振动系统稳定模型的频域辨识

振动与冲击

第29卷第3期JOURNAl.OFVIBRATIONANDSHOCKV01.29No.32010

振动系统稳定模型的频域辨识

彭程,王永

(中国科学技术大学自动化系,合肥230027)

摘要:研究了利用频响数据进行振动系统辨识的问题。将振动系统表示为二阶传递函数之和的形式,通过约束传递函数模型中分母系数为正,可以保证模型的稳定性。采用非线性最tbz.乘目标函数作为优化准则,分子和分母系数通过分离的方式进行估计。分母系数利用模拟退火算法得到,分子系数通过求解线性最小二乘问题得到。数值仿真算例验证_r辨识算法的有效性。

关键词:振动系统;频域辨识;稳定模型;模拟退火;线性最:b-乘

中图分类号:0321文献标识码:A

频域辨识是系统建模的一种重要方式。待辨识对象稳定的情况下,如何保证辨识得到的模型也是稳定的是一个值得研究的课题。为了得到稳定模型,文献[1]给出了一种两步辨识算法,首先不考虑模型的稳定性的要求得到一个辨识模型,然后通过求解约束优化问题,将辨识模型转化为稳定的模型。Matlab信号处理工具箱_1实现的非线性线性最:b-乘辨识程序Inv—freqs,具有将不稳定模型映射为稳定模型的功能,但是其优化采用了高斯一牛顿法,有可能陷入局部极小点。文献[3]将待辨识对象表示为二阶传递函数之和的形式,采用牛顿法求解有约束非线性最小二乘问题以得到稳定模型。频域非线性最dx-乘辨识问题是变量可分离的一J,文献[5]注意到这一点,利用可分离最/b--乘技术研究模态分析问题,文献[3]则利用可分离最小二乘的思想确定模型中线性参数的初值。

本文给出一种适用于振动系统的频域辨识算法,将待辨识对象表示为二阶传递函数之和的形式。以非线性最小二乘目标函数作为优化准则,考虑到该非线性最小二乘问题是变量可分离的,利用模拟退火算法估计模型中的非线性参数,而线性参数则通过求解线性最小二乘问题得到。

1问题描述

本文研究的问题是:假设已知Ⅳ自由度振动系统

在频率点cc,i,i=1,2,…,L的频率响应数据日(知i),i=l,2,…,L,找到能够极小化目标函数式(1)的稳定传递函数日(如)。

.,=÷∑1H“(jto。)一tt(ja,i)l2(1)类似于文献[3],本文将振动系统表示为式(2)的

收稿日期:2009-01-08修改稿收到日期:2009—05—22

第一作者彭程男,博士后,1978年11月生

通讯作者王永男,博士,教授,博士生导师,1962年11月生形式:

=荟Ni瓮杀刁(2)其中:

a2【a1a2

口Ⅳj

r]T

b=[blb2…b~]’

c=[c1c2…cⅣ]7

d=[d。d:…d。]’(3)若式(2)中各二阶传递函数分母中未知参数满足约束吼>0,bI>0,k=l,2,…,Ⅳ,则式(2)的模型是稳定的,在极小化问题中增加上述约束即可获得稳定模型。在上述约束的基础上可以进一步引入如下约束:a女<l,bI<∞。。,,k=l,2,…,Ⅳ,其中∞一为建模频段的上界,此时频域辨识问题转化为式(4)给出的有约束非线性最小二乘问题。

.L

minJ(a,b,c,d)=了1∑陬灿,口,b,c,d)I2=

_l=I

i1¨T膨",口,b,c,d),‘(如,n,b,c,d)(4)

s.t.0<吼<l,0<6&<∞。。,

Ji}=1,2,…,Ⅳ

其中:

r(ja,,n,b,c,d)=[r1(ja,,a,b,c,d)…rL(ja,,a,b,c,d)]7rf(如,。,b,c,d)=日(必f)一Ⅳ(ja,。,a,b,c,d),

i=l,2,…,L(5)2辨识算法

可以利用多种优化算法求解式(4)给出的有约束非线性最小二乘问题,本文采用了模拟退火算法。模拟退火算法在优化过程中以一定概率接受不优于当前解的新解,是一类全局优化算法。

对于优化问题minf(名),模拟退火算法基本步骤为:

①初始化温度r,随机生成初始解向量,17,计算其

万方数据

系统辨识之经典辨识法

系统辨识作业一 学院信息科学与工程学院专业控制科学与工程 班级控制二班 姓名 学号

2018 年 11 月 系统辨识 所谓辨识就是通过测取研究对象在认为输入作用的输出响应,或正常运行时 的输入输出数据记录,加以必要的数据处理和数学计算,估计出对象的数学模型。 辨识的内容主要包括四个方面: ①实验设计; ②模型结构辨识; ③模型参数辨识; ④模型检验。 辨识的一般步骤:根据辨识目的,利用先验知识,初步确定模型结构;采集 数据;然后进行模型参数和结构辨识;最终验证获得的最终模型。 根据辨识方法所涉及的模型形式来说,辨识方法可以分为两类:一类是非参 数模型辨识方法,另一类是参数模型辨识方法。 其中,非参数模型辨识方法又称为经典的辨识方法,它主要获得的是模型是 非参数模型。在假定过程是线性的前提下,不必事先确定模型的具体结构,广泛 适用于一些复杂的过程。经典辨识方法有很多,其中包括阶跃响应法、脉冲响应法、相关分析法和普分析法等等,本次实验所采用的辨识方法为阶跃响应法和脉 冲响应法。 1.阶跃响应法 阶跃响应法是一种常用非参数模型辨识方法。常用的方法有近似法、半对数法、切线法、两点法和面积法等。本次作业采用面积法求传递函数。 1.1面积法 ① 当系统的传递函数无零点时,即系统传递函数如下: G(S) = + ?11?1+?+ 1+1 (1-1) 系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取 微分方程的系数来辨识系统的传递函数。在求得系统的放大倍数K后,要得到无 因次阶跃响应y(t)(设τ=0),其中y(t)用下式描述: () ?1 () (1-2) 面积法原则上可以求出n为任意阶的个系数。以n为3为例。有: 3() 2() () {| →∞ =| →∞ =| →∞ = 0 (1-3) ()| →∞ = 1

控制系统的频域分析实验报告

实验名称: 控制系统的频域分析 实验类型:________________同组学生姓名:__________ 一、实验目的和要求 用计算机辅助分析的方法,掌握频率分析法的三种方法,即Bode 图、Nyquist 曲线、Nichols 图。 二、实验内容和原理 (一)实验原理 1.Bode(波特)图 设已知系统的传递函数模型: 1 1211121)(+-+-+???+++???++=n n n m m m a s a s a b s b s b s H 则系统的频率响应可直接求出: 1 1211121)()()()()(+-+-+???+++???++=n n n m m m a j a j a b j b j b j H ωωωωω MATLAB 中,可利用bode 和dbode 绘制连续和离散系统的Bode 图。 2.Nyquist(奈奎斯特)曲线 Nyquist 曲线是根据开环频率特性在复平面上绘制幅相轨迹,根据开环的Nyquist 线,可判断闭环系统的稳定性。 反馈控制系统稳定的充要条件是,Nyquist 曲线按逆时针包围临界点(-1,j0)p 圈,为开环传递函数位于右半s 一平面的极点数。在MATLAB 中,可利用函数nyquist 和dnyquist 绘出连续和离散系统的乃氏曲线。 3.Nicho1s(尼柯尔斯)图 根据闭环频率特性的幅值和相位可作出Nichols 图,从而可直接得到闭环系统的频率特性。在 MATLAB 中,可利用函数nichols 和dnichols 绘出连续和离散系统的Nichols 图。 (二)实验内容 1.一系统开环传递函数为 ) 2)(5)(1(50)(-++=s s s s H 绘制系统的bode 图,判断闭环系统的稳定性,并画出闭环系统的单位冲击响应。 2.一多环系统 ) 10625.0)(125.0)(185.0(7.16)(+++=s s s s s G 其结构如图所示 试绘制Nyquist 频率曲线和Nichols 图,并判断稳定性。 (三)实验要求

(实验三)连续时间LTI系统的频域分析汇总

实验三 连续时间LTI 系统的频域分析 一、实验目的 1、掌握系统频率响应特性的概念及其物理意义; 2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用; 3、学习和掌握幅度特性、相位特性以及群延时的物理意义; 4、掌握用MA TLAB 语言进行系统频响特性分析的方法。 基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。 二、实验原理及方法 1 连续时间LTI 系统的频率响应 所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。 上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到: )()()(ωωωj H j X j Y = 3.1 或者: ) () ()(ωωωj X j Y j H = 3.2 )(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。即 ? ∞ ∞ --= dt e t h j H t j ωω)()( 3.3 由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说 是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,

连续时间LTI系统的频率特性及频域分析

实验报告 实验项目名称:运用Matlab进行连续时间信号卷积运算 (所属课程:信号与系统) 学院:电子信息与电气工程学院 专业: 10电气工程及其自动化 姓名: xx 学号: 201002040077 指导老师: xxx

一、实验目的 1、学会运用MATLAB 分析连续系统的频率特性。 2、掌握相关函数的调用。 二、实验原理 1、一个连续LTI 系统的数学模型通常用常系数线性微分方程描述,即 )()()()()()(01 )(01)(t e b t e b t e b t r a t r a t r a m m n n +'++=+'++ (1) 对上式两边取傅里叶变换,并根据FT 的时域微分性质可得: )(])([)(])([0101ωωωωωωE b j b j b R a j a j a m m n n +++=+++ 101)()()()()(a j a j a b j b j b j E j R j H n n m m ++++++==ωωωωωωω H ( j ω )称为系统的频率响应特性,简称系统频率响应或频率特性。一般H ( j ω )是复函数,可表示为: )()()(ω?ωωj e j H j H = 其中, )(ωj H 称为系统的幅频响应特性,简称为幅频响应或幅频特性;)(ω?称为系统的相频响应特性,简称相频响应或相频特性。H ( j ω )描述了系统响应的傅里叶变换与激励的傅里叶变换间的关系。H ( j ω )只与系统本身的特性有关,与激励无关,因此它是表征系统特性的一个重要参数。 MATLAB 信号处理工具箱提供的freqs 函数可直接计算系统的频率响应的数值解,其语句格式为:H=freqs(b,a,w)其中,b 和a 表示H ( j ω )的分子和分母多项式的系数向量;w 为系统频率响应的频率范围,其一般形式为w1:p:w2,w1 为频率起始值,w2 为频率终止值,p 为频率取值间隔。 H 返回w 所定义的频率点上系统频率响应的样值。注意,H 返回的样值可能为包含实部和虚部的复数。因此,如果想得到系统的幅频特性和相频特性,还需要利用abs 和angle 函数来分别求得。

理工大学信号与系统实验报告连续时间系统的复频域分析

理工大学信号与系统实验报告连续时间系统的 复频域分析 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

实验5连续时间系统的复频域分析 (综合型实验) 一、实验目的 1)掌握拉普拉斯变换及其反变换的定义并掌握MATLAB 实现方法。 2)学习和掌握连续时间系统函数的定义及复频域分析方法。 3)掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。 二、实验原理与方法 1.拉普拉斯变换 连续时间信号x(t)的拉普拉斯变换定义为(s)(t)e st X x dt +∞ --∞ =? (1) 拉普拉斯反变换为1 (t)(s)e 2j st j x X ds j σσπ+∞ - ∞ = ? (2) MATLAB 中相应函数如下: (F)L laplace = 符号表达式F 拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。 (F,t)L laplace =用t 替换结果中的变量s 。 ()F ilaplace L =以s 为变量的符号表达式L 的拉氏反变换,返回时间变量 为t 的结果表达式。 (,)F ilaplace L x =用x 替换结果中的变量t 。 拉氏变换还可采用部分分式法,当(s)X 为有理分式时,它可以表示为两个多项式之比: 110 1 10 ...(s)(s)(s)...M M M M N N N N b s b s b N X D a s a s a ----+++==+++ (3)

上式可以采用部分分式法展成以下形式 1212(s)...N N r r r X s p s p s p = +++--- (4) 再通过查找常用拉氏变换对易得反变换。 利用residue 函数可将X(s)展成(4)式形式,调用格式为: [r,p,k]residue(b,a)=其中b 、a 为分子和分母多项式系数向量,r 、p 、k 分 别为上述展开式中的部分分式系数、极点和直项多项式系数。 2.连续时间系统的系统函数 连续时间系统的系统函数是指系统单位冲激响应的拉氏变换 (s)(t)e st H h dt +∞ --∞ = ? (5) 连续时间系统的系统函数还可以由系统输入与输出信号的拉氏变换之比得到。 (s)(s)/X(s)H Y = (6) 单位冲激响应(t)h 反映了系统的固有性质,而(s)H 从复频域反映了系统的固有性质。由(6)描述的连续时间系统,其系统函数为s 的有理函数 110 1 10 ...(s)...M M M M N N N N b s b s b H a s a s a ----+++=+++ (7) 3.连续时间系统的零极点分析 系统的零点指使式(7)的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统的值为无穷大。通常将系统函数的零极点绘在s 平面上,零点用O 表示,极点用?表示,这样得到的图形为零极点分布图。可以通过利用MATLAB 中的求多项式根的roots 函数来实现对(7)分子分母根的求解,调用格式如下:

系统辨识复习资料

1请叙述系统辨识的基本原理(方框图),步骤以及基本方法 定义:系统辨识就是从对系统进行观察和测量所获得的信息重提取系统数学模型的一种理论和方法。 辨识定义:辨识有三个要素——数据、模型类和准则。辨识就是按照一个准则在一组模型类中选择一个与数据拟合得最好的模型 辨识的三大要素:输入输出数据、模型类、等价准则 基本原理: 步骤:对一种给定的辨识方法,从实验设计到获得最终模型,一般要经历如下一些步骤:根据辨识的目的,利用先验知识,初步确定模型结构;采集数据;然后进行模型参数和结构辨识;最后经过验证获得最终模型。 基本方法:根据数学模型的形式:非参数辨识——经典辨识,脉冲响应、阶跃响应、频率响应、相关分析、谱分析法。参数辨识——现代辨识方法(最小二乘法等) 2随机语言的描述 白噪声是最简单的随机过程,均值为零,谱密度为非零常数的平稳随机过程。 白噪声过程(一系列不相关的随机变量组成的理想化随机过程) 相关函数: 谱密度: 白噪声序列,白噪声序列是白噪声过程的离散形式。如果序列 满足: 相关函数: 则称为白噪声序列。 谱密度: M 序列是最长线性移位寄存器序列,是伪随机二位式序列的一种形式。 M 序列的循环周期 M 序列的可加性:所有M 序列都具有移位可加性 辨识输入信号要求具有白噪声的统计特性 M 序列具有近似的白噪声性质,即 M 序列“净扰动”小,幅度、周期、易控制,实现简单。 3两种噪声模型的形式是什么 第一种含噪声的被辨识系统数学模型0011()()()()n n i i i i y k a y k i b u k i v k ===-+-+∑∑,式中,噪声序列v(k)通常假定为均值为零独立同分布的平稳随机序列,且与输入的序列u(k)彼此统计独立. 上式写成:0 ()()()T y k k v k ψθ=+。其中,()()()()()()()=1212T k y k y k y k n u k u k u k n ψ------????L L ,,,,,,, ) ()(2τδστ=W R +∞ <<∞-=ωσω2)(W S )}({k W Λ,2,1,0,)(2±±==l l R l W δσ2)()(σωω== ∑ ∞-∞=-l l j W W e l R S ???≠=≈+=?0 , 00,Const )()(1)(0ττττT M dt t M t M T R bit )12(-=P P N

连续系统的时域、频域分析

学生实验报告实验课程:信号与 系统E D A 实验地点:东1教 414 学院: 专业: 学号 : 姓名 :

2.信号卷积,根据PPT 中的实验2、2与2、3内容完成课堂练习,写出程序及运行结果。 用Matlab 实现卷积运算)(*)(t h t f ,其中 )()()],2()([2)(t e t h t t t f t εεε-=--=,)2 ()(2t h t h =;对比说明信号)( t f 分别输入系统)(和)(2t h t h 时的输出有什么区别并分析原因。 >> p=0、01; nf=0:p:4; f=2*(heaviside(nf)-heaviside(nf-2)); nh=0:p:6; h=exp(-nh)、*(nh>0); y=conv(f,h);

t=0:length(y)-1; subplot(3,1,1),stairs(nf,f);title('f(t)');axis([0 6 0 2、1]); subplot(3,1,2),plot(nh,h);title('h(t)');axis([0 6 0 1、1]); subplot(3,1,3),plot(0、01*t,y); title('y(t)=f(t)*h(t)'); >> p=0、01; nf=0:p:4; f=2*(heaviside(nf)-heaviside(nf-2)); nh=0:p:6; h=exp(-2*nh)、*(2*nh>0); y=conv(f,h); t=0:length(y)-1; subplot(3,1,1),stairs(nf,f);title('f(t)');axis([0 6 0 2、1]);

系统辨识方法

系统辨识方学习总结 一.系统辨识的定义 关于系统辨识的定义,Zadeh是这样提出的:“系统辨识就是在输入和输出数据观 测的基础上,在指定的一组模型类中确定一个与所测系统等价的模型”。L.Ljung也给 “辨识即是按规定准则在一类模型中选择一个与数据拟合得最好的模型。出了一个定义: 二.系统描述的数学模型 按照系统分析的定义,数学模型可以分为时间域和频率域两种。经典控制理论中微 分方程和现代控制方法中的状态空间方程都是属于时域的范畴,离散模型中的差分方程 和离散状态空间方程也如此。一般在经典控制论中采用频域传递函数建模,而在现代控 制论中则采用时域状态空间方程建模。 三.系统辨识的步骤与内容 (1)先验知识与明确辨识目的 这一步为执行辨识任务提供尽可能多的信息。首先从各个方面尽量的了解待辨识的 系统,例如系统飞工作过程,运行条件,噪声的强弱及其性质,支配系统行为的机理等。 对辨识目的的了解,常能提供模型类型、模型精度和辨识方法的约束。 (2)试验设计 试验设计包括扰动信号的选择,采样方法和间隔的决定,采样区段(采样数据长度 的设计)以及辨识方式(离线、在线及开环、闭环等的考虑)等。主要涉及以下两个问 题,扰动信号的选择和采样方法和采样间隔 (3)模型结构的确定 模型类型和结构的选定是决定建立数学模型质量的关键性的一步,与建模的目的, 对所辨识系统的眼前知识的掌握程度密切相关。为了讨论模型和类型和结构的选择,引 入模型集合的概念,利用它来代替被识系统的所有可能的模型称为模型群。所谓模型结 构的选定,就是在指定的一类模型中,选择出具有一定结构参数的模型M。在单输入单 输出系统的情况下,系统模型结构就只是模型的阶次。当具有一定阶次的模型的所有参 数都确定时,就得到特定的系统模型M,这就是所需要的数学模型。 (4)模型参数的估计 参数模型的类型和结构选定以后,下一步是对模型中的未知参数进行估计,这个阶 段就称为模型参数估计。

用Matlab进行信号与系统的时、频域分析

课程实验报告 题目:用Matlab进行 信号与系统的时、频域分析 学院 学生姓名 班级学号 指导教师 开课学院 日期 用Matlab进行信号与系统的时、频域分析 一、实验目的 进一步了解并掌握Matlab软件的程序编写及运行; 掌握一些信号与系统的时、频域分析实例; 了解不同的实例分析方法,如:数值计算法、符号计算法; 通过使用不同的分析方法编写相应的Matlab程序; 通过上机,加深对信号与系统中的基本概念、基本理论和基本分析方法的理解。 二、实验任务 了解数值计算法编写程序,解决实例; 在Matlab上输入三道例题的程序代码,观察波形图; 通过上机实验,完成思考题; 完成实验报告。 三、主要仪器设备

硬件:微型计算机 软件:Matlab 四、 实验内容 (1) 连续时间信号的卷积 已知两个信号)2()1()(1---=t t t x εε和)1()()(2--=t t t x εε,试分别画出)(),(21t x t x 和卷积)()()(21t x t x t y *=的波形。 程序代码: T=0.01; t1=1;t2=2; t3=0;t4=1; t=0:T:t2+t4; x1=ones(size(t)).*((t>t1)-(t>t2)); x2=ones(size(t)).*((t>t3)-(t>t4)); y=conv(x1,x2)*T; subplot(3,1,1),plot(t,x1); ylabel('x1(t)'); subplot(3,1,2),plot(t,x2); ylabel('x2(t)'); subplot(3,1,3),plot(t,y(1:(t2+t4)/T+1)); ylabel('y(t)=x1*x2'); xlabel('----t/s'); (2)已知两个信号)()(t e t x t ε-=和)()(2/t te t h t ε-=,试用数值计算法求卷积,并分别画出)(),(t h t x 和卷积)()()(t h t x t y *=的波形。 程序代码: t2=3;t4=11; T=0.01; t=0:T:t2+t4; x=exp(-t).*((t>0)-(t>t2)); h=t.*exp(-t/2).*((t>0)-(t>t4)); y=conv(x,h)*T; yt=4*exp(-t)+2*t.*exp(-1/2*t)-4*exp(-1/2*t); subplot(3,1,1),plot(t,x); ylabel('x(t)'); subplot(3,1,2),plot(t,h); ylabel('h(t)'); subplot(3,1,3),plot(t,y(1:(t2+t4)/T+1),t,yt,'--r'); legend('by numberical','Theoretical'); ylabel('y=x*h'); xlabel('----t/s'); (3)求周期矩形脉冲信号的频谱图,已知s T s A 5.0,1.0,1===τ

系统频域分析课程设计报告

系统频域分析课程设计 报告 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

《综合仿真》课程设计报告 姓名 学号 同组成员 指导教师 时间 11周至14周

系统的频域分析 【目的】 (1) 加深对系统频域分析基本原理和方法的理解。 (2) 加深对信号幅度调制与解调基本原理和方法的理解。 (3) 锻炼学生综合利用所学理论和技术,分析与解决工程实际 问题的能力。 【研讨内容】 题目1.幅度调制和连续信号的Fourier 变换 本题研究莫尔斯码的幅度调制与解调。本题中信号的形式为 )π2sin()()π2sin()()π2cos()()(132211t f t m t f t m t f t m t x ++= 其中信号x (t )由文件定义,可用命令Load ctftmod 将文件定义的变量装入系统内存。运行命令Load ctftmod 后,装入系统的变量有 af bf dash dot f1 f2 t x 其中 bf af : 定义了一个连续系统H (s )的分子多项式和分母多项式。可利用freqs(bf,af,w)求出该系统的频率响应,也可用sys=tf(bf,af)得到系统的模型,从而用lsim 求出信号通过该系统的响应。 dash dot : 给出了莫尔斯码中的基本信号dash 和dot 的波形 f1 f2: 载波频率 t: 信号x (t )的抽样点 x: 信号x (t )的在抽样点上的值 信号x (t )含有一段简单的消息。Agend 007的最后一句话是

The future of technology lies in ··· 还未说出最后一个字,Agend 007就昏倒了。你(Agend 008)目前的任务就是要破解Agend 007的最后一个字。该字的信息包含在信号x (t )中。信号x (t )具有式(1)的形式。式中的调制频率分别由变量f1和f2给出,信号m 1(t ),m 2(t )和m 3(t )对应于字母表中的单个字母,这个字母表已用国际莫尔斯码进行编码,如下表所示: (1)字母B 可用莫尔斯码表示为b=[dash dot dot dot],画出字母B 莫尔 斯码波形; (2) 用freqs(bf,af,w)画出系统的幅度响应; (3) 利用lsim 求出信号dash 通过由sys=tf(bf,af)定义的系统响应,解释你所获得的结果; (4)用解析法推导出下列信号的Fourier 变换 )π2cos()π2cos()(21t f t f t m )π2sin()π2cos()(21t f t f t m

系统辨识经典辨识方法

经典辨识方法报告 1. 面积法 辨识原理 分子多项式为1的系统 1 1 )(11 1++++= --s a s a s a s G n n n n Λ……………………………………………() 由于系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。在求得系统的放大倍数K 后,要先得到无因次阶跃响应y(t)(设τ=0)。大多数自衡的工业过程对象的y(t)可以用下式描述来近似 1)() ()()(a 111=++++--t y dt t dy a dt t y d a dt t y d n n n n K ……………………………() 面积法原则上可以求出n 为任意阶的各系数。以n=3为例,注意到 1|)(,0|)(d |)(d |)(d 23====∞→∞→∞→∞→t t t t t y dt t y dt t y dt t y …………………………() 将式()的y(t)项移至右边,在[0,t]上积分,得 ?-=++t dt t y t y a dt t dy a dt t y d a 01223 )](1[)() ()(…………………………………() 定义 ?-=t dt t y t F 01)](1[)(……………………………………………………………() 则由式()给出的条件可知,在t →∞ ?∞ -=01)](1[a dt t y ……………………………………………………………() 将式a 1y(t)移到等式右边,定义 )()]()([)() (a 201123 t F dt t y a t F t y a dt t dy t =-=+?…………………………………() 利用初始条件()当t →∞时 )(a 22∞=F …………………………………………………………………… () 同理有a 3=F 3(∞) 以此类推,若n ≥2,有a n =F n (∞) 分子、分母分别为m 阶和n 阶多项式的系统

连续系统的频域分析

第三章傅立叶变换 时域分析:f(t) y f(t)=h(t)*f(t) ↓分解↑ 基本信号δ(t)→LTI →h(t) 频域分析: f(t) ye jωt =h(t)* H(jω)Fe jωt ↓分解↑ 基本信号 sinωt →LTI →H(jω)e jωt e jωt H(jω):系统的频域响应函数,是信号角频率ω的函数,与t无关. 主要内容: 一、信号的分解为正交函数。 二、周期信号的频域分析?付里叶级数(求和),频谱的特点。信号 三、非周期信号的频域分析?付里叶变换(积分),性质。分析 四、LTI系统的频域分析:频域响应H(jω);y(jω)= H(jω)?F(jω). (系统分析) 五、抽样定理:连续信号→离散信号.

§3.1 信号分解为正交函数 一、正交: 两个函数满足φ1(t)φ2(t)dt=0,称φi(t),φj(t)在区间(t1 ,t2)正交。 二、正交函数集:几个函数φi(t)φi(t)dt= 0 当i≠j; K i 当i=j. 三、完备正交函数集:在{φ1(t)…φn(t)}之外, 不存在ψ(t)满足ψ (t)φi(t)dt= 0 (i=1,2,…n). 例、三角函数集:{1,cosΩt,cos2Ωt,… ,cosmΩt,…,sinΩt, sin2Ωt,…sin(nΩt),…}区间:(t0,t0+T),t=2π/Ω为周期. 满足: cosmΩtcosnΩtdt= 0 m≠n T/2 m=n≠0 T m=n=0 sin(mΩt)sin(nΩt)dt= 0 m≠n T/2 m=n≠0 sin(mΩt)cos(nΩt)dt= 0. 所有的m和n. 结论:三角函数集是完备正交集。 推导: cosmΩtcosnΩtdt =(1/2) [cos(m+n) Ωt+cos(m-n) Ωt]dt =(1/2)sin(m+n)Ωt +(1/2)sin(m-n)Ωt =(1/2)[sin(m+n) Ω(t0+T)-sin(m+n)Ωt0] +(1/2)[sin(m-n) Ω(t0+T)-sin(m-n)Ωt0] =0 当m≠n时.

实验三线性系统的频域分析

自动控制理论 上 机 实 验 报 告 学院:机电工程学院 班级:13级电信一班

: 学号: 实验三 线性系统的频域分析 一、实验目的 1.掌握用MATLAB 语句绘制各种频域曲线。 2.掌握控制系统的频域分析方法。 二、基础知识及MATLAB 函数 频域分析法是应用频域特性研究控制系统的一种经典方法。它是通过研究系统对正弦信号下的稳态和动态响应特性来分析系统的。采用这种方法可直观的表达出系统的频率特性,分析方法比较简单,物理概念明确。 1.频率曲线主要包括三种:Nyquist 图、Bode 图和Nichols 图。 1)Nyquist 图的绘制与分析 MATLAB 中绘制系统Nyquist 图的函数调用格式为: nyquist(num,den) 频率响应w 的围由软件自动设定 nyquist(num,den,w) 频率响应w 的围由人工设定 [Re,Im]= nyquist(num,den) 返回奈氏曲线的实部和虚部向量, 不作图 例4-1:已知系统的开环传递函数为2 526 2)(2 3++++=s s s s s G ,试绘制Nyquist 图,并判断系统的稳定性。

num=[2 6]; den=[1 2 5 2]; [z,p,k]=tf2zp(num,den); p nyquist(num,den) 极点的显示结果及绘制的Nyquist 图如图4-1所示。由于系统的开环右根数P=0,系统的Nyquist 曲线没有逆时针包围(-1,j0)点,所以闭环系统稳定。 p = -0.7666 + 1.9227i -0.7666 - 1.9227i -0.4668 若上例要求绘制)10,10(32-∈ω间的Nyquist 图,则对应的MATLAB 语句为: num=[2 6]; den=[1 2 5 2]; w=logspace(-1,1,100); 即在10-1和101之间,产生100个等距 离的点 nyquist(num,den,w) 2)Bode 图的绘制与分析 系统的Bode 图又称为系统频率特性的对数坐标图。Bode 图有两图,分别绘制开环频率特性的幅值和相位与角频率ω的关系曲线,称为对数幅频特性曲线和对数相频特性曲线。 MATLAB 中绘制系统Bode 图的函数调用格式为: bode(num,den) 频率响应w 的围由软件自动设定 bode(num,den,w) 频率响应w 的围由人工设定 图4-1 开环极点的显示结果及Nyquist 图

实验4:连续系统的频域分析

实验4:连续系统的频域分析 一、实验目的 (1)掌握连续时间信号的傅里叶变换和傅里叶逆变换的实现方法。 (2)掌握傅里叶变换的数值计算方法和绘制信号频谱的方法。 二、实验原理 1.周期信号的分解 根据傅里叶级数的原理,任何周期信号都可以分解为三角级数的组合——称为 ()f t 的傅里叶级数。在误差确定的前提下,可以由一组三角函数的有限项叠加而得到。 例如一个方波信号可以分解为: 11114111 ()sin sin 3sin 5sin 7357E f t t t t t ωωωωπ?? = ++++ ??? 合成波形所包含的谐波分量越多,除间断点附近外,它越接近于原波形,在间断点附近,即使合成的波形所含谐波次数足够多,也任存在约9%的偏差,这就是吉布 斯现象(Gibbs )。 2.连续时间信号傅里叶变换的数值计算 由傅里叶变换的公式: ()()lim ()j t j n n F j f t e dt f n e ωωττωττ∞ ∞ ---∞ →=-∞ ==∑ ? 当 ()f t 为时限信号时,上式中的n 取值可以认为是有限项N ,则有: ()(),0k N j n n F k f n e k N ωτττ-==≤≤∑,其中2k k N π ωτ = 3.系统的频率特性 连续LTI 系统的频率特性称为频率响应特性,是指在正弦信号激励作用下稳态响应随激励信号频率的变化而变化的情况,表示为 () ()() Y H X ωωω= 三、实验内容与方法 1.周期信号的分解 【例1】用正弦信号的叠加近似合成一个频率为50Hz 的方波。 MATLAB 程序如下: clear all; fs=10000; t=[0:1/fs:0.1]; f0=50;sum=0; subplot(211) for n=1:2:9 plot(t,4/pi*1/n*sin(2*pi*n*f0*t),’k ’); hold on; end title(‘信号叠加前’); subplot(212) for n=1:2:9;

系统辨识最小二乘法大作业 (2)

系统辨识大作业 最小二乘法及其相关估值方法应用 学院:自动化学院 学号: 姓名:日期:

基于最小二乘法的多种系统辨识方法研究 一、实验原理 1.最小二乘法 在系统辨识中用得最广泛的估计方法是最小二乘法(LS)。 设单输入-单输出线性定长系统的差分方程为 (5.1.1) 式中:为随机干扰;为理论上的输出值。只有通过观测才能得到,在观测过程中往往附加有随机干扰。的观测值可表示为 (5.1.2) 式中:为随机干扰。由式(5.1.2)得 (5.1.3) 将式(5.1.3)带入式(5.1.1)得 (5.1.4) 我们可能不知道的统计特性,在这种情况下,往往把看做均值为0的白噪声。 设 (5.1.5) 则式(5.1.4)可写成 (5.1.6) 在观测时也有测量误差,系统内部也可能有噪声,应当考虑它们的影响。因此假定不仅包含了的测量误差,而且包含了的测量误差和系统内部噪声。假定是不相关随机序列(实际上是相关随机序列)。 现分别测出个随机输入值,则可写成个方程,即 上述个方程可写成向量-矩阵形式 (5.1.7) 设 则式(5.1.7)可写为

(5.1.8) 式中:为维输出向量;为维噪声向量;为维参数向量;为测量矩阵。因此式(5.1.8)是一个含有个未知参数,由个方程组成的联立方程组。如果,方程数少于未知数数目,则方程组的解是不定的,不能唯一地确定参数向量。如果,方程组正好与未知数数目相等,当噪声时,就能准确地解出 (5.1.9) 如果噪声,则 (5.1.10) 从上式可以看出噪声对参数估计是有影响的,为了尽量较小噪声对估值的影响。在给定输出向量和测量矩阵的条件下求系统参数的估值,这就是系统辨识问题。可用最小二乘法来求的估值,以下讨论最小二乘法估计。 2.最小二乘法估计算法 设表示的最优估值,表示的最优估值,则有 (5.1.11) 写出式(5.1.11)的某一行,则有 (5.1.12) 设表示与之差,即 - (5.1.13)式中 成为残差。把分别代入式(5.1.13)可得残差。设 则有 (5.1.14) 最小二乘估计要求残差的平方和为最小,即按照指数函数 (5.1.15) 为最小来确定估值。求对的偏导数并令其等于0可得 (5.1.16) (5.1.17)

线性系统的频域分析报告

1 γ = 50 20- =s K0

原系统的伯德图: num/den = 1.2347 s + 1 ------------- 0.20154 s + 1 校正之后的系统开环传递函数为: num/den = 6.1734 s + 5 ------------------------------------------- 0.20154 s^4 + 1.6046 s^3 + 3.4031 s^2 + 2 s alpha =6.1261; P h a s e (d e g ) Bode Diagram Gm = Inf dB (at Inf rad/sec) , P m = 9.04 deg (at 3.14 rad/sec) -200204060 80M a g n i t u d e (d B )

[il,ii]=min(abs(mag1-1/sqrt(alpha))); wc=w( ii); T=1/(wc*sqrt(alpha)); numc=[alpha*T,1]; denc=[T,1]; [num,den]=series(num0,den0,numc,denc); [gm,pm,wcg,wcp]=margin(num,den); printsys(numc,denc) disp('D£?y??oóμ??μí3?a?·′?μYoˉêy?a:');printsys(num,den) [mag2,phase2]=bode(numc,denc,w); [mag,phase]=bode(num,den,w); subplot(2,1,1);semilogx(w,20*log10(mag),w,20*log10(mag1),'--',w,20*log10(mag2),'-.'); grid; ylabel('·ù?μ(db)'); title('--Go,-Gc,GoGc'); subplot(2,1,2); semilogx(w,phase,w,phase1,'--',w,phase2,'-',w,(w-180-w),':'); grid; ylabel('?à??(0)'); xlabel('?μ?ê(rad/sec)'); title(['D£?y?°£o·ù?μ?£á?=',num2str(20*log10(gm1)),'db','?à???£á?=',num2str(pm1),'0'; 'D£?yoó£o·ù?μ?£á?=',num2str(20*log10(gm)),'db','?à???£á?=',num2s tr(pm),'0']); 10-110 10 1 10 2 -60 -40-20020 40幅值(d b ) --Go,-Gc,GoGc 10 -110 10 1 10 2 -300 -200-1000 100相位(0) 频率(rad/sec) 矫正后系统的伯德图

信号与系统报告 实验5 连续系统的复频域分析实验

信号与系统 实验报告 实验五连续系统的复频域分析 实验五连续系统的复频域分析 一、实验目的 1. 深刻理解拉普拉斯变换、逆变换的定义,掌握用MATLAB实现拉普拉斯变换、逆变换的方法。 2会求几种基本信号的拉氏变换。 3 掌握用MATLAB绘制连续系统零、极点的方法。 4 求解系统函数H(s)。 二

1已知连续时间信号f(t)=sin(t)u(t)、求出该信号的拉普拉斯变换,并用MATLAB 绘制拉普拉斯变换的曲面图。 syms t; ft=sin(t)*heaviside(t); Fs=Laplace(ft); a=-0.5:0.08:0.5; b=-2:0.08:2; [a,b]=meshgrid(a,b); c=a+i*b; d=ones(size(a)); c=c.*c; c=c+d; c=1./c; c=abs(c); mesh(a,b,c); surf(a,b,c) axis([-0.5,0.5,-2,2,0,10]) colormap(hsv

) 2求[(1-e^(-at))]/t的拉氏变换。 syms t s a f1=(1-exp(-a*t))/t; F=laplace(f1,t,s) F = log(s+a)-log(s) 3求F(s)=-log(s)+ log(s+a)的拉氏逆变换syms t s a F =log(s+a)-log(s); f1=ilaplace(F,s,t) f1 = (1-exp(-a*t))/t

4已知某连续系统的系统函数为: H(s)=(s^2+3s+2)/(8s^4+2s^3+3s^2+5)试用MATLAB求出该系统的零极点,画出零极点分布图。 b=[1 3 2]; a=[8 2 3 0 5]; zs=roots(b); ps=roots(a); hold on plot(real(zs),imag(zs),'o'); plot(real(ps),imag(ps),'x'); grid axis([-2.5,1,-1,1]) 5已知H(s)=(s+1)/(s^2+s+1),绘制阶跃响应图形,冲激响应图形,频率激响应图形。 syms t s H=(s+1)/(s^2+s+1); f1=ilaplace(H,s,t); f2=heaviside(t);

实验四 频域稳定性分析

实验四 频域稳定性分析 一、实验目的 (1)巩固系统频域稳定性的概念; (2)利用MATLAB绘制Nyquist图、Bode图和Nichols图进行频域分析; (3)学习利用MATLAB进行系统参数设计的方法。 二、实验设备 (1)硬件:个人计算机; (2)软件:MATLAB仿真软件(版本6.5或以上)。 三、实验内容和步骤 1.熟悉本实验涉及的部分MATLAB函数 本实验涉及的MATLAB函数包括nyquist、nichols、margin、pade等。 调用函数nyquist可以绘制出系统的Nyquist图,调用方法见图4.1。如果只输入等式的右边,会直接生成Nyquist图。 图4.1 函数nyquist的调用 例1 函数nyquist调用示例 某闭环控制系统如图4.2所示,利用函数nyquist绘制其Nyquist图的程序段及运行结果如图4.3所示。 图4.2 某闭环控制系统

图4.3 例1系统的Nyquist图及相关程序 系统的增益裕量和相位裕量既可借助Nyquist图也可通过Bode图来确定。图4.4说明了利用函数margin由Bode图确定例1系统相对稳定性的方法。如果只输入等式的右边,会自动生成Bode图并 标注增益与相位裕量,如图4.5所示。 图4.4 函数margin的调用方法一

图4.5 函数margin的调用方法二 系统的Nichols图可以利用函数nichols生成,如图4.6所示。如果只输入等式的右边,会自动生 成Nichols图。 图4.6 函数nichols的调用

函数pade 可以用来近似表示延迟环节sT e ?,如图4.7所示。 图4.7 函数pade 的调用 2.利用函数nyquist 和margin 分析系统的相对稳定性 修改本实验所附程序lab4_1.m 并运行之,分析K = 0.5、2、3.013、4和10时,开环传递函数为 5 .02)(23+++=s s s K s G 某单位负反馈闭环系统(如图4.8所示)的相对稳定性。 图4.8 某闭环系统二 3.利用函数nichols 分析系统的相对稳定性 修改本实验所附程序lab4_2.m 并运行之,分析图4.8所示系统中开环传递函数分别为 (1))12.0)(1(1)(++=s s s s G ; (2) ) 1(64.0)(2++=s s s s G 时该系统的稳定性。 4.液位控制系统的稳定性分析 修改本实验所附程序lab4_3.m 并运行之,分析图4.9所示液位控制系统(T = 1秒)的相对稳定性。如若要求系统具有至少30°的相位裕量,试借助程序lab4_3.m 寻找合适的系统开环增益。 四、实验预习 (1)分析源程序,了解本实验所涉及MATLAB 函数和符号的功能与用法; (2)根据实验内容作出理论分析和计算。

第三章连续系统的频域分析

习题三 31证明题图囂所示矩形函数/址)与冷“尬帆为整数}在区间(0.2^ )上正応 J 1 /W P -7T r 卷也J 3.2设了①的正交展开式为 /0 =養恥 是iiE 明f ⑴和护o ”6呵£ }是11对应关系E [1 (「1)<于<2 0其他 II 试问函数组 苗⑦務②焉②爲②}在(山4)区间上是否为正交函数值,是否为归一 牝正交函數组,是否为完备正交画数爼「并用它们的线t 删合精确的表示题團玄2所示函数 “) 9 /(i) 題要1 3 2 M4证明下列函数集在匕心*— 匡间上是正交函数集右肯任意一个正实数? \ 叫丿 (1){ cos^ivof, sinMw e f | M - 0,±1,±2^.,,); ⑵{*叫1沪蚣…}h

3.5试求题因3.3所示信号的三角形傅立叶级数展开式,并画出频谙因。 1/w A A n 1,n[ 1 , :J72?T t KS 3.3 3.6试求题图34所示周期信号的指数形傅立叶级数系鹽,并画出它的幅度谙。 3?己知剛函数前四分之一的周期的波形女廳图?.5所示.根据下列各恬况的要求,画出/(/)在一个周期(0*T)的波形? (1)/(f)是偶函数'只含有偶次谐波: (2)/(f)是偶函数,只含有奇次谐波; (3)/(f)是偶函数,含有偶次和奇次谐波; (4)/(f)是奇函数,只含有偶次谐波; (5)/(f)是奇函数,只含有奇次谐波; (6)/(f)是奇函数,含有偶次和奇次谐波.

3.8设是满足以下两个条件的周期函数:条件1 : /(0 = -/(~0 ; 条件2:/a± j)= -/(o ? 试证明/(◎中只含有奇次谐波的正弦分星。 3.9设周期信号/(f)的指城傅立叶级数系数为尺,试证明缪的指数形傅立叶级数系 at 数为感(式中叫=亨). 3.10设有一周期信号/O) >其奇波频率为w。= X ,且/(f)的指数形傅立叶级数为 这里,丘“;阿|"/4 ;|^|=1/2 ; |^|= 1/3 o 试写出的三角形傅立叶级数表达式? 3.L1求题图3.6所示信号的傅立叶变换? 题图3.6

相关文档
最新文档