射到视网膜上的图像。本图显示了人眼成 像的原理图。 人眼之外的测量系统 光学测量是对肉眼直接观察获得的简单视觉检测的强化处理,因为通过光学透镜来改进或放大物体的图像,可以对物体的某些特征或属性做出准确的评估。大多数的光学测量都是定性的,也就是说操作者对放大的图像做出主观性的判断。光学测量也可以是定量的,这时图像通过成像仪器生成,所获取的图像数据再用于分析。在这种情况下,光学检测其实是一种测量技术,因为它提供了量化的图像测量方式。 无任何仪器辅助的肉眼测量通常称为视觉检测。当采用光学镜头或镜头系统时,视觉检测就变成了光学测量。光学测量系统和技术有许多不同的种类,但是基本原理和结构大致相同。

压力测量仪表原理及结构

压力表工作原理及结构 用来测量气体或液体压力的工业自动化仪表,又称压力表或压力计。垂直均匀地作用于单位面积上的力称为压力,又称压强。压力表可以指示、记录压力值并可附加报警或控制装臵。仪表所测压力包括绝对压力、大气压力、正压力(习惯上称表压)、负压 (习惯上称真空)和差压。 图1各种压力间的关系表示各种压力间的关系。工程技术上所测量的多为表压。压力的国际单位为帕(Pa)。压力的其他单位还有:工程大气压(kgf/cm2)、巴(bar)、毫米水柱(mmH2O)、毫米汞柱(mmHg)(即托)等。 压力是工业生产中的重要参数。如高压容器的压力超过额定值时便是不安全的,必须进行测量和控制。在某些工业生产过程中,压力还直接影响产品的质量和生产效率,如生产合成氨时,氮和氢不仅须在一定的压力下合成,而且压力的大小直接影响产量高低。此外,在一定的条件下,测量压力还可间接得出温度、流量和液位等参数。 弹性式压力测量仪表利用各种不同形状的弹性元件在压力下产生变形的原理制成的压力测量仪表。弹性式压力测量仪表按采用的弹性元件不同分为弹簧管压力表、膜片压力表、膜盒压力表和波纹管压力表等;按功能不同分为指示式压力表、电接点压力表和远传压力表等。这类仪表的特点是结构简单,结实耐用,测量范围宽(-0.1~1500兆帕),是压力测量仪表中应用最多的一种。 一、压力表 1.1、压力表的工作原理 弹簧管压力表又称为波登管压力表。压力表中的弹簧的自由端是封闭的,它通过拉杆带动扇形齿轮转动。测压时,弹簧管在被测压力作用下产生变形,因而弹簧管自由端产生位移,位移量与被测压力的大小成正比,使指针偏转,在度盘上指示出压力值。如果表壳内通有大气,压力表测出的压力为正压或负压;如果将表壳密封并抽真空,压力表测出的压力就是绝对压力。弹簧管压力表带有隔离装臵时,尚可测量温度较高或腐蚀性、粘稠状、易结晶和粉尘状介质的压力。在精确度较高(如0.25级以上)的弹性式压力测

光电课程设计报告2012

课程设计总结报告 课程名称:《光电技术》课程设计学生姓名:邓跃斌、付炜、黑阳超、林松系别:物理与电子学院 专业:电子信息科学与技术 指导教师:雷立云 2012年11月29日

目录 一、设计任务书 (3) 1、课题 (3) 2、目的 (3) 3、设计要求 (3) 二、实验仪器 (3) 三、设计框图及整体概述 (4) 四、各单元电路的设计方案及原理说明 (4) N E定时器构成多谐振荡器作调制电源 (5) 1、用555 N E电路结构 (5) (1)555 N E定时器组成的多谐振荡器 (5) (2)由555 (3)发射端电路 (6) L F放大器构成接收放大电路 (7) 2、用353 (1)光放大器 (7) (2)光比较放大器 (7) 五、调试过程及结果 (8) 1、调试的过程及体会 (8) 2、调试结果 (8) 六、设计、安装及调试中的体会 (9) 七、对本次课程设计的意见及建议 (9) 八、参考文献 (10) 九、附录 (10) 1、整体电路图 (10) 2、课程设计实物图 (10) 3、元器件清单 (11)

一、设计任务书 1、课题 光电报警系统设计与实现。 2、目的 本课程设计的基本目的在于巩固电子技术、光电技术、感测技术以及传感器原理等方面的理论知识,从系统角度出发,培养综合运用理论知识解决实际问题的能力,并养成严谨务实的工作作风。通过个人收集资料,系统设计,电路设计、安装与调试,课程设计报告撰写等环节,初步掌握光电系统设计方法和研发流程,逐步熟悉开展工程实践的程序和方法。 3、设计要求 (1)基本要求 用555 N E构成占空比为0.5多谐振荡器作发光二极管的调制电源,并对参数选择进行分析说明;选用324 L M构成比较放大器进行报警电路设计;画出所做实验的全部电路图,并注明参数;记录调试完成后示波器输出的各测量点电压波形。 (2)扩展要求(选做) 分析影响作用距离的因素,提出提高作用距离的措施;设想光电报警系统的应用场合,并根据不同应用提出相应电路的设计方案。如需要闪烁报警,电路如何设计? 二、实验仪器 多功能面包板………………………………………………………………1块T D S.60M H z.1Gs s双通道数字存储波示器………………………1台1002 YB A A直流稳压电源…………………………………………………1台17333 万用表………………………………………………………………………1台

光学投影层析三维成像测量实验系统的设计概述

光学投影层析三维成像测量实验系统的设计

摘要 光学投影式三维轮廓测量在机器/机器人视觉、CAD/CAM以及医疗诊断等领域有重要的应用,这种测量方法具有非接触性、无破坏、数据获取速度快等优点,其测量系统是宏观光学轮廓仪中最有发展前途的一种。 本课题拟采用激光光源(或普通卤素灯作为光源),应用光学系统、计算机控制,进行图像采集、图像处理,设计成像系统的断层图像重建及三维图像显示实验系统,并对其成像理论、成像质量及成像误差进行理论分析。该项目完成的光学投影层析三维成像测量实验系统适用于光学教学演示,其理论分析有利于学生积极的汲取现代光学发展的科研成果、思路和方法,从而潜移默化的培养学生的科学素养和创新能力。 关键词:光学投影层析,三维成像,CT技术

目录 1.引言 (1) 2.CT原理及重建算法 (2) 整个实验用到的理论相关联名称 2.1 CT技术原理 (3) 2.2 OPT原理简介 (4) 3.1 滤波反投影算法的快速实现 3. 光学投影层析三维成像测量实验系统 (5) 3.1实验系统的设计 (6) 3.2 光学投影层析三维成像测量实验系统 3.3 影响图像重建质量的因素分析 (7) 4. 结论 (11) 5. 参考文献 (13)

图表清单

1.引言 2002年4月英国科学家Sharpe在《Science》上首次报道了光学投影层析技术(optical projection tomography,OPT),这是一种新的三维显微成像技术,是显微技术和CT技术的结合。光学投影层析巧妙的利用了光学成像中“景深”的概念,实现了光学CT,和其它光学三维成像技术相比,结构简单、成本较低、成像速度快,在对成像分辨率要求不高的情况下,容易建立起光学投影层析三维成像测量系统。 光学三维成像代表着光学领域的前沿技术,这些技术涉及光学、计算机和图像处理等相关领域的知识,通过本项目--光学投影层析三维成像测量实验系统的设计,将是基础光学通向现代光学科技的不可多得的窗口之一,不仅显示基础知识的生命力,也反映基础知识的时代性,而且本项目实现所需成本较低、物理思想清晰,适用于物理实验教学,并适合作为大学生的综合设计性物理实验项目进行开发研究,同时对于激发大学生的学习兴趣、开阔大学生的视野和思路、培养综合科研素养均有很大的帮助。 2 CT技术原理及重建算法 2.1 CT技术原理 CT(计算机断层成像,mography ComputerTo的缩写)技术的研究自20世纪50至70年代在美国和英国发起,美国科学家A.M. Cormark和英国科学家G. N. Hounsfield在研究核物理、核医学等学科时发明的,他们因此共同获得1979年的诺贝尔医学奖。第一代供临床应用的CT设备自1971年问世以来,随着电子技术的不断发展,CT技术不断改进,诸如螺旋式CT机、电子束扫描机等新型设备逐渐被医疗机构普遍采用。除此之外,CT技术还在工业无损探测、资源勘探、生态监测等领域也得到了广泛的应用。 与传统的X射线成像不同,CT有自己独特的成像特点。下面以一个一般的图示来说明。 如图1所示,假设有一个半透明状物体,如琼脂等,在其内部嵌入5个不同透明度的球,如果按照图1中(a)所示那样单方向地观察,因为其中有2个球被前面的1个球挡住,我们会误解为只有3个球,尽管重叠球的透明度比较低,但我们仍无法确定球的数目,更不可能知道每个球的透明度。而如果按照图1(b)

光电系统设计题目及答案 (1)

一、简答题 1、根据系统工作的基本目的,通常光电系统可以分为哪两大类? 答:(1)信息光电系统。例如:光电测绘仪器仪表、光电成像系统、光电搜索与跟踪系统、光电检测系统、光通信系统等。(2)能量光电系统。例如:激光武器、激光加工设备、太阳能光伏发电、“绿色”照明系统等。 2、光电系统的研发过程需要哪些学科理论与技术的相互配合? 答:光电系统的发展需要多种学科相互配合。它是物理学、光学、光谱学、电子学、微电子学、半导体技术、自动控制、精密机械、材料学等学科的相互促进和渗透。应用各学科的最新成果,将使光电系统不断创新和发展。 3、光学系统设计基本要求包括哪些? 答:基本要求包括:性能、构型选择、和可制造性三个方面。 4、光学系统设计技术要求包括哪些? 答:基本结构参数(物距、成像形式、像距、F数或数值孔径、放大率、全视场、透过率、焦距、渐晕);成像质量要求(探测器类型、主波长、光谱范围、光谱权重、调制传递函数、RMS波前衰减、能量中心度、畸变);机械和包装要求;其它具体要求。 5、望远物镜设计中需要校正的像差主要是哪些? 答:球差、慧差和轴向色差。 6、目镜设计中需要校正的像差主要是哪些? 答:像散、垂轴色差和慧差。 7、显微物镜设计中需要校正的像差主要是哪些? 答:球差、轴向色差和正弦差,特别是减小高级像差。 8、几何像差主要有哪些? 答:几何像差主要有七种:球差、慧差、象散、场曲、畸变、轴向色差和垂轴色差。 9、用于一般辐射测量的探头有哪些? 答:光电二极管 10、可用于微弱辐射测量的探头有哪些? 答:光电倍增管 11、常用光源中哪些灯的显色性较好? 答:常用光源中,白炽灯、卤钨灯、氙灯的显色性较好。(高压汞灯、高压钠灯的显色性较差) 12、何谓太阳常数? 答:太阳常数——在地球-太阳的年平均距离,大气层外太阳对地球的的辐照度(1367±7) W2m-2

显微镜系统设计实验报告

光学系统设计实验报告 设计题目:测量显微镜光学系统 专业班级:光信息08-1班 学生姓名: 学号: 指导老师:

一实验目的 1.了解光学系统设计的基本步骤,学会基本外形尺寸的计算。 2.熟悉ZEMAX软件的操作,了解操作要领,学会应用基本的相差 评价函数并进行优化。 二、实验器材 ZEMAX软件、相关实验指导书 三、设计要求 1)设计说明书和镜头文件。镜头文件包括物镜镜头文件、目镜镜头文件和光学系统镜头文件。 2)部分技术参数选择: ①目镜放大率10 ②沿光轴,目镜最后一面到物面沿光轴的几何距离280毫米 ③对工件实边缘的对准精度为2.2微米 ④其它参数自定 3)其他要求 ①视场大小自定,尽可能大些,一般达到商用仪器的一半。 ②可以不加棱镜。如加棱镜,折转角大小自定。棱镜可以按照等效玻璃板处理。 ③可以对物镜和目镜进行整体优化或独立优化。 ④可以加上CCD。 四、具体设计 1.系统结构设计思路 1)系统结构框图

物体经物镜所成的放大的实像与分划板重合,两者一同经目镜成一放大的虚像。棱镜的型式为斯米特屋脊棱镜,它能使系统成正像,并且使光路转折45°角,以便于观察和瞄准(此处可以不加设计)。为避免景深影响瞄准精度,物镜系统采用物方远心光路,即孔径光阑位于物镜像方焦面上。 (图1 显微镜系统结构图) 2)等效光路原理图

(图2 显微镜无光轴偏转的等效光路图) 2.外形尺寸计算 1)首先绘出光学系统的等效光路原理图。如图所示,首先将棱镜作为等效空气平板处理。 2)求实际放大率。系统的有效放大率由系统的瞄准精度决定。用米字形虚线瞄准被测件轮廓,得系统有效放大率 由于工具显微镜一般要求有较大的工作距和物方线视场,又要求共轭距不能太长,因而工具显微镜的实际放大率和物镜的放大率均不宜过大。取实际放大率为 3)求数值孔径 4)求物镜和目镜的放大率 目镜的放大率 物镜的放大率 5)求目镜的焦距 ? -=Γ30102.02 .21.500055 .061.061.0 nsinU ≈??===δλk NA 3 -=ΓΓ =e β?=Γ10e mm f e e 25250 =Γ= '? ≥?=≥ Γ222 .21.55 .725.72δk

《光电仪器原理与设计》

《光电仪器原理与设计》 MEA04007 本课程是一门专业技术课,适合于近测控技术与仪器,光学工程类各专业。本课程的目的是通过光电仪器原理与设计课程的学习,培养学生光电仪器原理分析、仪器使用和仪器系统设计能力。 本课程的任务是使学生以现有光、机、电、算基础知识为起点,通过常用光电仪器工作原理及设计原则的理论和方法的学习,从普遍规律和具体经验两方面提高对于光电仪器原理和设计的认知和掌握;熟知常用光电仪器的工作原理;掌握光电仪器重要组成部件的结构、功能及参数设计方法;培养学生进行总体设计的能力;为后续课程的学习和工程设计奠定理论基础和工程实践基础。 《Optoelectronic Instrument Principle and Design》 MEA04007 The objective of this course is to familiarize students with principles and basic design methods of commonly used optoelectronic instruments. Students will be trained to master the operating procedure of the instruments, distinguish the structure and function of each component, and present preliminary results of both overall design and parameter design. This course starts from basic physical principles adopted in optoelectronic instruments, and covers accuracy analysis of measuring instrument and modern instrument design methods such as ergonomics or optimum design. The focused functional contents include light sources, optical elements, detectors and metrical standards. Micro displacement technology for precision instruments and common alignment schemes are also introduced. Examples of conventional instruments like interferometers or microscopes are proposed to train the students to solve specific practical problems.

光学实验报告 (一步彩虹全息)

光学设计性实验报告(一步彩虹全息) 姓名: 学号: 学院:物理学院

一步彩虹全息 摘要彩虹全息是用激光记录全息图, 是用白光再现单色或彩色像的一种全息技术。彩虹全息术的关键之处是在成像光路( 即记录光路) 中加入一狭缝, 这样在干板上也会留下狭缝的像。本文研究了一步彩虹全息图的记录和再现景象的基本原理、一步彩虹全息图与普通全息图的区别和联系、一步彩虹全息的实验光路图,探讨了拍摄一步彩虹全息图的技术要求和注意事项,指出了一步彩虹全息图的制作要点, 得出了影响拍摄效果的佳狭缝宽度、最佳狭缝位置及曝光时间对彩虹全息图再现像的影响。 关键词:一步彩虹全息;狭缝;再现 1 光学实验必须要严密,尽可能地减少实验所产生的误差; 2 实验仪器 防震全息台激光器分束镜成像透镜狭缝干板架光学元件架若干干板备件盒洗像设备一套线绳辅助棒扩束镜2个反射镜2个 3 实验原理 3.1 像面全息图 像面全息图的拍摄是用成像系统使物体成像在全息底板上,在引入一束与之相干的参考光束,即成像面全息图,它可用白光再现。再现象点的位置随波长而变化,其变化量取决于物体到全息平面的距离。 像面全息图的像(或物)位于全息图平面上,再现像也位于全息图上,只是看起来颜色有变化。因此在白光照射下,会因观察角度不同呈现的颜色亦不同。 3.2 彩虹全息的本质 彩虹全息的本质是要在观察者与物体的再现象之间形成一狭缝像,使观察者通过狭缝像来看物体的像,以实现白光再现单色像。若观察者的眼睛在狭缝像附近沿垂直于狭缝的方向移动,将看到颜色按波长顺序变化的再现像。若观察者的眼睛位于狭缝像后方适当位置, 由于狭缝对视场的限制, 通过某一波长所对应的狭缝只能看到再现像的某一条带, 其色彩与该波长对应, 并且狭缝像在空间是连

《光电仪器系统设计》期末复习

《光电仪器系统设计》复习 注:以下题目的答案仅供参考,部分题目的答案可能不够完整与严格。 第一章概论 一、什么是光电仪器,其基本作用有那些? 以光学原理为基础,综合采用电子、计算机、机械等其他技术的各类仪器,用于对物质实体及其属性进行观察、监测、测定、验证、传输、变换、显示、分析处理与控制。 二、光电仪器的基本构成包括哪几部分,涉及哪些内容? 光电仪器的构成——三大部分 ●机械部分:仪器的传动机构、联接机构、调整机构和壳体等 ●电子与微机控制部分:各种电子线路、照明、显示和计算机控制等 ●光学部分:由各种透镜、棱镜、平面镜、光栅和光纤等元件组合而成 三、光电仪器设计的指导思想是什么? (1) 仪器的性能指标确定要合理,综合考虑应用场合和整体性能 (2) 经济性:不盲目追求复杂、高级方案,尽可能采用最简单、最经济的设计方案满足所提出的功能要求。 (3) 可靠性:可靠性差,就没有使用价值。 (4) 环保与安全性:不污染环境,对操作人员没有伤害。 (5) 效率:尽可能提高测量速度 (6) 寿命:充分考虑器件的寿命,易耗元件的更换,维护的方便。 (7) 封装和造型:总体结构安装、部件建的造型、细部美化等都要考虑,尽量使产品。 (8) 操作方便:操作要符合人们的习惯,尽可能节省人的体力和脑力。 四、光电仪器设计的原则是什么? (1) 从原理上提高性能的原则 (2) 精度匹配原则:在分析基础上,对各部分精度分配恰当 (3) 最短传动链原则:影响精度的测量和传动链最短,零部件最少 (4) 零部件的标准化、系列化和通用化原则

(5) 便于加工和生产的原则 (6) 最佳性价比的原则 五、光学仪器如何进行分类? ①按光学工作原理: ●反射原理:采用各种反射镜及其组合:潜艇观察镜、反光镜等 ●成像原理:显微、望远、投影、照相、OCT等 ●物理光学:干涉、衍射、偏振等 ●导波光学:纤维光学和波导光电仪器等 ②按经典光学应用分类: ●观察仪器:望远镜、显微镜等 ●测量仪器:测距仪、干涉仪、OCT等 ●瞄准: ●摄像:照相机 ③按光谱波段分类: ●可见光仪器:目视光学仪器、可见光成像仪器 ●红外光学仪器:红外夜视仪器、空间红外探测仪器 ●紫外光学仪器:紫外成像仪器、光刻机器 ④按现代光学用途分类: ●民用光电仪器:普通目视光学仪器、可见光成像仪器、CCD观察及成像仪器等 ●军用光电仪器:观测仪器、头盔夜视仪、空间红外探测仪器、各种军用装备等 ●空间光电仪器:飞机机载光电仪器、卫星光电仪器 六、光学仪器设计包括哪些程序? (1) 确定设计任务:根据用户需求、发展要求来确定 (2) 调研:了解国内外同类产品、性能和特点 (3) 分析设计任务,制定设计任务书 (4) 方案设计: ①实现功能分析;

光电测量系统设计报告

光电测量系统设计报告 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

光电测量系统设计报告 一、干涉的基本原理 干涉现象是波动独有的特征,如果光真的是一种波,就必然会观察到光的干涉现象.1801年,英国物理学家托马斯·杨(1773—1829)在实验室里成功地观察到了光的干涉.两列或几列光波在空间相遇时相互叠加,在某些区域始终加强,在另一些区域则始终削弱,形成稳定的强弱分布的现象。 由一般光源获得一组相干光波的办法是,借助于一定的光学装置(干涉装置)将一个光源发出的光波(源波)分为若干个波。由于这些波来自同一源波,所以,当源波的初位相改变时,各成员波的初位相都随之作相同的改变,从而它们之间的位相差保持不变。同时,各成员波的偏振方向亦与源波一致,因而在考察点它们的偏振方向也大体相同。一般的干涉装置又可使各成员波的振幅不太悬殊。于是,当光源发出单一频率的光时,上述四个条件皆能满足,从而出现干涉现象。当光源发出许多频率成分时,每一单频成分(对应于一定的颜色)会产生相应的一组条纹,这些条纹交叠起来就呈现彩色条纹。 1、劈尖的等厚干涉测细丝直径 设入射光波为λ,则第m级暗纹处空气劈尖的厚度 由上式可知,m=0时,d=0,即在两玻璃片交线处,为零级暗条纹。如果在细丝处呈现m=N级条纹,则待测细丝直径 2、利用干涉条纹检验光学表面面形 检查光学平面的方法通常是将光学样板(平面平晶)放在被测平面之上,在样板的标准平面与待测平面之间形成一个空气薄膜。当单色光垂直照射时,通过观测空气膜上的等厚干涉条纹即可判断被测光学表面的面形。 (1)待测表面是平面 (2)待测表面呈微凸球面或微凹球面 当手指向下按时,空气膜变薄,各级干涉条纹要发生移动,以满足式(2), 3 式中λ为入射光的波长,δ是空气层厚度,空气折射率n ≈ 1。 当程差Δ为半波长的奇数倍时为暗环,若第m个暗环处的空气层厚度为m,则有:R,即,可得: 式中是第m个暗环的半径。由式(2)和式(3)可得: 可见,我们若测得第m个暗环的半径便可由已知λ求R,或者由已知R求λ了。但是,由于玻璃接触处受压,引起局部的弹性形变,使透镜凸面与平面玻璃不可能很理想的只以一个点相接触,所以圆心位置很难确定,环的半径也就不易测准。同时因玻璃表面的不洁净所引入的附加程差,使实验中看到的干涉级数并不代表真正的干涉级数m。为此,我们将式(4)作一变换,将式中半径换成直径,则有: 对第m+n个暗环有 将(5)和(6)两式相减,再展开整理后有 可见,如果我们测得第m个暗环及第(m+n)个暗环的直径、,就可由式(7)计算透镜的曲率半径R。 经过上述的公式变换,避开了难测的量和m,从而提高了测量的精度,这是物理实验中常采用的方法。

测量仪表及自动化

《测量仪表及自动化》综合复习资料 绪论、第一章概述 1.如何评价测量仪表性能,常用哪些指标来评价仪表性能? 2.名词解释:相对误差、精度、变差、灵敏度、量程、反应时间 3.仪表的变差不能超出仪表的()a、相对误差b、引用误差c、允许误差 4.测量某设备的温度, 温度为400℃, 要求误差不大于4℃,下列哪支温度计最合适?()A 0~ 600℃ 1.5级 B. 0~1500℃0.5级 C. 0~800℃0.5级 D. 0~400℃0.2级 5.仪表的精度级别指的是仪表的( )A 引用误差 B. 最大误差 C.允许误差 D. 引用误差 的最大允许值 6.下列说法正确的是()A 回差在数值上等于不灵敏区B 灵敏度数值越大则仪表越灵敏C 灵敏限数值越大则仪表越灵敏 7.有一个变化范围为320——360kPa的压力,如果用A、B两台压力变送器进行测量,那么在正 常情况下哪一台的测量准确度高些?压力变送器A:1级,0——600kPa。压力变送器B:1级,250——500kPa。 8.一台精度等级为0.5级的测量仪表,量程为0~1000℃。在正常情况下进行校验,其最大绝对误 差为6℃,求该仪表的最大引用误差、允许误差、仪表的精度是否合格。 9.某台差压计的最大差压为1600mmH2O,精度等级为1级,试问该表最大允许的误差是多少? 若校验点为800mmH2O,那么该点差压允许变化的范围是多少? 10.测量范围0~450℃的温度计,校验时某点上的绝对误差为3.5℃,变(回)差为5℃, 其它各点均小 于此值,问此表的实际精度应是多少?若原精度为1.0级,现在该仪表是否合格? 11.自动化仪表按能源分类及其信号形式。 12.单元组合式仪表是什么? 第二章压力测量及变送 13.简述弹簧管压力表原理和游丝的作用。 14.简述电容式差压变送器工作原理,说明变送器的两线制工作机理。 15.简述压力仪表选型原则。

光学全息照相实验报告

光学全息照相实验报告

实验II 光学全息照相 光学全息照相是利用光波的干涉现象,以干涉条纹的形式,把被摄物表面光波的振幅和位相信息记录下来,它是记录光波全部信息的一种有效手段。这种物理思想早在1948年伽柏(D.Gabor)即就已提出来了,但直到1960年,随着激光器的出现,获得了单色性和相干性极好的光源时,才使光学全息照相技术的研究和应用得到迅速地发展。光学全息照相在精密计量、无损检测、遥感测控、信息存储和处理、生物医学等方面的应用日益广泛,另外还相应出现了微波全息,X光全息和超声全息等新技术,全息技术已发展成为科学技术上的一个新领域。 本实验通过对三维物体进行全息照相并再现其立体图像,了解全息照相的基本原理及特点,学习拍摄方法和操作技术,为进一步学习和开拓应用这一技术奠定基础。 实验目的

了解光学全息照相的基本原理和主要特点; 学习静态光学全息照相的实验技术; 观察和分析全息全图的成像特性。 仪器用具 全息台、He —Ne 激光器及电源、分束镜、全反射镜、扩束透镜、曝光定时器、全息感光底版等。 基本原理 全息照片的拍摄 全息照相是利用光的干涉原理将光波的振幅和相位信息同时记录在感光板上的过程.相干光波可以是平面波也可以是球面波,现以平面波为例说明全息照片拍摄的原理。如图1所示,一列波函数为t i ae y πυ21=、振幅为a 、频率为υ、波长为λ 的平面单色光波作为参考光垂直入射到感光板上。另一列同频率、波函数为t i r T t i Be be y πυλπ222==??? ??-的相 干平面单色光波从物体出发,称为物光,以入射角θ同时入射到感光板上,物光与参考光产生干涉,在感光板上形成的光强分布为 ax ab b a I cos 222++= (1)

光电仪器课程设计

西安工业大学 课程设计论文 课题名称:__光电仪器课程设计____ 姓名: 学号: 专业: 学院: 指导老师: 时间:

目录 第一章引言------------------------------------------------------------------------------------------(1)1.1 国内外测径的主要方法-------------------------------------------------------------(1) 1.1.1 扫描阴影法--------------------------------------------------------------------------(1) 1.1.2 投影放大法--------------------------------------------------------------------------(2) 1.1.3 衍射法---------------------------------------------------------------------------------(3) 1.1.4 双光路成像法------------------------------------------------------------------------(4) 1.2 国内外光电测径系统的发展现状-------------------------------------------------(4)第二章细丝直径测量仪方案设计与系统分析--------------------------------------------(5)2.1 课题的方案设计-----------------------------------------------------------------------(5)2.2 细丝直径测量仪的工作原理--------------------------------------------------------(6)第三章光学系统系统设计------------------------------------------------------------------------(7)3.1照度匹配-----------------------------------------------------------------------------------(7)3.2照明方法-----------------------------------------------------------------------------------(8)3.3.照明系统的设计原则----------------------------------------------------------------(9)3.4 光源的选择及分析-------------------------------------------------------------------(11)3.5像系统分析-----------------------------------------------------------------------------(13)3.5.1成像物镜的设计--------------------------------------------------------------(13) 3.5.2 CCD镜头的选择-------------------------------------------------------------(14)第四章精度分析-----------------------------------------------------------------------------------(14)4.1系统误差分析----------------------------------------------------------------------------(14)4.1.1本系统中包含的误差-------------------------------------------------------(14) 4.1.2减小误差的措施--------------------------------------------------------------(16)第五章总结-------------------------------------------------------------------------------------------(17)5.1投影法测量系统的特点--------------------------------------------------------------(17)5.2结束语--------------------------------------------------------------------------------------(17)第六章致谢和参考文献------------------------------------------------------------------------(19)

相关文档
最新文档