大数据量,海量数据 处理方法总结

大数据量,海量数据 处理方法总结
大数据量,海量数据 处理方法总结

大数据量,海量数据处理方法总结

从目前大公司用的比较多的数据处理系统角度,你可以去看看关于Hadoop,Hbase,Hive的书,纯粹讲海量数据处理的没见过,

https://www.360docs.net/doc/447978512.html,/~ullman/mmds.html,这个是关于海量数据挖掘的

大数据量的问题是很多面试笔试中经常出现的问题,比如baidu google 腾讯这样的一些涉及到海量数据的公司经常会问到。

下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。

1.Bloom filter

适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集

基本原理及要点:

对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是counting Bloom filter,用一个counter 数组代替位数组,就可以支持删除了。

还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况下,m 至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为0,则m应该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。

举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。

注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。

扩展:

Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集

合元素的出现次数关联。SBF采用counter中的最小值来近似表示元素的出现频率。

问题实例:给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢?

根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个bit。现在可用的是340亿,相差并不多,这样可能会使出错率上升些。另外如果这些urlip是一一对应的,就可以转换成ip,则大大简单了。

2.Hashing

适用范围:快速查找,删除的基本数据结构,通常需要总数据量可以放入内存

基本原理及要点:

hash函数选择,针对字符串,整数,排列,具体相应的hash方法。

碰撞处理,一种是open hashing,也称为拉链法;另一种就是closed hashing,也称开地址法,opened addressing。

扩展:

d-left hashing中的d是多个的意思,我们先简化这个问题,看一看2-left hashing。2-left hashing指的是将一个哈希表分成长度相等的两半,分别叫做T1和T2,给T1和T2分别配备一个哈希函数,h1和h2。在存储一个新的key时,同时用两个哈希函数进行计算,得出两个地址h1[key]和h2[key]。这时需要检查T1中的h1[key]位置和T2中的h2[key]位置,哪一个位置已经存储的(有碰撞的)key比较多,然后将新key存储在负载少的位置。如果两边一样多,比如两个位置都为空或者都存储了一个key,就把新key 存储在左边的T1子表中,2-left也由此而来。在查找一个key时,必须进行两次hash,同时查找两个位置。

问题实例:

1).海量日志数据,提取出某日访问百度次数最多的那个IP。

IP的数目还是有限的,最多2^32个,所以可以考虑使用hash将ip直接存入内存,然后进行统计。

3.bit-map

适用范围:可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下

基本原理及要点:使用bit数组来表示某些元素是否存在,比如8位电话号码

扩展:bloom filter可以看做是对bit-map的扩展

问题实例:

1)已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。

8位最多99 999 999,大概需要99m个bit,大概10几m字节的内存即可。

2)2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。

将bit-map扩展一下,用2bit表示一个数即可,0表示未出现,1表示出现一次,2表示出现2次及以上。或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map。

4.堆

适用范围:海量数据前n大,并且n比较小,堆可以放入内存

基本原理及要点:最大堆求前n小,最小堆求前n大。方法,比如求前n小,我们比较当前元素与最大堆里的最大元素,如果它小于最大元素,则应该替换那个最大元素。这样最后得到的n个元素就是最小的n个。适合大数据量,求前n小,n的大小比较小的情况,这样可以扫描一遍即可得到所有的前n元素,效率很高。

扩展:双堆,一个最大堆与一个最小堆结合,可以用来维护中位数。

问题实例:

1)100w个数中找最大的前100个数。

用一个100个元素大小的最小堆即可。

5.双层桶划分

适用范围:第k大,中位数,不重复或重复的数字

基本原理及要点:因为元素范围很大,不能利用直接寻址表,所以通过多次划分,逐步确定范围,然后最后在一个可以接受的范围内进行。可以通过多次缩小,双层只是一个例子。

扩展:

问题实例:

1).2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。

有点像鸽巢原理,整数个数为2^32,也就是,我们可以将这2^32个数,划分为2^8个区域(比如用单个文件代表一个区域),然后将数据分离到不同的区域,然后不同的区域在利用bitmap就可以直接解决了。也就是说只要有足够的磁盘空间,就可以很方便的解决。

2).5亿个int找它们的中位数。

这个例子比上面那个更明显。首先我们将int划分为2^16个区域,然后读取数据统计落到各个区域里的数的个数,之后我们根据统计结果就可以判断中位数落到那个区域,同时知道这个区域中的第几大数刚好是中位数。然后第二次扫描我们只统计落在这个区域中的那些数就可以了。

实际上,如果不是int是int64,我们可以经过3次这样的划分即可降低到可以接受的程度。即可以先将int64分成2^24个区域,然后确定区域的第几大数,在将该区域分成2^20个子区域,然后确定是子区域的第几大数,然后子区域里的数的个数只有2^20,就可以直接利用direct addr table进行统计了。

6.数据库索引

适用范围:大数据量的增删改查

基本原理及要点:利用数据的设计实现方法,对海量数据的增删改查进行处理。

扩展:

问题实例:

7.倒排索引(Inverted index)

适用范围:搜索引擎,关键字查询

基本原理及要点:为何叫倒排索引?一种索引方法,被用来存储在全文搜索下某个单词在一个文档或者一组文档中的存储位置的映射。

以英文为例,下面是要被索引的文本:

T0 = "it is what it is"

T1 = "what is it"

T2 = "it is a banana"

我们就能得到下面的反向文件索引:

"a": {2}

"banana": {2}

"is": {0, 1, 2}

"it": {0, 1, 2}

"what": {0, 1}

检索的条件"what", "is" 和"it" 将对应集合的交集。

正向索引开发出来用来存储每个文档的单词的列表。正向索引的查询往往满足每个文档有序频繁的全文查询和每个单词在校验文档中的验证这样的查询。在正向索引中,文档占据了中心的位置,每个文档指向了一个它所包含的索引项的序列。也就是说文档指向了它包含的那些单词,而反向索引则是单词指向了包含它的文档,很容易看到这个反向的关系。

扩展:

问题实例:文档检索系统,查询那些文件包含了某单词,比如常见的学术论文的关键字搜索。

8.外排序

适用范围:大数据的排序,去重

基本原理及要点:外排序的归并方法,置换选择败者树原理,最优归并树

扩展:

问题实例:

1).有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16个字节,内存限制大小是1M。返回频数最高的100个词。

这个数据具有很明显的特点,词的大小为16个字节,但是内存只有1m做hash有些不够,所以可以用来排序。内存可以当输入缓冲区使用。

9.trie树

适用范围:数据量大,重复多,但是数据种类小可以放入内存

基本原理及要点:实现方式,节点孩子的表示方式

扩展:压缩实现。

问题实例:

1).有10个文件,每个文件1G,每个文件的每一行都存放的是用户的query,每个文件的query都可能重复。要你按照query的频度排序。

2).1000万字符串,其中有些是相同的(重复),需要把重复的全部去掉,保留没有重复的字符串。请问怎么设计和实现?

3).寻找热门查询:查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个,每个不超过255字节。

10.分布式处理mapreduce

适用范围:数据量大,但是数据种类小可以放入内存

基本原理及要点:将数据交给不同的机器去处理,数据划分,结果归约。

扩展:

问题实例:

1).The canonical example application of MapReduce is a process to count the appearances of

each different word in a set of documents:

void map(String name, String document):

// name: document name

// document: document contents

for each word w in document:

EmitIntermediate(w, 1);

void reduce(String word, Iterator partialCounts):

// key: a word

// values: a list of aggregated partial counts

int result = 0;

for each v in partialCounts:

result += ParseInt(v);

Emit(result);

Here, each document is split in words, and each word is counted initially with a "1" value by

the Map function, using the word as the result key. The framework puts together all the pairs

with the same key and feeds them to the same call to Reduce, thus this function just needs to

sum all of its input values to find the total appearances of that word.

2).海量数据分布在100台电脑中,想个办法高效统计出这批数据的TOP10。

3).一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。如何找到N^2个数的中数(median)?

经典问题分析

上千万or亿数据(有重复),统计其中出现次数最多的前N个数据,分两种情况:可一次读入内存,不可一次读入。

可用思路:trie树+堆,数据库索引,划分子集分别统计,hash,分布式计算,近似统计,外排序

所谓的是否能一次读入内存,实际上应该指去除重复后的数据量。如果去重后数据可以放入内存,我们可以为数据建立字典,比如通过map,hashmap,trie,然后直接进行统计即可。当然在更新每条数据的出现次数的时候,我们可以利用一个堆来维护出现次数最多的前N个数据,当然这样导致维护次数增加,不如完全统计后在求前N大效率高。

如果数据无法放入内存。一方面我们可以考虑上面的字典方法能否被改进以适应这种情形,可以做的改变就是将字典存放到硬盘上,而不是内存,这可以参考数据库的存储方法。

当然还有更好的方法,就是可以采用分布式计算,基本上就是map-reduce过程,首先可以根据数据值或者把数据hash(md5)后的值,将数据按照范围划分到不同的机子,最好可以让数据划分后可以一次读入内存,这样不同的机子负责处理各种的数值范围,实际上就是map。得到结果后,各个机子只需拿出各自的出现次数最多的前N个数据,然后汇总,选出所有的数据中出现次数最多的前N个数据,这实际上就是reduce过程。

实际上可能想直接将数据均分到不同的机子上进行处理,这样是无法得到正确的解的。因为一个数据可能被均分到不同的机子上,而另一个则可能完全聚集到一个机子上,同时还可能存在具有相同数目的数据。比如我们要找出现次数最多的前100个,我们将1000万的数据分布到10台机器上,找到每台出现次数最多的前100个,归并之后这样不能保证找到真正的第100个,因为比如出现次数最多的第100个可能有1万个,但是它被分到了10台机子,这样在每台上只有1千个,假设这些机子排名在1000个之前的那些都是单独分布在一台机子上的,比如有1001个,这样本来具有1万个的这个就会被淘汰,即使我们让每台机子选出出现次数最多的1000个再归并,仍然会出错,因为可能存在大量个数为1001个的发生聚集。因此不能将数据随便均分到不同机子上,而是要根据hash 后的值将它们映射到不同的机子上处理,让不同的机器处理一个数值范围。

而外排序的方法会消耗大量的IO,效率不会很高。而上面的分布式方法,也可以用于单机版本,也就是将总的数据根据值的范围,划分成多个不同的子文件,然后逐个处理。处理完毕之后再对这些单词的及其出现频率进行一个归并。实际上就可以利用一个外排序的归并过程。

另外还可以考虑近似计算,也就是我们可以通过结合自然语言属性,只将那些真正实际中出现最多的那些词作为一个字典,使得这个规模可以放入内存。

看来今天看书的效率蛮高的,竟然看了两本,虽然都不是很厚,200页左右。这本也是国外写的,跟ms出的那本<<编程之美>>很类似,不过这个题目更简短些,覆盖了面试的方方面面,很多题目都基本上见过所以看的比较快。总体来说,写的还算不错,例子也比较合适

下面说几个常见的,几个的思路基本上还是自己搞的

1.按照树的结构,打印一棵树:

中序遍历得到距离左边的位置,bfs打印

2.带有head,tail链表的插入,删除

注意head,tail的边界下的赋值及变化

3.lCA(最深公共祖先):

特殊的对于bst,可以看到其最深祖先是出于二者之间的那个,而其他祖先则均比他们大

一般的来说,可以通过遍历祖先存在数组,比较相同的那个

另外一种思路是将节点指向根,使其形成环-〉链表环的检测,这个方法对于具有parent指针的树比较有效

其他的可以参考tarjin离线算法

对于链表来说,设两个指针是个很灵巧的思路可以解决->求链表中点,求距最后节点距离m的节点,以及检测环里的追步法

4.海量整型数求第k大:

整形数可以先分段统计,然后再在相应段内计数排序

同时该思路对于2亿元素,寻找缺失整数元素也可以

5.n个有序列求第k大

减治法:比较每个序列的第k/n大元素,舍弃最小的那个序列之前的元素,同时变成求第(n-1)/nk大元素

6.颠倒单词出现顺序

不断重复reverse操作,这也是一个通用思路,比如可以求一个串的循环移位的结果。

7.第一个无重复字符

字符hash

8.删除指定字符

字符hash+空间重用

9.判断矩形是否相交

考虑不相交的条件

10.生产者消费者模型

11.统计1的个数

x=x&(x-1)

12.递归到非递归

利用栈

另,直接考虑迭代:

树的中序,可以借鉴bst的后继者实现,迭代求后继者

13.智力:

天平承重,过桥问题,猎狗追兔子,躲车问题,开关(完全平方数)

13.2 图形和空间问题174

13.3 本章小结184

第14章知识问题185

14.1 准备185

14.2 问题186

14.3 本章小结191

第15章非技术问题192

15.1 为什么要问非技术问题192 15.2 问题193

15.3 本章小结199

第16章结束语200

附录A 简历201

海量数据存储论文

海量数据存储 (----计算机学科前沿讲座论文 昆明理工大学信息院 计算机应用技术 2010/11 随着信息社会的发展,越来越多的信息被数据化,尤其是伴随着Internet的发展,数据呈爆炸式增长。从存储服务的发展趋势来看,一方面,是对数据的存储量的需求越来越大,另一方面,是对数据的有效管理提出了更高的要求。首先是存储容量的急剧膨胀,从而对于存储服务器提出了更大的需求;其次是数据持续时间的增加。最后,对数据存储的管理提出了更高的要求。数据的多样化、地理上的分散性、对重要数据的保护等等都对数据管理提出了更高的要求。随着数字图书馆、电子商务、多媒体传输等用的不断发展,数据从GB、TB到PB量级海量急速增长。存储产品已不再是附属于服务器的辅助设备,而成为互联网中最主要的花费所在。海量存储技术已成为继计算机浪潮和互联网浪潮之后的第三次浪潮,磁盘阵列与网络存储成为先锋。 一、海量数据存储简介 海量存储的含义在于,其在数据存储中的容量增长是没有止境的。因此,用户需要不断地扩张存储空间。但是,存储容量的增长往往同存储性能并不成正比。这也就造成了数据存储上的误区和障碍。 海量存储技术的概念已经不仅仅是单台的存储设备。而多个存储设备的连接使得数据管理成为一大难题。因此,统一平台的数据管理产品近年来受到了广大用户的欢迎。这一类型产品能够整合不同平台的存储设备在一个单一的控制界面上,结合虚拟化软件对存储资源进行管理。这样的产品无疑简化了用户的管理。 数据容量的增长是无限的,如果只是一味的添加存储设备,那么无疑会大幅增加存储成本。因此,海量存储对于数据的精简也提出了要求。同时,不同应用对于存储

(大数据)北邮大数据技术课程重点总结

(大数据)北邮大数据技术课程重点总结

5.数据化与数字化的区别 数据化:将现象转变为可制表分析的量化形式的过程; 数字化:将模拟数据转换成使用0、1表示的二进制码的过程 6.基于协同过滤的推荐机制 基于协同过滤的推荐(这种机制是现今应用最为广泛的推荐机制)——基于模型的推荐(SVM、聚类、潜在语义分析、贝叶斯网络、线性回归、逻辑回归) 余弦距离(又称余弦相似度):表示是否有相同的倾向 欧几里得距离(又称欧几里得相似度):表示绝对的距离 这种推荐方法的优缺点: 它不需要对物品或者用户进行严格的建模,而且不要求物品的描述是机器可理解的;推荐是开放的,可以共用他人的经验,很好的支持用户发现潜在的兴趣偏好。 数据稀疏性问题,大量的用户只是评价了一小部分的项目,而大多数的项目是没有进行评分;冷启动问题,新物品和新用户依赖于用户历史偏好数据的多少和准确性,一些特殊品味的用户不能给予很好的推荐。 7.机器学习:构建复杂系统的可能方法/途径 机器学习使用场景的核心三要素:存在潜在模式、不容易列出规则并编程实现、有历史的数据 8.机器学习的基础算法之PLA算法和Pocket算法(贪心PLA) 感知器——线性二维分类器,都属于二分类算法 二者的区别:迭代过程有所不同,结束条件有所不同; 证明了线性可分的情况下是PLA和Pocket可以收敛。 9.机器为什么能学习 学习过程被分解为两个问题: 能否确保Eout(g)与Ein(g)足够相似? 能否使Ein(g)足够小? 规模较大的N,有限的dVC,较低的Ein条件下,学习是可能的。 切入点:利用具体特征的,基于有监督方式的,批量学习的分析,进行二分类预测。 10.VC维: 11.噪声的种类: 12.误差函数(损失函数) 13.给出数据计算误差 14.线性回归算法:简单并且有效的方法,典型公式 线性回归的误差函数:使得各点到目标线/平面的平均距离最小! 15.线性回归重点算法部分:

海量数据处理笔试面试题4

海量数据处理专题(一)——开篇 2010-10-08 13:03 转载自08到北京 最终编辑08到北京 大数据量的问题是很多面试笔试中经常出现的问题,比如baidu google 腾讯这样的一些涉及到海量数据的公司经常会问到。 下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。 本贴从解决这类问题的方法入手,开辟一系列专题来解决海量数据问题。拟包含以下几个方面。 1.Bloom Filter 2.Hash 3.】 4.Bit-Map 5.堆(Heap) 6.双层桶划分 7.数据库索引 8.倒排索引(Inverted Index) 9.外排序 10.Trie树 11.MapReduce 海量数据处理专题(二)——Bloom Filter 2010-10-08 13:04 【 转载自08到北京 最终编辑08到北京 【什么是Bloom Filter】 Bloom Filter是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合。Bloom Filter的这种高效是有一定代价的:在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误认为属于这个集合(false positive)。因此,Bloom Filter不适合那些“零错误”的应用场合。而在能容忍低错误率的应用场合下,Bloom Filter通过极少的错误换取了存储空间的极大节省。这里有一篇关于Bloom Filter的详细介绍,不太懂的博友可以看看。 【适用范围】

海量数据处理面试题

1. 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url? 方案1:可以估计每个文件安的大小为5G×64=320G,远远大于内存限制的4G。所以不可能将其完全加载到内存中处理。考虑采取分而治之的方法。 s 遍历文件a,对每个url求取,然后根据所取得的值将url分别存储到1000个小文件(记为)中。这样每个小文件的大约为300M。 s 遍历文件b,采取和a相同的方式将url分别存储到1000各小文件(记为)。这样处理后,所有可能相同的url都在对应的小文件()中,不对应的小文件不可能有相同的url。然后我们只要求出1000对小文件中相同的url即可。 s 求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_set中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。 方案2:如果允许有一定的错误率,可以使用Bloom filter,4G内存大概可以表示340亿bit。将其中一个文件中的url使用Bloom filter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloom filter,如果是,那么该url应该是共同的url(注意会有一定的错误率)。 2. 有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序。 方案1: s 顺序读取10个文件,按照hash(query)%10的结果将query写入到另外10个文件(记为 )中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。

大数据存储方式概述

大数据存储方式概述 随着信息社会的发展,越来越多的信息被数据化,尤其是伴随着Internet的发展,数据呈爆炸式增长。从存储服务的发展趋势来看,一方面,是对数据的存储量的需求越来越大,另一方面,是对数据的有效管理提出了更高的要求。首先是存储容量的急剧膨胀,从而对于存储服务器提出了更大的需求;其次是数据持续时间的增加。最后,对数据存储的管理提出了更高的要求。数据的多样化、地理上的分散性、对重要数据的保护等等都对数据管理提出了更高的要求。随着数字图书馆、电子商务、多媒体传输等用的不断发展,数据从GB、TB 到PB量级海量急速增长。存储产品已不再是附属于服务器的辅助设备,而成为互联网中最主要的花费所在。海量存储技术已成为继计算机浪潮和互联网浪潮之后的第三次浪潮,磁盘阵列与网络存储成为先锋。 一、海量数据存储简介 海量存储的含义在于,其在数据存储中的容量增长是没有止境的。因此,用户需要不断地扩张存储空间。但是,存储容量的增长往往同存储性能并不成正比。这也就造成了数据存储上的误区和障碍。海量存储技术的概念已经不仅仅是单台的存储设备。而多个存储设备的连接使得数据管理成为一大难题。因此,统一平台的数据管理产品近年来受到了广大用户的欢迎。这一类型产品能够整合不同平台的存储设备在一个单一的控制界面上,结合虚拟化软件对存储资源进行管理。这样的产品无疑简化了用户的管理。 数据容量的增长是无限的,如果只是一味的添加存储设备,那么无疑会大幅增加存储成本。因此,海量存储对于数据的精简也提出了要求。同时,不同应用对于存储容量的需求也有所不同,而应用所要求的存储空间往往并不能得到充分利用,这也造成了浪费。 针对以上的问题,重复数据删除和自动精简配置两项技术在近年来受到了广泛的关注和追捧。重复数据删除通过文件块级的比对,将重复的数据块删除而只留下单一实例。这一做法使得冗余的存储空间得到释放,从客观上增加了存储容量。 二、企业在处理海量数据存储中存在的问题 目前企业存储面临几个问题,一是存储数据的成本在不断地增加,如何削减开支节约成本以保证高可用性;二是数据存储容量爆炸性增长且难以预估;三是越来越复杂的环境使得存储的数据无法管理。企业信息架构如何适应现状去提供一个较为理想的解决方案,目前业界有几个发展方向。 1.存储虚拟化 对于存储面临的难题,业界采用的解决手段之一就是存储虚拟化。虚拟存储的概念实际上在早期的计算机虚拟存储器中就已经很好地得以体现,常说的网络存储虚拟化只不过是在更大规模范围内体现存储虚拟化的思想。该技术通过聚合多个存储设备的空间,灵活部署存储空间的分配,从而实现现有存储空间高利用率,避免了不必要的设备开支。 存储虚拟化的好处显而易见,可实现存储系统的整合,提高存储空间的利用率,简化系统的管理,保护原有投资等。越来越多的厂商正积极投身于存储虚拟化领域,比如数据复制、自动精简配置等技术也用到了虚拟化技术。虚拟化并不是一个单独的产品,而是存储系统的一项基本功能。它对于整合异构存储环境、降低系统整体拥有成本是十分有效的。在存储系统的各个层面和不同应用领域都广泛使用虚拟化这个概念。考虑整个存储层次大体分为应用、文件和块设备三个层次,相应的虚拟化技术也大致可以按这三个层次分类。 目前大部分设备提供商和服务提供商都在自己的产品中包含存储虚拟化技术,使得用户能够方便地使用。 2.容量扩展 目前而言,在发展趋势上,存储管理的重点已经从对存储资源的管理转变到对数据资源

数据分析师常见的7道笔试题目及答案

数据分析师常见的7道笔试题目及答案 导读:探索性数据分析侧重于在数据之中发现新的特征,而验证性数据分析则侧 重于已有假设的证实或证伪。以下是由小编J.L为您整理推荐的实用的应聘笔试题目和经验,欢迎参考阅读。 1、海量日志数据,提取出某日访问百度次数最多的那个IP。 首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有个2^32个IP。同样可以采用映射的方法,比如模1000,把 整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用 hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。然后再在这1000 个最大的IP中,找出那个频率最大的IP,即为所求。 或者如下阐述: 算法思想:分而治之+Hash 1.IP地址最多有2^32=4G种取值情况,所以不能完全加载到内存中处理; 2.可以考虑采用“分而治之”的思想,按照IP地址的Hash(IP)24值,把海量IP日 志分别存储到1024个小文件中。这样,每个小文件最多包含4MB个IP地址; 3.对于每一个小文件,可以构建一个IP为key,出现次数为value的Hash map,同时记录当前出现次数最多的那个IP地址; 4.可以得到1024个小文件中的出现次数最多的IP,再依据常规的排序算法得到总体上出现次数最多的IP; 2、搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。 假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也 就是越热门。),请你统计最热门的10个查询串,要求使用的内存不能超过1G。 典型的Top K算法,还是在这篇文章里头有所阐述, 文中,给出的最终算法是: 第一步、先对这批海量数据预处理,在O(N)的时间内用Hash表完成统计(之前写成了排序,特此订正。July、2011.04.27); 第二步、借助堆这个数据结构,找出Top K,时间复杂度为N…logK。 即,借助堆结构,我们可以在log量级的时间内查找和调整/移动。因此,维护一 个K(该题目中是10)大小的小根堆,然后遍历300万的Query,分别和根元素进行对比所以,我们最终的时间复杂度是:O(N) + N?*O(logK),(N为1000万,N?为300万)。ok,更多,详情,请参考原文。 或者:采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10 个元素的最小推来对出现频率进行排序。 3、有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。 方案:顺序读文件中,对于每个词x,取hash(x)P00,然后按照该值存到5000 个小文件(记为x0,x1,…x4999)中。这样每个文件大概是200k左右。 如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,直到 分解得到的小文件的大小都不超过1M。 对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树 /hash_map等),并取出出现频率最大的100个词(可以用含100 个结点的最小堆),并把

基于一种海量数据处理分析系统设计文档

中科基于一种海量数据处理分析 系统的设计文档 一、海量数据处理的背景分析 在当前这个信息量飞速增长的时代,业的成功已经越来越多地与其海量数据处理能力相关联。高效、迅速地从海量数据中挖掘出潜在价值并转化为决策依据的能力,将成为企业的核心竞争力。数据的重要性毋庸置疑,但随着数据的产生速度越来越快,数据量越来越大,数据处理技术的挑战自然也越来越大。如何从海量数据中挖掘出价值所在,分析出深层含义,进而转化为可操作的信息,已经成为各互联网企业不得不研究的课题。数据量的增长,以及分析需求的越来越复杂,将会对互联网公司的数据处理能力提出越来越高的要求、越来越大的挑战。但每一个场景都有其特点与功能,充分分析其数据特性,将合适的软件用在合适的场景下,才能更好地解决实际问题。 二、海量数据处理分析的特点 (一)、数据量大,情况多变 现在的数据量比以前任何时期更多,生成的速度更快,以前如果说有10条数据,繁琐的操作时每条去逐一检查,人为处理,如果有上百条数据,也可以考虑,如果数据上到千万级别,甚至过亿,那不是手工能解决的了,必须通过工具或者程序进行处理,尤其海量的数据中,情况多变,手工操作是完不成任务的。例如,数据中某处格式出了问题,尤其在程序处理时,前面还能正常处理,突然到了某个地方问题出现了,程序将会终止。海量数据处理系统的诞生是输入层每个神经元的输入是同一个向量的一个分量,产生的输出作

为隐藏层的输入,输出层每一个神经元都会产生一个标量结果,所以整个输出层所有神经元的输出构成一个向量,向量的维数等于输出层神经元的数目在人工神经网络模型中,各个神经元通过获取输入和反馈,相对独立地进行训练和参数计算。其拓扑结构的重要特点便是每一层内部的神经元之间相互独立,各个层次间的神经元相互依赖。 由于各个层次内部神经元相互独立,使得各个层次内部的神经元的训练可以并行化。但由于不同层之间的神经元具有相互依赖关系,因此各个层次之间仍然是串行处理的。可以将划分出的每一层内部的不同神经元通过map操作分布到不同的计算机上。各个神经元在不同的计算终端上进行训练,在统一的调度和精度控制下进行多个层次的神经元的训练,这样神经网络算法的训练就可以实现并行化。训练结束后,同样可以通过每层内节点的并行化处理快速地得到输出结果。在神经网络算法中,每层内的节点都可以进行并行化处理,并行化程度非常高。 (二)、软硬件要求高,系统资源占用率高 各种应用对存储系统提出了更多的需求,数据访问需要更高的带宽,不仅要保证数据的高可用性,还要保证服务的高可用性;可扩展性:应用在不断变化,系统规模也在不断变化,这就要求系统提供很好的扩展性,并在容量、性能、管理等方面都能适应应用的变化;对海量的数据进行处理,除了好的方法,最重要的就是合理使用工具,合理分配系统资源。一般情况,如果处理的数据过TB级,小型机是要考虑的,普通的机子如果有好的方法可以考虑,不过也必须加大CPU和内存,对电脑的内存、显卡、硬盘及网络都要求相对较高!其中对网络要求高的原因是因为其引入目前最前沿的“云端计算”好多东西都要从网络上调用;对硬盘要求是最高的,用SATA6.0的固态硬盘,对整机性能限制比较大的就是高速系统总线对低速硬盘传输,32位的系统,最大只能认到3.5G内存,就是说,不论你装几根内存条,装多大容量的内存条,你装8G的,它也只能用到3.5G,64位的系统就可以突破了这个限制。如果你的电脑配置不是特别高的话,XP是比较好的选择。32位的XP是最低要求。基于23G互操作测试生成23G互操作测试报告测试起始点时间、测试终止点时间、 3G网络驻留时间(秒)、2G网络驻留时间(秒)、3G覆盖总采样点、3G覆盖总采样点不同区间数量统计、3G覆盖总采样点不同门限范围内数量统计、2G覆盖总采样点、2G覆盖总采样点不同区间数量统计、2G覆盖总采样点不同门限范围内数量统计、3G到2G重选成功次数、2G到3G重选成功次数、3G到2G切换尝试次数、3G到2G切换成功次数、切换掉话次数和其它掉话次数。

(重点学习)海量数据处理方法总结

海量数据处理方法总结 大数据量的问题是很多面试笔试中经常出现的问题,比如baidu,google,腾讯这样的一些涉及到海量数据的公司经常会问到。 下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。 1 Bloom filter 适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集。 基本原理及要点: 对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。 还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit 数组里至少一半为0,则m应该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。 举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。 注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。 扩展: Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为

常用大数据量、海量数据处理方法 (算法)总结

大数据量的问题是很多面试笔试中经常出现的问题,比如baidu goog le 腾讯这样的一些涉及到海量数据的公司经常会问到。 下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。 1.Bloom filter 适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集 基本原理及要点: 对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。 还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m 的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任

意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为0,则m应该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg 表示以2为底的对数)。 举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。 注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。 扩展: Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。SBF采用counter中的最小值来近似表示元素的出现频率。 问题实例:给你A,B两个文件,各存放50亿条URL,每条URL占用6 4字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢? 根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个

海量空间数据存储技术研究.

海量空间数据存储技术研究作者:作者单位:唐立文,宇文静波唐立文(装备指挥技术学院试验指挥系北京 101416,宇文静波(装备指挥技术学院装备指挥系北京 101416 相似文献(10条 1.期刊论文戴海滨.秦勇.于剑.刘峰.周慧娟铁路地理信息系统中海量空间数据组织及分布式解决方案 -中国铁道科学2004,25(5 铁路地理信息系统采用分布式空间数据库系统和技术实现海量空间数据的组织、管理和共享.提出中心、分中心、子中心三层空间数据库分布存储模式,实现空间数据的全局一致和本地存放.铁路基础图库主要包括不同比例尺下的矢量和栅格数据.空间数据库的访问和同步采用复制和持久缓存.复制形成主从数据库结构,从数据库逻辑上是主数据库全部或部分的镜象.持久缓存是在本地形成对远程空间数据的部分缓存,本地所有的请求都通过持久缓存来访问. 2.学位论文骆炎民基于XML的WebGIS及其数据共享的研究 2003 随着计算机技术、网络通信技术、地球空间技术的发展,传统的GIS向着信息共享的WebGIS发展,WebGIS正成为大众化的信息工具,越来越多的 Web站点提供空间数据服务。但我们不得不面对这样的一个现实:数以万计的Web站点之间无法很好地沟通和协作,很难通过浏览器访问、处理这些分布于Web的海量空间数据;而且由于行业政策和数据安全的原因,这些空间资源

大多是存于特定的GIS系统和桌面应用中,各自独立、相对封闭,从而形成空间信息孤岛,难以满足Internet上空间信息决策所需的共享的需要。此外,从地理空间信息处理系统到地理空间信息基础设施和数字地球,地理空间信息共享是它们必须解决的核心问题之一。因此,对地理空间信息共享理论基础及其解决方案的研究迫在眉睫;表达、传输和显示不同格式空间数据,实现空间信息共享是数字地球建设的关键技术之一,GIS技术正在向更适合于Web的方向发展。本文着重于探索新的网络技术及其在地理信息领域中的应用。 3.学位论文马维峰面向Virtual Globe的异构多源空间信息系统体系结构与关键技术 2008 GIS软件技术经过30多年的发展,取得了巨大发展,但是随着GIS应用和集成程度的深入、Internet和高性能个人计算设备的普及,GIS软件技术也面临着诸多新的问题和挑战,主要表现为:GIS封闭式的体系结构与IT主流信息系统体系结构脱节,GIS与其他IT应用功能集成、数据集成困难;基于地图 (二维数据的数据组织和表现方式不适应空间信息应用发展的需求;表现方式单一,三维表现能力不足。现有GIS基础平台软件的设计思想、体系结构和数据组织已经不适应GIS应用发展的要求,尤其不能适应“数字地球”、“数字城市”、“数字区域”建设中对海量多源异构数据组织和管理、数据集成、互操作、应用集成、可视化和三维可视化的需求。 Virtual Globe 是目前“数字地球”最主要的软件实现技术,Vtrtual Globe通过三维可视化引擎,在用户桌面显示一个数字地球的可视化平台,用户可以通过鼠标、键盘操作在三维空间尺度对整个地球进行漫游、缩放等操作。随着Google Earth的普及,Virtual Globe已成为空间数据发布、可视化、表达、集成的一个重要途径和手段。 Virtual Globe技术在空间数据表达、海量空间数据组织、应用集成等方面对GIS软件技术具有重要的参考价值:从空间数据表达和可视化角度,基于Virtual Globe的空间信息可视化方式是GIS软件二维电子地图表达方式的最好替代者,其空间表达方式可以作为基于地图表达方式的数字化天然替代,对于GIS基础平台研究具有重要借鉴意义;从空间数据组织角度,Virtual Globe技术打破了以图层为基础的空间数据组织方式,为解决全球尺度海量数据的分布式存取提供了新的思路;从应用集成和空间数据互操作角度,基于VirtualGlobe的组件化GIS平台可以提供更好的与其他IT系统与应用的集成方式。论文在现有理论和技术基础上,借鉴和引入

海量数据的存储需求及概念

海量数据的存储需求及概念 海量数据的存储需求其实就是时下流行的云存储概念,使用NVR的集群技术作为基础搭建的海量数据存储系统,可称为音视频云存储系统,在此基 础上的各种新型的智能高效查询服务可以称为云查询。 云存储是以NVR为硬件基础,使用软件分布式技术搭建的一个虚拟存储服务,此方式的具体工作NVR硬件对用户透明,用户提出存储需求,云存储服务系统满足需求。此系统具有高性价比、高容错性、服务能力几乎可以无限伸缩。在云存储系统里面的单机NVR,对其可靠性要求很低,因此我们可以使用 大量廉价的NVR硬件(不带RAID功能)来搭建系统。由此大量减少了硬件成本。由于数据IO吞吐处理被分散到了很多单机上,对单机的处理器、硬盘IO的能 力要求也可变得很低,进一步降低硬件成本。另外,由于云管理系统做了大量 的智能管理工作,将使得安装维护变得更容易。 云查询就是音视频云存储系统里的云计算,由于数据是分散存储在各个 单机节点上,故大量的查询可以是并行的,使得可以实现一些以前很难做到的 密集型计算的查询应用,如视频内容检索,历史视频智能分析等。 云软件开发模式使用强大的分布式中间件平台,其开发难度可大大降低。例如,由某公司开发的分布式平台就是一款云开发的利器,它高效、易学易用、能力强大、跨平台和编程语言,内置了很多分布式开发的基本特性。 未来几年中国的家庭宽带将升级到光纤入户,企业数据网络将升级到万 兆网,在网络化高度发达的大背景下,IT行业正在改变传统的IT资源拥有模式。安防行业在完全融入IT的背景下,行业发展和IT行业的发展趋势是一致的, IT行业的主流趋势是资源正在向可运营、可服务的方向发展。视频监控在智能

2016年数据分析面试常见问题

1、海量日志数据,提取出某日访问百度次数最多的那个IP。 首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有个2^32个IP。同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求。 或者如下阐述: 算法思想:分而治之+Hash 1.IP地址最多有2^32=4G种取值情况,所以不能完全加载到内存中处理; 2.可以考虑采用“分而治之”的思想,按照IP地址的Hash(IP)24值,把海量IP日志分别存储到1024个小文件中。这样,每个小文件最多包含4MB个IP地址; 3.对于每一个小文件,可以构建一个IP为key,出现次数为value的Hash map,同时记录当前出现次数最多的那个IP地址; 4.可以得到1024个小文件中的出现次数最多的IP,再依据常规的排序算法得到总体上出现次数最多的IP; 2、搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。 假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就是越热门。),请你统计最热门的10个查询串,要求使用的内存不能超过1G。 典型的Top K算法,还是在这篇文章里头有所阐述, 文中,给出的最终算法是:

第一步、先对这批海量数据预处理,在O(N)的时间内用Hash表完成统计(之前写成了排序,特此订正。July、2011.04.27); 第二步、借助堆这个数据结构,找出Top K,时间复杂度为N‘logK。 即,借助堆结构,我们可以在log量级的时间内查找和调整/移动。因此,维护一个K(该题目中是10)大小的小根堆,然后遍历300万的Query,分别和根元素进行对比所以,我们最终的时间复杂度是:O(N)+ N’*O(logK),(N为1000万,N’为300万)。ok,更多,详情,请参考原文。 或者:采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。 3、有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。 方案:顺序读文件中,对于每个词x,取hash(x)P00,然后按照该值存到5000个小文件(记为x0,x1,…x4999)中。这样每个文件大概是200k左右。 如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,直到分解得到的小文件的大小都不超过1M。 对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map 等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100个词及相应的频率存入文件,这样又得到了5000个文件。下一步就是把这5000个文件进行归并(类似与归并排序)的过程了。 4、有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个

物联网论文海量信息存储

数字化的存储手段 ——海量信息存储

摘要 随着信息社会的快速发展,越来越多的信息被数据化,尤其是伴随着计算机网络的发展,数据呈爆炸式增长。因此在日常生活工作中,如何安全地存放以及高效地使用海量资料,成为人们日益面临的重大困惑。随着数字图书馆、电子商务、多媒体传输等用的不断发展,存储产品已不再是附属于服务器的辅助设备,而成为互联网中最主要的花费所在。随之而来的是海量信息存储的需求不断增加,正是用户对存储空间需求的不断增加,推动海量信息存储技术的不断变化。海量存储技术已成为继计算机浪潮和互联网浪潮之后的第三次浪潮。本文从物联网对海量信息存储的需求出发,比较了三种基本的网络存储体系结构(DAS,NAS,SAN)各自特点,并讨论了数据中心的基本概念,最后以Google数据中心和Hadoop为例,简要介绍了数据中心的相关技术,指出了数据中心的研究热点,并提到了保证性能前提下降低数据中心成本的方法(服务器成本,网络设备成本,能源成本)。最后,对海量信息存储的前景做出了展望。 关键词:海量信息存储数据中心计算机网络

一、海量信息存储时代背景 随着计算机技术的发展,信息正以数据存储的方式高速增长着,不断推进着全球信息化的进程。随之而来的是海量信息存储的需求不断增加。从存储服务的发展趋势来看,一方面,是对数据的存储量的需求越来越大,另一方面,是对数据的有效管理提出了更高的要求。首先是存储容量的急剧膨胀,从而对于存储服务器提出了更大的需求;其次是数据持续时间的增加。最后,对数据存储的管理提出了更高的要求。 海量存储的含义在于,其在数据存储中的容量增长是没有止境的。因此,用户需要不断地扩张存储空间。海量存储技术的概念已经不仅仅是单台的存储设备。数据容量的增长是无限的,如果只是一味的添加存储设备,那么无疑会大幅增加存储成本。因此,海量存储对于数据的精简也提出了要求。同时,不同应用对于存储容量的需求也有所不同,而应用所要求的存储空间往往并不能得到充分利用,这也造成了浪费。 如今,物联网对海量信息存储的需求日益增加,一方面,全球信息总量迅猛增长,仅2007年产生的数据量为281EB ( 1EB=10亿GB ),而物联网中对象的数量将庞大到以百亿为单位。其次,物联网中的对象积极参与业务流程的需求也在增加,这些都导致了网络化存储和大型数据中心的诞生。 二、三种基本的网络存储体系结构 直接式存储DAS是指主机与存储设备(磁盘或磁盘阵列等)之间直接连接,存储设备通过SCSI或 ATA(目前连接方式已扩展为FC、USB等多种)作为数据接口的存储方式。网络附加存储NAS是指直接挂接在网上的存储设备,实际上就是一台专用的存储服务器,它不承担应用服务,而是通过网络接口与网络连接,数据通过网络协议进行传输,支持异构服务器间共享数据。存储区域网络SAN是独立于服务器网络之外的高速存储专用网,采用高速的光纤通道作为传输媒体,以FC(FiberChannel,光纤通道)+SCSI的应用协议作为存储访问协议,将存储子系统网络化,实现了真正高速共享存储的目标。 比较各自的特点,可以得到以下结论: 对于DAS:管理容易,结构相对简单;采用集中式体系结构,不能满足大规模数据访问的需求;存储资源利用率低,资源共享能力差,造成“信息孤岛”; 对于NAS:容易实现文件级别共享;性能严重依赖于网络流量,尤其当用户数过多、读写过频繁时性能受限; 对于SAN:存储管理简化,存储容量利用率提高;没有直接文件级别的访问能力,但可在SAN基础上建立文件系统。 三、海量数据存储技术 为了支持大规模数据的存储、传输与处理,针对海量数据存储目前主要开展如下三个方向的研究: 1、虚拟存储技术 存储虚拟化的核心工作是物理存储设备到单一逻辑资源池的映射,通过虚拟化技术,为用户和应用程序提供了虚拟磁盘或虚拟卷,并且用户可以根据需求对它进行任意分割、合并、重新组合等操作,并分配给特定的主机或应用程序,为用户隐藏或屏蔽了具体的物理设备的各种物理特性。 2、高性能I/O 集群由于其很高的性价比和良好的可扩展性,近年来在HPC领域得到了广泛的应用。数据共享是集群系统中的一个基本需求。当前经常使用的是网络文件系

史上最全的数据来源和数据分析平台

史上最全的数据来源(数据分析)平台 网站分析类: 百度指数- 以百度海量网民行为数据为基础的数据分享平台 Google趋势- 了解Google中热度上升的搜索 360指数- 基于360搜索的大数据分享平台 Alexa - 网站排名 Google Analytics - Google出品,可以对目标网站进行访问数据统计和分析百度统计- 百度推出的一款免费的专业网站流量分析工具 腾讯云分析- 是腾讯数据云,腾讯大数据战略的核心产品 移动应用分析类: 友盟指数- 以友盟海量数据为基础的观察移动互联网行业趋势的数据平台移动观象台- 20亿独立智能设备为依据,提供应用排行榜 ASOU趋势- 每日跟踪超过100万款应用,分析超过6亿条数据 蝉大师- App数据分析与ASO优化专家,应用与游戏推广平台 百度移动统计- 基于移动APP统计的分析工具 QuestMobile - 国内知名的移动大数据服务提供商 应用雷达- 专业的APP排行历史跟踪软件实时榜单排名分析 Appannie - 移动应用和数字内容时代数据分析和市场数据的行业领导者CQASO - 国内最专业的APP数据分析平台 媒体传播类: 微博指数 优酷指数 微票儿票房分析 BOM票房数据 爱奇艺指数 数说传播 百度风云榜 微博风云榜 爱奇艺风云榜 豆瓣电影排行榜 新媒体排行榜 品牌微信排行榜 清博指数 易赞- 公众号画像 电商数据类:

阿里价格指数 淘宝魔方 京东智圈 淘宝排行榜 投资数据类: Crunchbase - 一个免费的科技公司、技术行业知名人物和投资者相关信息的数据库 清科投资界- 风险投资,私募股权,创业者相关投资,私募,并购,上市的研究 IT桔子- 关注TMT领域创业与投资的数据库 创投库- 提供最全的投资公司信息 Angel - 美国创业项目大全 Next - 36kr子站,每天更新新产品介绍 Beta List - 介绍初创公司 金融数据类: 积木盒子- 全线上网络借贷信息中介平台 网贷中心- 告网贷行业危机,公正透明地披露网贷平台数据 网贷之家- P2P网贷平台排名 网贷数据- 网贷天下- 行业过去30天详细交易数据,网贷天下统计、发布,每天6点更新中国P2P网贷指数 零壹数据-专业互联网金融数据中心 大公金融数据 全球股票指数 爱股说-基金经理分析找股平台 私募基金管理人综合查询 中财网数据引擎 游戏数据: 百度网游风云榜 360手机游戏排行榜 360手游指数 CGWR排行榜 App Annie游戏指数 小米应用商店游戏排名 TalkingData游戏指数 游戏玩家排名&赛事数据 国家社会数据: 中国综合社会调查 中国人口普查数据 中国国家数据中心

“大数据时代的海量存储”总结报告

“大数据时代的海量存储”总结报告 经过几周的学习,我们逐渐了解了大数据时代的存储技术的发展,通过各小组的介绍,初步了解了各种存储器的原理、应用和发展历程。这些知识也许不是那么精深,但对我们来说是一种启蒙,在学习这些知识的过程中,我们也学会了一种学习方法,这对我们未来的学习生活将会有莫大的帮助。下面就针对这几周的学习,对所掌握的知识和自己的思考进行一个总结。 一、各存储介质 1.磁盘 磁盘的基础是一个个磁片,磁片里有扇区和磁道。扇区是存储的最小单元,一 个扇区里只能存一个文件的数据,这意味着即使文件没有占用扇区的所有空间, 也不能存放其他文件了,而大的文件可能要占用多个扇区,因此在使用磁盘的 过程中,要经常进行碎片整理,使磁盘的空间能得到有效的利用。磁道则是决 定磁盘存储量的因素。一般来说,硬盘和软盘都是磁盘。 ①软盘:由单片磁盘构成,存储量小,容易物理损坏,但作为最早的移动存储 介质,在历史上占有无法磨灭的地位,也为早期的文件转移提供便利。 ②硬盘:由多个磁片组成,因此存储量大了许多,通过磁头将数据传输出去, 在计算机系统里属于外存,需要驱动器才能被识别和使用,能永久地 存储数据,在现阶段依然被广泛的运用在各个领域。 ③移动硬盘:将硬盘小型化,通过USB接口与电脑连接,传输数据,相对U 盘来说,容量也大了许多,为当代生活提供了便利。 2.U盘 U盘,全称USB闪存盘。它是通过识别浮动栅中电子的有无来判断二进制的0 和1,以此来存储数据。因为它的电子可以长时间存在,所以数据可以保存在 U盘内。因为U盘小巧轻便、价格便宜、存储量大、性能可靠,所以受到了欢 迎,成为当代移动存储介质中的重要一员。不过因为技术和结构的限制,它在 电脑中的读写速度仍比不上移动硬盘,但抗物理损坏能力强于移动硬盘,算是 各有千秋,为人们的数据转移带来了方便。 3.固态盘 固态盘有两种,一种是基于闪存的,另一种则是基于DRAM。用闪存作为介质 的固态盘一般擦写次数为3000次左右,而因为它的平衡写入机制,在实际运 用中,它几乎是可以无限利用的,读写速度又远超机械硬盘,所以现在大多数 笔记本电脑都将光驱的位置用来放置固态盘,使电脑性能得到了提高;而利用 DRAM的固态盘虽然速度也很快,但是需要一个独立电源来保存它里面的数据, 因此相对于前者来说,它有些不便,是一种非主流的固态盘。 4.光盘 光盘是用聚碳酸酯做成基板,通过激光烧录后来进行数据记录,虽然以现在的 眼光来看,光盘的使用有着种种不便,但是在以往为半结构化和非结构化的数 据的传输做出了巨大的贡献。但近年来,大多数笔记本电脑放弃了光驱,换上 了固态盘,光盘也逐渐退出了历史的舞台。 二、海量存储器 1.磁盘存储阵列

海量数据处理小结

海量的数据处理问题,对其进行处理是一项艰巨而复杂的任务。原因有以下几个方面: 一、数据量过大,数据中什么情况都可能存在。如果说有10条数据,那么大不了每条去逐一检查,人为处理,如果有上百条数据,也可以考虑,如果数据上到千万级别,甚至过亿,那不是手工能解决的了,必须通过工具或者程序进行处理,尤其海量的数据中,什么情况都可能存在,例如,数据中某处格式出了问题,尤其在程序处理时,前面还能正常处理,突然到了某个地方问题出现了,程序终止了。 二、软硬件要求高,系统资源占用率高。对海量的数据进行处理,除了好的方法,最重要的就是合理使用工具,合理分配系统资源。一般情况,如果处理的数据过TB级,小型机是要考虑的,普通的机子如果有好的方法可以考虑,不过也必须加大CPU和内存,就象面对着千军万马,光有勇气没有一兵一卒是很难取胜的。 三、要求很高的处理方法和技巧。这也是本文的写作目的所在,好的处理方法是一位工程师长期工作经验的积累,也是个人的经验的总结。没有通用的处理方法,但有通用的原理和规则。那么处理海量数据有哪些经验和技巧呢,我把我所知道的罗列一下,以供大家参考: 一、选用优秀的数据库工具现在的数据库工具厂家比较多,对海量数据的处理对所使用的数据库工具要求比较高,一般使用Oracle或者DB2,微软公司最近发布的SQL Server 2005性能也不错。另外在BI领域:数据库,数据仓库,多维数据库,数据挖掘等相关工具也要进行选择,象好的ETL工具和好的OLAP工具都十分必要,例如Informatic,Eassbase等。笔者在实际数据分析项目中,对每天6000万条的日志数据进行处理,使用SQL Server 2000需要花费6小时,而使用SQL Server 2005则只需要花费3小时。 二、编写优良的程序代码处理数据离不开优秀的程序代码,尤其在进行复杂数据处理时,必须使用程序。好的程序代码对数据的处理至关重要,这不仅仅是数据处理准确度的问题,更是数据处理效率的问题。良好的程序代码应该包含好的算法,包含好的处理流程,包含好的效率,包含好的异常处理机制等。 三、对海量数据进行分区操作对海量数据进行分区操作十分必要,例如针对按年份存取的数据,我们可以按年进行分区,不同的数据库有不同的分区方式,不过处理机制大体相同。例如SQL Server的数据库分区是将不同的数据存于不同的文件组下,而不同的文件组存于不同的磁盘分区下,这样将数据分散开,减小磁盘I/O,减小了系统负荷,而且还可以将日志,索引等放于不同的分区下。 四、建立广泛的索引对海量的数据处理,对大表建立索引是必行的,建立索引要考虑到具体情况,例如针对大表的分组、排序等字段,都要建立相应索引,一般还可以建立复合索引,对经常插入的表则建立索引时要小心,笔者在处理数据时,曾经在一个ETL流程中,当插入表时,首先删除索引,然后插入完毕,建立索引,并实施聚合操作,聚合完成后,再次插入前还是删除索引,所以索引要用到好的时机,索引的填充因子和聚集、非聚集索引都要考虑。 五、建立缓存机制当数据量增加时,一般的处理工具都要考虑到缓存问题。缓存大小设置的好差也关系到数据处理的成败,例如,笔者在处理2亿条数据聚合操作时,缓存设置为100000条/Buffer,这对于这个级别的数据量是可行的。 六、加大虚拟内存如果系统资源有限,内存提示不足,则可以靠增加虚拟内存来解决。笔者在实际项目中曾经遇到针对18亿条的数据进行处理,内存为1GB,1个P4 2.4G的CPU,对这么大的数据量进行聚合操作是有问题的,提示内存不足,那么采用了加大虚拟内存的方法来解决,在6块磁盘分区上分别建立了6个4096M的磁盘分区,用于虚拟内存,这样虚拟的内存则增加为4096*6 + 1024 = 25600 M,解决了数据处理中的内存不足问题。 七、分批处理海量数据处理难因为数据量大,那么解决海量数据处理难的问题其中一个技巧是减少数据量。可以对海量数据分批处理,然后处理后的数据再进行合并操作,这样逐个击破,有利于小数据量的处理,不至于面对大数据量带来的问题,不过这种方法也要因时因势进行,如果不允许拆分数据,还需要另想办法。不过一般的数据按天、按月、按年等存储的,都可以采用先分后合的方法,对数据进行分开处理。八、使用临时表和中间表数据量增加时,处理中要考虑提前汇总。这样做的目的是化整为零,大表变小表,分块处理完成后,再利用一定的规则进行合并,处理过程中的临时表的使用和中间结果的保存都非常重要,如果对于超海量的数据,大表处理不了,只能拆分为多个小表。如果处理过程中需要多步汇总操作,可按

相关文档
最新文档