初中数学中求极值的几种常见的方法

初中数学中求极值的几种常见的方法
初中数学中求极值的几种常见的方法

函数的单调性、极值与最值问题

函数的单调性、极值与最值问题 典例9 (12分)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 审 题 路 线 图 求f ′(x ) ――――――→讨论f ′(x ) 的符号 f (x )单调性―→f (x )最大值―→解f (x )max >2a -2.

评分细则(1)函数求导正确给1分; (2)分类讨论,每种情况给2分,结论1分; (3)求出最大值给2分; (4)构造函数g(a)=ln a+a-1给2分; (5)通过分类讨论得出a的范围,给2分.

跟踪演练9(优质试题·天津)已知函数f(x)=a x,g(x)=log a x,其中a>1. (1)求函数h(x)=f(x)-x ln a的单调区间; (2)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2, g(x2))处的切线平行,证明x1+g(x2)=-2ln ln a ln a; (3)证明当a≥1e e时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线. (1)解由已知得h(x)=a x-x ln a, 则h′(x)=a x ln a-ln a. 令h′(x)=0,解得x=0. 由a>1,可知当x变化时,h′(x),h(x)的变化情况如下表: 所以函数h(x)的单调递减区间为(-∞,0),单调递增区间为(0,+∞). (2)证明由f′(x)=a x ln a,可得曲线y=f(x)在点(x1,f(x1))处 的切线斜率为1x a ln a.由g′(x)= 1 x ln a,可得曲线y=g(x)在点

求极值的若干方法

求极值的若干方法 1 序言 一般来说函数的极值可以分为无条件极值和条件极值两类.无条件极值问题即是函数中的自变 量只受定义域约束的极值问题;而条件极值问题即是函数中的自变量除受定义域约束外还受其它条件限制的极值问题.下面我们给出极值的定义 定义1) 136](1[P 设函数f 在点0P 的某邻域0()U P 内有定义,若对于任何点 0()P U P ∈,成立不等式 0()()f P f P ≤(或0()()f P f P ≥), 则称函数f 在点0P 取得极大(或极小)值,点0P 称为f 的极大(或极小)值点.极大值、极小值统称为极值.极大值点、极小值点统称为极值点. 2 求解一元函数无条件极值的常用方法 2.1 导数法 定理1 ) 142](2[P 设f 在点0x 连续,在某邻域0(;)o U x δ内可导. (i)若当00(,)x x x δ∈-时()0f x '≤,当00(,)x x x δ∈+时()0f x '≥,则f 在点0x 取得极小值. (ii)若当00(,)x x x δ∈-时()0f x '≥,当00(,)x x x δ∈+时()0f x '≤,则f 在点0x 取得极大值. 由此我们可以推出当0(;)o x U x δ∈时,若()f x '的符号保持不变,则()f x 在0x 不取极值. 定理2 ) 142](2[P 设f 在0x 的某邻域0(;)U x δ内一阶可导, 在0x x =处二阶可导,且()0f x '=,()0f x ''≠. (i)若0()0f x ''<,则f 在0x 取得极大值. (ii)若0()0f x ''>,则f 在0x 取得极小值. 对于一般的函数我们既可以利用定理1,也可以利用定理2,但对于有不可导点的函数只能用定理1. 例1 求函数2 ()(1)f x x x =-的极值.

2013年4月6刘艳的初中数学组卷 (1)

2013年4月6的初中数学组卷

2013年4月刘艳的初中数学组卷 一.选择题(共28小题) 1.(2012?黑龙江)如图,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,点E、F分别是AB、BC 边的中点,连接AF、CE交于点M,连接BM并延长交CD于点N,连接DE交AF于点P,则结论:①∠ABN=∠CBN; ②DE∥BN;③△CDE是等腰三角形;④EM:BE=:3;⑤S△EPM=S梯形ABCD,正确的个数有() 2.如图,已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF,则下列结论:①CP平分∠BCD;②四边形ABED为平行四边形;③CQ将直角梯形ABCD分为面积相等的两部分;④△ABF为等腰三角形,其中不正确的有() 3.如图,直角梯形ABCD中,∠A=90°,AD∥BC,AB=AD,DE⊥BC于E,点F为AB上一点,且AF=EC,点M 为FC的中点,连接FD、BD、ME,设FC与DE相交于点N,下列结论: ①∠FDB=∠FCB;②△DFN∽△DBC;③FB=ME;④ME垂直平分BD, 其中正确结论的个数是() 4.如图,梯形ABCD中,AD∥BC,∠A=90°,E在AD上,且CE平分∠BCD,BE平分∠ABC,则下列关系式中成立的有() ①;②;③;④CE2=CD×BC;⑤BE2=AE×BC.

5.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD⊥CD,BD=CD,CE平分∠BCD,交AB于点E,交BD 于点H,EN∥DC交BD于点N,连接DE.下列结论: ①BH=BE;②EH=DH;③tan∠EDB=;④; 其中正确的有() 6.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,AE=AD.连接DE、AC交于F,连接BF.则有下列4个结论: ①△ACD≌△ACE;②△CDE为等边三角形;③EF:BE=():2;④S△ECD:S△ECF=EC:EF. 其中正确的结论是() 7.如图,矩形ABCD中,AB=3,AD=4,△ACE为等腰直角三角形,∠AEC=90°,连接BE交AD、AC分别于F、 N,CM平分∠ACB交BN于M,下列结论:①AB=AF;②AE=ME;③BE⊥DE;④,其中正确的结论的个数有()

初中数学组卷角度计算

初中数学组卷角度计算 一.填空题(共30小题) 1.计算:15°37′+42°51′=. 2.35°48′32″+23°41′28″=°. 3.计算:10°25′+39°46′=. 4.计算:18°27′35″+24°37′43″=. 5.计算:32°﹣15°30′=. 6.计算:153°﹣26°40′=. 7.计算:70°25′﹣34°45′=. 8.(1)92°18′﹣60°54′=; (2)22.5°=度分. 9.30.26°=°′″. 10.12.42°=°′″. 11.2.42°=°′″. 12.56°45′=°. 13.56°18′=°. 14.角度换算:26°48′=°. 15.25°12′8″=度. 16.34°30′=°. 17.计算:22°18′×5=. 18.21°17′×5=. 19.计算31°29′35″×4=. 20.计算:45°36′+15°14′=;60°30′﹣45°40′=.21.计算:20°30′+15°24′×3=°′. 22.12°24′=度. 23.①23°30′=°; ②0.5°=′=″; ③3.76°=°′″; ④15°48′36″+37°27′59″=. 24.(1)23°30′=°; (2)0.5°=′=″. 25.7200″=′=°. 26.18.32°=18°′″;216°42′=°. 27.1.25°=′=″;1800″=′=°. 28.78.36°=°′″;50°24′×3+98°12′25″÷5=°.29.45°=平角,周角=度,25°20′24″=度. 30.(1)32.48°=度分秒. (2)72°23′42″=度.

函数极值的几种求法

函数极值的几种求法 ──针对高中生所学知识 摘要:函数是数学教学中一个重要的组成部分,从小学六年级的一元一次方程继而延伸到初中的一次函数,二次函数的初步介绍,再到高中的函数的单调性、周期性、最值、极值,以及指数函数、对数函数、三角函数的学习,这些足以说明函数在数学教学中的地位。极值作为函数的一个重要性质,无论是在历年高考试题中,还是在实际生活运用中都占有不可或缺的地位。本文主要阐述了初高中常见的几种函数,通过函数极值的相关理论给出每种函数极值的求解方法。 关键词:函数;单调性;导数;图像;极值 Abstract: Function is an important part of mathematics teaching. First the learning of linear equation in six grade, secondly the preliminary introduction of linear functions and quadratic functions in junior high school, then the monotonicity, the periodicity, the most value and the extreme value of function, finally the learning of the logarithmic function, exponential function and trigonometric function in high school. These are enough to show the important statue of the function in mathematics teaching. As an important properties of function, extreme value has an indispensable status whether in the calendar year test, or in daily life. This article will mainly expound the methods of solving the extreme value of sever functions in middle school. Key words: function; monotonicity; derivative; image; extreme value “函数”一词最先是由德国的数学家莱布尼茨在17世纪采用的,当时莱布尼茨用“函数”这一词来表示变量x的幂,也就是x的平方x的立方。之后莱布尼茨又将“函数”这一词用来表示曲线上的横坐标、纵坐标、切线的长度、垂线的长度等与曲线上的点有关的变量[]1。就这样“函数”这词逐渐盛行。在中国,清代著名数学家、天文学家、翻译家和教育家,近代科学的先驱者善兰给出的定义是:

初中数学组卷可直接打印

初中数学组卷 一.选择题(共15小题) 1.下列各数,3.14159265,,﹣8,,,中,无理数有()A.2个B.3个C.4个D.5个 2.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是() A.B. C.D. 3.已知正比例函数y=kx的图象经过第一、三象限,则一次函数y=kx﹣k的图象可能是如图中的() A.B. C.D. 4.已知点A(m+1,﹣2)和点B(3,m﹣1),若直线AB∥x轴,则m的值为()

A.2B.﹣4C.﹣1D.3 5.若满足方程组的x与y互为相反数,则m的值为()A.1B.﹣1C.11D.﹣11 6.如图,Rt△ABC中,∠ACB=90°,AC=3,AB=5,D为AB边上一动点,连接CD,△ACD与△A′CD关于直线CD轴对称,连接BA′,则BA′的最小值为() A.B.1C.D. 7.已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为()A.21B.15C.6D.21或9 8.下列图形中,表示一次函数y=ax+b与正比例函数y=(a,b为常数,且ab≠0)的图象的是() A.B. C.D. 9.如图,数轴上点A表示的数为a,化简:a+的值是()

A.2a﹣2B.2C.2﹣2a D.2a 10.若点P(x,y)在第四象限,且|x|=2,|y|=3,则x+y=() A.﹣1B.1C.5D.﹣5 11.小明同学解方程组时的解为,由于不小心滴上了两滴墨水,刚好遮住了“?”和“*”处的两个数,则“●”,“*”分别代表的数是() A.﹣2,1B.﹣2,﹣1C.2,1D.2,﹣1 12.在如图所示的象棋盘上,建立适当的平面直角坐标系,使“炮”位于点(﹣3,2)上,“相”位于点(2,﹣1)上,则“帅“位于点() A.(0,0)B.(﹣1,1)C.(1,﹣1)D.(﹣2,2)13.已知△ABC的三边分别为a、b、c,则下列条件中不能判定△ABC是直角三角形的是() A.∠A:∠B:∠C=3:4:5B.a:b:c=1::2 C.∠C=∠A﹣∠B D.b2=a2﹣c2 14.已知正比例函数的图象经过点(﹣2,6),则该函数图象还经过的点是()A.(2,﹣6)B.(2,6)C.(6,﹣2)D.(﹣6,2)15.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是() A.y=﹣2x+24(0<x<12)B.y=﹣x+12(0<x<24) C.y=2x﹣24(0<x<12)D.y=x﹣12(0<x<24)

初中数学几何压轴题组卷

绝密★启用前 初中数学几何压轴题组卷 试卷副标题 考试范围:xxx ;考试时间:100分钟;命题人:xxx 题号 一 二 三 总分 得分 注意事项: 1 ?答题前填写好自己的姓名、班级、考号等信息 2 ?请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 评卷人 得分 ?选择题(共3小题) 1.如图,在凸四边形 ABCD 中,AB 的长为2, P 是边AB 的中点,若/ DAB= / ABC 玄PDC=90,则四边形ABCD 的面积的最小值是 2. 北京奥运会金牌创造性地将白玉圆环嵌在其中(如图) 对获胜者的礼赞,也形象地诠释了中华民族自古以来以 观.若白玉圆环面积与整个金牌面积的比值为 k ,则下列各数与k 最接近 C. D . 2+2 :■: ,这一设计不仅是 玉”比德”的价

的是() 金 金 白圭

A.丄 B.二 C.二 3 2 3 3. 在等边厶ABC所在平面上的直线m满足的条件是:等边△ 点到直线m的距离只取2个值,其中一个值是另一个值的直线m的条数是() A. 16 B. 18 C. 24ABC的3个顶2倍,这样的 D. 27

第U卷(非选择题) 请点击修改第n卷的文字说明 评卷人得分 二?填空题(共6小题) 4. 5个正方形如图摆放在同一直线上,线段BQ经过点E、H、”,记厶RCE △ GEH △ MHN、A PNQ 的面积分别为Si, S2, S3, 9,已知S i+S=17, 贝U S b+Si= _____ . 3DF 7 0 5. 设A o, A i,…,A n-1依次是面积为整数的正n边形的n个顶点,考虑由连 续的若干个顶点连成的凸多边形,如四边形A3A4A5A6、七边形A n -2A n- 1A0A1A2A3A4等,如果所有这样的凸多边形的面积之和是231,那么n的最大值是_________ ,此时正n边形的面积是_______ . 6. 已知Rt A ABC和Rt A A C'电,AC=A , D=1/ B=Z D=90°° / C+Z C =60 BC=2则这两个三角形的面积和为________ . 7. 设a, b, c为锐角△ ABC的三边长,为h a, h b, h c对应边上的高,贝U U=_ ] r的取值范围是_____________ . a+b+c 8. 如图已知四边形ABCD的对角线AC与BD相交于O,若&AOB=4,&COC=9, 则四边形ABCD的面积的最小值为______ . 9. 四边形ABCD的四边长为AB=、,BC=「「- ? | , CD= J-」—「 DA= 「,一条对角线BD=L 厂,其中m, n为常数,且0v m v 7, 0v n v 5,那么四边形的面积为__________ .

(完整版)导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解析】

试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】 试题分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

目标函数的几种极值求解方法

目标函数极值求解的几种方法 题目:()() 2 22 1 122min -+-x x ,取初始点()() T x 3,11 =,分别用最速下降法, 牛顿法,共轭梯度法编程实现。 一维搜索法: 迭代下降算法大都具有一个共同点,这就是得到点()k x 后需要按某种规则确定一个方向()k d ,再从()k x 出发,沿方向()k d 在直线(或射线)上求目标函数的极小点,从而得到()k x 的后继点()1+k x ,重复以上做法,直至求得问题的解,这里所谓求目标函数在直线上的极小点,称为一维搜索。 一维搜索的方法很多,归纳起来大体可以分为两类,一类是试探法:采用这类方法,需要按某种方式找试探点,通过一系列的试探点来确定极小点。另一类是函数逼近法或插值法:这类方法是用某种较简单的曲线逼近本来的函数曲线,通过求逼近函数的极小点来估计目标函数的极小点。本文采用的是第一类试探法中的黄金分割法。原理书上有详细叙述,在这里介绍一下实现过程: ⑴ 置初始区间[11,b a ]及精度要求L>0,计算试探点1λ和1μ,计算函数值 ()1λf 和()1μf ,计算公式是:()1111382.0a b a -+=λ,()1111618.0a b a -+=μ。令 k=1。 ⑵ 若L a b k k <-则停止计算。否则,当()K f λ>()k f μ时,转步骤⑶;当 ()K f λ≤()k f μ时,转步骤⑷ 。 ⑶ 置k k a λ=+1,k k b b =+1,k k μλ=+1,()1111618.0++++-+=k k k k a b a μ,计算函数值 ()1+k f μ,转⑸。 ⑷ 置k k a a =+1,k k b μ=+1,k k μμ=+1,()1111382.0++++-+=k k k k a b a λ,计算函数值()1+k f λ,转⑸。 ⑸ 置k=k+1返回步骤 ⑵。 1. 最速下降法 实现原理描述:在求目标函数极小值问题时,总希望从一点出发,选择一个目

求极值与最值的方法

求极值与最值的方法 1 引言 在当前的数学教育中,求初等函数的极值与最值占有比较重要的位置,由于其解法灵活,综合性强,能力要求高,故而解决这类问题,要掌握各数学分支知识,能综合运用各种数学技能,灵活选择合理的解题方法。下面我们将要介绍多种求初等函数的极值和最值的方法。 2 求函数极值的方法 极值定义:设函数()f x 在0x 的某邻域内有定义,且对此邻域内任一点 x 0()x x ≠,均有0()()f x f x <,则称0()f x 是函数错误!未找到引用源。的一个极大值;同样如果对此邻域内任一点x 0()x x ≠,均有错误!未找到引用源。,则称0()f x 是函数错误!未找到引用源。的一个极小值。函数的极大值与极小值统称为函数的极值。使函数取得极值的点0x ,称为极值点。 2.1 求导法 判别方法一: 设()f x 在点0x 连续,在点错误!未找到引用源。的某一空心邻域内可导。当 x 由小增大经过错误!未找到引用源。时,如果: (1)'()f x 由正变负,那么0x 是极大值点; (2)错误!未找到引用源。由负变正,那么0x 是极小值点; (3)错误!未找到引用源。不变号,那么0x 不是极值点。 判别方法二: 设()f x 在点0x 处具有二阶导数,且'()0f x =,''()0f x =。 (1)如果''()0f x <,则()f x 在点0x 取得极大值; (2)如果''()0f x >,则()f x 在点0x 取得极小值。

判别方法三: 设()f x 在点0x 有n 阶导数,且0)()()(0)1(00===''='-x f x f x f n 0)(0)(≠x f n ,则: (1)当为偶数时,)(x f 在0x 取极值,有0)(0)(x f n 时,)(x f 在0x 取极小值。 (2)当为奇数时,)(x f 在0x 不取极值。 求极值方法: (1)求一阶导数,找出导数值为0的点(驻点),导数值不存在的点,及端点; (2)判断上述各点是否极值点 例 1 求函数32()69f x x x x =-+的极值。 解法一 : 因为32()69f x x x x =-+的定义域为错误!未找到引用源。, 且'2()31293(1)(3)f x x x x x =-+=--, 令'()0f x =,得驻点11x =, 23x =; 在错误!未找到引用源。内,错误!未找到引用源。,在错误!未找到引用源。内,'()0f x <,(1)4f =为函数()f x 的极大值。 解法二: 因为错误!未找到引用源。的定义域为错误!未找到引用源。, 且错误!未找到引用源。,错误!未找到引用源。。 令错误!未找到引用源。,得驻点错误!未找到引用源。,错误!未找到引用源。。又因为错误!未找到引用源。,所以,错误!未找到引用源。为)(x f 极大值。 错误!未找到引用源。,所以错误!未找到引用源。为)(x f 极小值.

2014年初中数学组卷 10

一.选择题(共9小题)1.(2013?柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为() A.B.C.D. 2.(2010?台湾)如图,△ABC中,有一点P在AC上移动.若AB=AC=5,BC=6,则AP+BP+CP的最小值为() A.8B.8.8 C.9.8 D.10 3.(2008?安徽)如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于() A.B.C.D. 4.(2005?萧山区二模)如图,已知∠B=∠C=∠D=∠E=90°,且AB=CD=3,BC=4,DE=EF=2,则A、F两点间的距离是() A.14 B.6+C.8+D.10 5.如图,在△ABC中,∠C=90°,∠B=30°,AD是∠BAC的平分线,若CD=2,那么BD等于() A.6B.4C.3D.2

6.如图,在△ABC中,若AB=10,AC=16,AC边上的中线BD=6,则BC等于() A.8B.10 C.11 D.12 7.△ABC中,∠C=90°,∠A=30°,BD是角平分线,交AC于D点,若BD=2,则AB的长是()A.2B.C.2D.14 8.如图,AD,CE为锐角△ABC的两条高,若AB=15,BC=14,CE=11.2,则BD的长为() A.8B.9C.11 D.12 9.如图所示,AC上BD,O为垂足,设m=AB2+CD2,n=AD2+BC2,则m,n的大小关系为() A.m<n B.m=n C.m>n D.不确定 二.填空题(共9小题) 10.(2013?襄阳)在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图 所示的直角梯形,则原直角三角形纸片的斜边长是_________. 11.(2013?桂林)如图,在△ABC中,CA=CB,AD⊥BC,BE⊥AC,AB=5,AD=4,则AE=_________.

2020年05月12日数学的初中数学组卷

2020年05月12日数学的初中数学组卷 一.选择题(共1小题) 1.如图,在平面直角坐标系中,菱形ABCD的顶点A的坐标为(1,0),顶点B、C在第一象限,顶点D在y轴的正半轴上,∠BAD=60°,将菱形ABCD沿AB翻折得到菱形ABC′D′,点D′恰好落在x轴上,若函数y=(x>0)的图象经过点C′,则k的值为() A.B.2C.3D.4 二.填空题(共1小题) 2.如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,且AE:ED=1:3.动点P 从点A出发,沿AB运动到点B停止.过点E作EF⊥PE交射线BC于点F,设M是线段EF的中点,则在点P运动的整个过程中,点M运动路线的长为. 三.解答题(共7小题) 3.如图1,在矩形ABCD中,AB=6,AD=8,E、F分别为AB、AD边的中点,四边形AEGF 为矩形,连接CG. (1)如图1,请直接写出=;如图2,当矩形AEGF绕点A顺时针旋转至点G落在AB上时,=; (2)当矩形AEGF绕点A旋转至图3的位置时,图2中DF与CG之间的数量关系是否还成立?说明理由. (3)如图4,在?ABCD中,∠B=60°,AB=6,AD=8,E、F分别为AB、AD边的中点,四边形AEGF为平行四边形,连接CG,当?AEGF绕点A顺时针旋转60°时(如图5),请直接写出CG的长度.

4.如图,将矩形ABCD绕点A顺时针旋转,得到矩形AB′C′D′,点C的对应点C′恰好落在CB的延长线上,边AB交边C′D′于点E. (1)求证:BC=BC′; (2)若AB=2,BC=1,求AE的长. 5.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(x>0)的图象上,点D的坐标为(4,3). (1)求k的值. (2)若将菱形ABCD向右平移,使点D落在反比例函数y=(x>0)的图象上,求菱形ABCD平移的距离. (3)怎样平移可以使点B、D同时落在第一象限的曲线上? 6.如图1,在平面直角坐标系xOy中,点F(2,2),过函数y=(x>0,常数k>0)图象上一点A(,a)作y轴的平行线交直线l:y=﹣x+2于点C,且AC=AF.

二次函数最值问题与解题技巧(个人整理)

一、二次函数线段最值问题 1、平行于x轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用右侧端点的横坐标减去左侧端点的横坐标 3)得到一个线段长关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、平行于y轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用上面端点的纵坐标减去下面端点的纵坐标 3)得到一个线段长关于自变量的二次函数解析式 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 3、既不平行于x轴,又不平行于y轴的线段最值问题 1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于 x轴、y轴 2)根据线段两个端点的坐标表示出直角顶点坐标 3)根据“上减下,右减左”分别表示出两直角边长 4)根据勾股定理表示出斜边的平方(即两直角边的平方和) 5)得到一个斜边的平方关于自变量的二次函数 6)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 7)根据所求得的斜边平方的最值求出斜边的最值即可 二、二次函数周长最值问题 1、矩形周长最值问题 1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长 最值 2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长 3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、利用两点之间线段最短求三角形周长最值 1)首先判断图形中那些边是定值,哪些边是变量 2)利用二次函数轴对称性及两点之间线段最短找到两条变化的边,并求其和的最小值 3)周长最小值即为两条变化的边的和最小值加上不变的边长 三、二次函数面积最值问题 1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一组对边平行于坐标轴) 1)首先表示出所需的边长及高 2)利用求面积公式表示出面积 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、不规则图形面积最值问题 1)分割。将已有的不规则图形经过分割后得到几个规则图形 2)再分别表示出分割后的几个规则图形面积,求和 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 或1)利用大减小,不规则图形的面积可由规则的图形面积减去一个或几个规则小图形的 面积来得到

变量之间的关系难题初中数学组卷

变量之间得关系得初中数学组卷 一.选择题(共7小题) 1.(2015?荆州)如图,正方形ABCD得边长为3cm,动点P从B点出发以3cm/s得速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s得速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ得面积为y(cm2),则y关于x得函数图象就是() A.? B.? C.? D. 2.(2015?北京)一个寻宝游戏得寻宝通道如图1所示,通道由在同一平面内得AB,BC,CA,OA,OB,OC组成.为记录寻宝者得行进路线,在BC得中点M处放置了一台定位仪器.设寻宝者行进得时间为x,寻宝者与定位仪器之间得距离为y,若寻宝者匀速行进,且表示y与x得函数关系得图象大致如图2所示,则寻宝者得行进路线可能为( ) A.A→O→B B.B→A→C C.B→O→C?D.C→B→O 3.(2015?盘锦)如图,边长为1得正方形ABCD,点M从点A出发以每秒1个单位长度得速度向点B运动,点N从点A出发以每秒3个单位长度得速度沿A→D→C→B得路径向点B 运动,当一个点到达点B时,另一个点也随之停止运动,设△AMN得面积为s,运动时间为t 秒,则能大致反映s与t得函数关系得图象就是( ) A. B. C.?D. 4.(2015?广元)如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C得方向在AB与BC上移动.记PA=x,点D到直线PA得距离为y,则y关于x得函数大致图象就是( ) A.? B. C.D. 5.(2015?淄博模拟)已知:如图,点P就是正方形ABCD得对角线AC上得一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD得边长为x,矩形PEBF得周长为y,在下列图象中,大致表示y与x之间得函数关系得就是() A.? B. C. D. 6.(2014?新泰市模拟)众志成城,预防“禽流感”.在这场没有硝烟得战斗中,科技工作者与医务人员通过探索,把某种药液稀释在水中进行喷洒,消毒效果较好,并且发现当稀释到某一浓度a 时,效果最好而不就是越浓越好.有一同学把效果与浓度得关系绘成曲线,您认为正确得就是() A.? B. C. D.

2018年04月初中数学应用题难题组卷

2018年04月初中数学应用题难题组卷 一.填空题(共2小题) 1.如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn= . 2.心理学家研究发现:一般情形下,在一节40分钟的课中,学生的注意力随教师讲课的时间变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持为理想的稳定状态,随后学生的汪意力开始分散.经过实验分析,知学生的注意力指数y随时间x(分钟)的 变化规律为:y= 有一道数学竞赛题需要讲解16.5分钟,为了使效果更好,要求学生的注意力指数最低值达到最大.那么,教师经过适当安排,应在上课的第分钟开始讲解这道题. 二.解答题(共13小题) 3.重庆市的重大惠民工程﹣﹣公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是(x单位:年,7≤x≤10且x为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单位:元/m2)与时间x(单位:年,1≤x≤10且x为整数)满足一次函数关系如下表:

z(元/m2)5 5 2 5 4 5 6 5 8 … x(年)12345… (1)求出z与x的函数关系式; (2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元; (3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%,求a的值. (参考数据:,,) 4.湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本). (1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值; (2)设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t 的函数关系为;y与t的函数关系如图所示. ①分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式; ②设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W最大?并求出 最大值.(利润=销售总额﹣总成本)

二元函数的极值与最值

二元函数的极值与最值 二元函数的极值与最值问题已成为近年考研的重点,现对二元函数的极值与最值的求法总结如下: 1.二元函数的无条件极值 (1) 二元函数的极值一定在驻点和不可导点取得。对于不可导点,难以判断是否是极值点;对于驻点可用极值的充分条件判定。 (2)二元函数取得极值的必要条件: 设),(y x f z =在点),(00y x 处可微分且在点),(00y x 处有极值,则0),('00=y x f x ,0),('00=y x f y ,即),(00y x 是驻点。 (3) 二元函数取得极值的充分条件:设),(y x f z =在),(00y x 的某个领域内有连续上二阶偏导数,且=),('00y x f x 0),('00=y x f y ,令A y x f xx =),('00, B y x f xy =),('00,C y x f yy =),('00,则 当02<-AC B 且 A<0时,f ),(00y x 为极大值; 当02<-AC B 且A>0,f ),(00y x 为极小值; 02 >-AC B 时,),(00y x 不是极值点。 注意: 当B 2-AC = 0时,函数z = f (x , y )在点),(00y x 可能有极值,也可能没有极值,需另行讨论 例1 求函数z = x 3 + y 2 -2xy 的极值. 【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值. 【解】先求函数的一、二阶偏导数: y x x z 232 -=??, x y y z 22-=??. x x z 62 2 =??, 22 -=???y x z , 2 2 2 =??y z . 再求函数的驻点.令x z ??= 0,y z ??= 0,得方程组???=-=-. 022,0232x y y x 求得驻点(0,0)、),(3 2 32. 利用定理2对驻点进行讨论:

求函数极值的几种方法

求解函数极值的几种方法 1.1函数极值的定义法 说明:函数极值的定义,适用于任何函数极值的求解,但是在用起来时却比较的烦琐. 1.2导数方法 定理(充分条件)设函数()f x 在0x 处可导且0()0f x '=,如果x 取0x 的左侧的值时,()0f x '>,x 取0x 的右侧的值时,()0f x '<,那么()f x 在0x 处取得极大值,类似的我们可以给出取极小值的充分条件. 例1 求函数23()(1)f x x x =-的单调区间和极值 解 23()(1)f x x x =- ()x -∞<<+∞, 3222()2(1)3(1)(1)(52)f x x x x x x x x '=-+-=--. 令 ()0f x '=,得到驻点为10x =,22 5 x = ,31x =.列表讨论如下: 表一:23()(1)f x x x =-单调性列表 说明:导数方法适用于函数()f x 在某处是可导的,但是如果函数()f x 在某处不可导,则就不能用这样的方法来求函数的极值了.用导数方法求极值的条件是:函数()f x 在某点0x 可导. 1.3 Lagrange 乘法数方法 对于问题: Min (,)z f x y = s.t (,)0x y =

如果**(,)x y 是该问题的极小值点,则存在一个数λ,使得 ****(,)(,)0x x f x y g x y λ+= ****(,)(,)0y y f x y g x y λ+= 利用这一性质求极值的方法称为Lagrange 乘法数 例2 在曲线3 1(0)y x x = >上求与原点距离最近的点. 解 我们将约束等式的左端乘以一个常数加到目标函数中作为新的目标函 数2231 ()w x y y x λ=++- 然后,令此函数对x 的导数和对y 的导数分别为零,再与原等式约束合并得 43 320201x x y y x λλ?+=?? +=???=? 解得 x y ?=? ?= ?? 这是唯一可能取得最值的点 因此 x y ==为原问题的最小值点. 说明:Lagrange 乘法数方法对于秋多元函数是比较方便的,方法也是比较简单的 :如果**(,)x y 是该问题的极小值点则存在一个数λ,使得 ****(,)(,)0x x f x y g x y λ+= ****(,)(,)0y y f x y g x y λ+= 这相当于一个代换数,主要是要求偏导注意,这是高等代数的内容. 1.4多元函数的极值问题 由极值存在条件的必要条件和充分条件可知,在定义域内求n 元函数()f p 的极值可按下述步骤进行:①求出驻点,即满足grad 0()0f p =的点0p ;②在0 p

初中数学圆的专题训练

圆的专题训练初中数学组卷 一.选择题(共15小题) 1.如图,⊙O的半径为4,△ABC是⊙O的接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC的长为() A.3 B.4 C.5 D.6 2.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为5cm,则圆心O 到弦CD的距离为() A.cm B.3cm C.3cm D.6cm 3.如图,AB是⊙O的直径,CD⊥AB,∠ABD=60°,CD=2,则阴影部分的面积为() A.B.πC.2πD.4π 4.如图,已知AB是⊙O的直径,∠D=40°,则∠CAB的度数为() A.20° B.40° C.50° D.70° 5.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan ∠OBC为()

A.B.2 C.D. 6.如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=() A.2πB.π C.π D.π 7.如图,⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是() A.15° B.25° C.30° D.75° 8.如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=() A.100°B.72° C.64° D.36° 9.如图,在平面直角坐标系中,⊙P与x轴相切,与y轴相交于A(0,2),B(0,8),则圆心P的坐标是()

A.(5,3)B.(5,4)C.(3,5)D.(4,5) 10.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是() A.B.1﹣C.﹣1 D.1﹣ 11.如图,△ABC接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于() A.B.C.D. 12.如图所示,在△ABC中,∠A=90°,AB=AC=2cm,⊙A与BC相切于点D,阴影部分的面 积为() A.B.C.D. 13.如图,某工件形状如图所示,等腰Rt△ABC中斜边AB=4,点O是AB的中点,以O为圆心的圆分别与两腰相切于点D、E,则图中阴影部分的面积是() A.B.C.D.2﹣π 14.若圆锥经过轴的截面是一个正三角形,则它的侧面积与底面积之比是() A.3:2 B.3:1 C.5:3 D.2:1

相关文档
最新文档