搅拌反应釜的釜体设计及夹套设计

搅拌反应釜的釜体设计及夹套设计
搅拌反应釜的釜体设计及夹套设计

搅拌反应釜的釜体设计及夹套设计

概述

夹套式反应釜的釜体是由封头、筒体和夹套三部分组成。封头有椭圆形封头和锥形封头等形式。上、下封头与筒体常为焊接。

釜体材料的选择

根据工艺参数及操作条件(见附录2)确定封头、筒体及夹套的材料。此设计的釜体材料选用0Cr18Ni9与夹套材料选用Q235-B ,热轧钢板,其性能与用途见表2-1。

表2-1 Q235-B 性能与用途

由工艺参数及操作条件和表2-1可知,0Cr18Ni9和Q235—B 材料能够满足任务书中的设计温度、设计压力。在操作条件下,Q235—B 能使设备安全运转,并且不会因腐蚀而对介质产生污染,而且相对与其他钢号价格便宜,所以本设计釜体材料选用0Cr18Ni9与夹套材料采用Q235-B ,热轧钢板。

封头的选择

搅拌反应釜顶盖在受压状态下操作常选用椭圆形封头,本设计采用椭圆形标准封头,直边高度mm h 45=ο,其内径取与筒体内径相同的尺寸。

椭圆形封头是由半个椭圆球体和一个圆柱体组成,由于椭圆部分径线曲率平滑连续,封头中的应力分布不均匀。对于2=b a 得标准形封头,封头与直边的连接处

的不连续应力较小,可不予考虑。椭圆形封头的结构特性比较好。

釜体几何尺寸的确定

釜体的几何尺寸是指筒体的内径i D 和高度H 。釜体的几何尺寸首先要满足化工工艺的要求。对于带搅拌器的反应釜来说,容积V 为主要决定参数。

2.4.1 确定筒体的内径

由于搅拌功率与搅拌器直径的五次方成正比,而搅拌器直径往往需随釜体直径的增加而增大。因此,在同样的容积下筒体的直径太大是不适宜的。对于发酵类物料的反应釜,为使通入的空气能与发酵液充分接触,需要有一定的液位高度,筒体的高度不宜太矮。因此,要选择适宜的长泾比(i D H )。

根据釜体长径比对搅拌功率、传热的影响以及物料特性对筒体长径比的要求,又由实践经验,针对一般反应釜,液—液相物料,i D H 取值在之间,并且考虑还

要在封头上端布置机座和传动装置,因此,取i D H =。

由<<搅拌设备设计>>可知:

i D =3

)

(41i

D H

V πηο (2-1)

有:操作容积=全容积?=

式中:V ——操作容积,3m ;H ——筒体高度,m ;i D ——筒体内径;1η——装料系数,取值为。

则: i D =33

.28.04

.64???π

=m

将i D 值圆整到标准直径,取筒体内径i D =1600mm 。

2.4.2确定筒体的高度

由《搅拌设备设计》可知:

)(44

D 1

2

2i h i h V V D V V H -=-=ηππο

(2-2) 式中:h V ——下封头所包含的容积,在《材料与零部件》中查得,h V = 。

(0.6178

.0.6.4

6.142-?=πH =m

把1H 的值圆整到H =3700mm ,则:

3.21600

3700

==

i

D H

夹套的结构和尺寸设计

常用的夹套结构形式有以下几种:(1)仅圆筒部分有夹套,用于需加热面积不大的场合;(2)圆筒一部分和下封头包有夹套,是最常用的典型结构;(3)在

圆筒部分的夹套中间设置支撑或加强环,以提高内筒的稳定性,在夹套中介质压力较大时,由于这种结构减小了内筒的计算长度,从而减小了筒体的壁厚;(4)为全包式夹套,与前三种相比,传热面积最大。本设计中夹套的结构选择第一种最最常用的典型结构。 夹套上设有介质进出口。当夹套中用蒸汽作为载热体时,蒸汽一般从上端进入夹套,冷凝液从夹套底部排出,如用液体作为冷却液时则相反,采取下端进,上顿出,以使夹套中经常充满液体,充分利用传热面,加强传热效果。

2.5.1 确定夹套与封头的内径

夹套的内径j D 一般按公称尺寸系列选取,以利于按标准选择夹套封头,具体可根据筒体直径i D 按表2-2中推荐的数值选用。

表2-2 夹套内径与筒体内径的关系

由此关系可取:j D =i D +200=2001600+=1800mm 。

2.5.2 确定夹套筒体高度

由于: 夹S =i D π1H +封S (2-3) 则: 1H =

1

D S S π封

夹-(2-4)

已知:传热面积夹S =122m ,封头的内表面积封S =298.2m 则:1H =

1

D S S π封

夹-

=

1600

14.398

.212?-

=mm 2600

圆整后取:1H =2600mm 。

釜体和夹套的壁厚的确定

釜体和夹套的强度和稳定性设计可按内、外压容器的设计方法进行。 本设计中,釜体的筒体与其下封头按承受内压和外压分别进行计算,釜体内压设计压力为21.0a MP ,釜体外压设计压力为315.0a MP 。夹套的筒体以及釜体的上

封头按内压容器设计,其设计压力为21.0a MP 。

2.6.1 釜体的筒体壁厚计算

(1) 首先对筒体按照承受21.0a MP 的内压进行计算 由于: []22C P

PD t t

i

d +-=?σ (2-5)

式中:

d t 为内压筒体设计厚度;P 为设计压力,P =21.0a MP ; i D 为筒体内径,mm ;

[]t σ为Q235—B 热轧钢板,在设计温度下的许用应力,[]t σ=137a MP ; ?为焊

缝系数,采用双面焊缝,局部无损探伤,?=85.0;2C 为腐蚀裕度,取值为0mm 。 将上述各值代入(2-5)中得:

d t mm 24.28.021.085.013721600

21.0=+-???≥

圆整后,取名义厚度n t =6mm 。 (2)按照承受315.0a MP 的外压进行计算 ① 设筒体的有效厚度e t =10mm 则:οD =mm 16201021600=?+ 然后确定ο

D L

,e

t D ο

的值

由于1h =450mm ,οD =1620mm 因本结构没有下封头, 所以 : L =g H =2600

所以: ο

D L

=604.116202600

= e

t D ο=162101620=

在《化工设备机械基础》中查图可知:A=0005.0,B=50a MP 则:

[]e

t D B p ο=

=308.016250=a MP <315.0a MP 由此可知:壁厚不符合要求,需增加壁厚计算。

②再设筒体的有效厚度 e t =12mm 则: οD =i D +2e t =mm 16241221600=?+

ο

D L

=6.116242600

= e

t D ο

=12

1624=3.135 查图得A=0005.0,B=3.64a MP 则: []p =

e

t D B

ο

=3.1353.64=

315.047.0>a MP 可知:e t =12mm 时,满足外压稳定性要求 综上所述可知,釜体的筒体名义厚度n t 取12mm 。

2.6.2 釜体的封头厚度计算

(1)首先对封头按照承受21.0a MP 的内压进行计算

已知:P=21.0a MP ,i D =1600mm ,85.0=?,采用双面焊缝,%100无损探伤,

[]t σ=137a MP ,C=321C C C ++=8.0008.0=++

将上述各值代入下列计算式中,得:

封t []C P

PD t

i

+-≥

5.02?σ(2-6)

=

8.021

.05.085.013721600

21.0+?-???

=3.2mm

考虑到封头与筒体的焊接方便,取封头与筒体相等壁厚,即取封头壁厚名义厚度

n t =12mm 。

因本结构没有夹套下封头,所以不用按照外压进行计算封头厚度。

2.6.3 夹套的筒体壁厚计算

夹套筒体按承受21.0a MP 的内压计算 由于: []C P

PD t t

i d +-=

?σ2 (2-7)

式中: P=21.0a MP ,i D =1800mm ,[]t σ=113a MP ,85.0=?,C=321C C C ++=8.2mm

将上述各值分别代入(2-7)式中,得:

d t =8.221

.085.011321800

21.0+-???

=77.4mm

圆整后取 n t =8mm 。

2.6.5 水压试验校核

(1)试验压力 根据设计规定:

T P =[][]t

P

σσ25.1a MP

或P+1.0a MP (2-8) 取两者中较大的值。

式中:T P ——试验压力,a MP ; 式中:

[][]1=t

σσ

P ——对釜体试验压力,P =26.0a MP ,对夹套试验压力,P =39.0a MP , 则:

釜体试验压力和夹套试验压力分别为26.0a MP 和39.0a MP 。

(2)内压水压试验 ①对于釜体,根据式: T σ=

[]e

e i T t t D P 2+(2-9) 式中:T P =26.0a MP ,i D =mm 1600,e t =C t n -=8.012-=2.11mm 则: T σ=

()4

.222.11160026.0+

=18a MP

而 5.2112359.0%90=?=S σa MP

可见T σ

②对于夹套,把T P =39.0a MP ,i D =mm 1800,e t =C t n -=8.28-=2.5mm 代入(2-10)中得:

T σ=()2.522.5180039.0?+

=7.67a MP

而5.2112359.0%90=?=S σa MP

可见T σ

()

2

4.01e i T t D K P + (2-10)

式中:T P =26.0a MP ,i D =mm 1600,1K =9.0e t =C t n -=8.212-=2.9mm 则: T σ =()2

.922.94.016009.026.0??+?

=6.16a MP

而5.2112359.0%90=?=S σa MP

可见T σ

综上所述,内压水压试验安全。

(3)外压水压试验 对于釜体

由于 mm C t t n e 2.118.012=-=-=

mm t D D e i 4.16222.11216002=?+=+=ο

则: e t D ο

=

86.1442

.114

.1622=

6.14

.16222600==οD L 在《化工设备机械基础》查得 A=00049.0,B=63a MP 。

故许用应力[]P =

e

t D B ο=86.14463

=43.0a MP []P >T P =26.0a MP

可知外压水压试验安全。若[]P

2.6.6 计算结果的统计

如下表2-3 表2-3

2.6.7 传热面积的校核

又工艺要求夹套传热面积为122

m 。

可知实际总传热面积大于工艺要求的传热面积,满足传热要求,(如果其小于工艺要求的传热面积,则应再釜体内设置其他换热装置)。

3 反应釜搅拌装置的设计

概述

搅拌器又称搅拌桨或叶轮,它的功能是提供过程所需要的能量和适宜的流动状态以达到搅拌的目的。本设计中,搅拌介质为有机溶,ρ=10003m kg ,μ=1S P a .。

搅拌器的选型—《搅拌设备设计》

搅拌器的型式是根据搅拌的目的来选择的 ,本设计选用六直叶圆盘涡轮式。 原因有以下几点:

⑴ 根据不同的搅拌过程的搅拌器型式,可选用表3-1中的几种搅拌器型式。

表3-1

型式之一涡轮式式搅拌器。

⑵ 液体的粘度对搅拌状态有很大影响,所以根据搅拌介质的粘度大小来选型是一种基本方法,在本设计中所选介质的粘度为μ=1S P a .,属于低粘度介质,而本设计所选的圆盘涡轮式,由于其结构简单且用挡板可改善流型,所以在低粘度时应用较普遍。

⑶ 根据涡轮式搅拌器型式的适用条件,表3-2所示:

表3-2 桨式搅拌器型式的适用条件

备注:表中“0”表示适合。

根据上表可知涡轮式搅拌器适用的条件与本设计的相应条件相符,其中流体的流动状态三者兼有,搅拌目的为低粘度液体混合,槽容量为83m , 转速为

60m in r ,选用涡轮式搅拌器。

搅拌器的尺寸及搅拌层数的确定 3.3.1 搅拌器的尺寸确定

根据桨径j d 与釜体内径之比,一般涡轮式搅拌器

I

i

D d =8.035.0-,本设计取

I

i D d =5.0,则涡轮径j d =8005.01600=?mm 。搅拌器示意图如图3-1所示。

800

图3-1 搅拌器示意图

3.3.2 搅拌层数的确定

安装在搅拌设备中心的各种搅拌器,当液体粘度不高时,搅拌器转速足够高时,切向流会形成“圆柱状回转区”,另外,在釜体内的离心力作用下甩向器壁,使周边液体沿器壁上升,而中心液面下降形成“旋涡”,为了消除湍流状态时的“圆柱状回转区”和打旋现象,可在反应器内安装挡板。

90角的挡板,如图3-2所示。挡板的作用:⑴将本设计在器壁上安装4块互成

切向流动转变为轴向流动,对于釜体内液体的主体对流扩散、轴向扩散和径向流动都是有效的;

综上所述,本设计采用双层桨。

图3-2 挡板示意图

搅拌器的位置确定

桨叶为一层,安装位置如图2-3所示,接近封头与筒体的连接处。

图3-3 搅拌器位置示意图

搅拌器的功率计算

搅拌器功率是搅拌器形状、转速、液体性质、反应釜的尺寸和内部附件以及搅拌器在反应釜内的位置的函数。

根据永田进治公式进行计算:

当无挡板时搅拌器功率的计算式为:

P N =

5

3j n d N

ρ=

()2.135.066.0366

.03

sin 2.3102.110θ???

?

??+???

? ?????

? ??+++i D b i P

e e e

D H R R B R A (3-1)

当有挡板时,把上式中的

e

R 换成

c R =

???

???????????-??? ??+???? ??-??? ??0048.011.04.025

2

i i i i i D b D b

D d D b

上式中:A ——14+?

?????+??? ??-1856.06702

i i i D d D b ; B —— ??

??

?

???????? ??-??? ??--i i i D d D b 14.15.043.1210;

P ——4

2

76.05.241.1??? ?

?-??? ??--??? ??+i I i i D b D d D b , i

D b

=1600100=0625.0,

i

i

D d =1600800=5.0;

θ——桨叶倾斜角,平桨θ=ο90;

B ——桨叶宽度,m ;

H ——叶层深度,m 。

首先将i

D b 和i i D d

的值代入c R 、A 、B 和P 中,得: c R =

???

???????????-??? ??+????

??-??? ??0048.011.04.025

2

i i i i i D b D b

D d D b

=

()()?

??

???-?+-0048.00625.011.00625.04.05.00625.0252

=12.34

A =14+(){}

1856.05.06700625.02

+-

=26

B =(){}5.014.15.00625.043.12

10?---

=9.0

P =()42

064.05126.05.05.20625.041.1?---?+t

=324.1

然后将c R 、A 、B 和P 的值分别代入P N 得计算式中,得:

p N =()

625.035.0324

.166.0366.036.16.212.342.31012.342.1109.012.3426

+??

?

?????

? ???+?++

=83.1KW

修正后搅拌器的搅拌器的功率应按下式计算

N = 5

3j P d n fN ρ (3-2) 式中:修正系数f 1≈

则:N =100083.1??3

6060???

???58.0

=6.0KW

搅拌轴的设计

3.6.1 搅拌轴材料的选择

本设计选用#45钢为搅拌轴的材料。

原因如下:#45钢为高强度中碳钢,其特点是强度较高,塑性及韧性较好,切屑性优良,经调质处理,获得较好的综合机械性能。

3.6.2 轴的支承条件设计

一般情况下,搅拌轴依靠减速箱内的一对称轴支持,但是,由于搅拌往往较长而且悬伸在反应器内进行搅拌操作,当搅拌轴悬臂过长而细时,常会将轴扭弯,使其离心力作用增加,最后达到完全破坏。悬臂的支撑条件如下:(如图3-4所示) B L 1

≤4-5;d L 1≤40-45 式中:1L 为悬臂长度轴,m ;

B 为轴承间距, m ; d 为搅拌轴直径,m 。

本设计中:已知1L =3700mm , B=900mm ,d=85mm 则:B

L 1

=900

3700

=1.4,d

L 1

=853700

=53

.43

由此可知满足支承条件。

图3-4 搅拌轴的支撑图

3.6.3 搅拌轴的强度计算

对搅拌轴来说,它承受扭转的和弯曲的联合作用,但扭转作用为主,轴承受扭转时的强度条件是: m ax τ=

p

t

W M ≤[]τ (3-3) 把t M =n

N e 9551和p W =163

d π 代入(2-3)式中,得:

d=5.36?[]

3

τn N e

(3-4) (3-3)和(3-4)式中:

m ax τ为截面上最大剪应力,Pa ;

t M 为轴传递的扭矩,Nm ;

p W 为抗扭截面系数,3m ;

[]τ为降低后的许用剪应力,a MP ,已知:[]τ=30a MP ;

e N 为电机功率,由搅拌器功率圆整后修正得到,e N =2.2KW ;

n 为搅拌轴的转速,n=60m in r ;

d 为搅拌轴的直径,m 。 则: d=5.36?[]

3

τn N e

=3

6

10

30602

.25.36??? = 39mm

圆整后取d=50mm ,这个满足强度条件,但不满足支承条件。 3.6.4搅拌轴的刚度计算

为了防止转轴产生过大的扭转变形,以免在运转中产生振动引起轴封泄漏,单位长度的扭转角?不得超过许用扭转角[]?作为扭转的刚度条件:

?=

π

180

P t GJ M ≤[]?(3-5)

式中:

?为轴扭转变形的扭转角,ο ;

G 为剪切弹性模量,Pa ,对于碳钢及合金G=?510a MP ;

P J 为轴截面的牛顿惯性矩,4m ;

[]?为许用扭转角,ο

,一般传动中取2

1-1,在本设计中取值为1;

t M 为轴传递的扭矩,Nm 。

把P J =

32

4

d π,G=?510a MP ,[]?=1

m ο

,t M =

n

N e

9551代入(3-5)式中,得: d=[]4

2

65101081.0955132180n

N e

?π?????? =4

26560

1101081.02

.2955132180????????π

=2.39mm

圆整后取 d=50mm ,满足强度和刚度条件。

3.6.5 搅拌轴的临界转速

当搅拌轴的转速达到其自振频率时会发生剧烈振动,并出现很大的弯曲,这个速度称为临界转速c n 。轴在接近临界转速转动时,常因剧烈振动而破坏,因此工程上要求搅拌轴的转速应避开临界转速。通常把工作转速n 低于第一临界转速的轴

称为刚性轴,要求c n n 7.0≤;把工作转速n 大于第一临界转速的轴称为柔性轴,要求c n n 3.1≥。轴还有第二、第三临界转速。搅拌轴一般转速较低,很少达到第二、第三临界转速。

低速旋转的刚性轴,一般不会发生共振。当搅拌轴转速n m in 200r ≥时,应进行临界转速的验算。

反应釜设计

宁夏大学 课程设计说明书 题目: 夹套反应釜设计 院系:机械工程学院 专业班级:过控10-2班 学号: 学生姓名:马学良 指导教师:贺华 2013-6-27

宁夏大学课程设计(论文)任务书 机械工程学院过控教研室

年月日

目录 一、设计条件及设计内容分析 (1) 二、搅拌容器尺寸的确定及结构选型 (2) 搅拌釜直径设计计算 (2) 筒体厚度的计算 (2) 筒体封头的设计 (3) 筒体长度H的设计 (4) 外压筒体的壁厚确定 (4) 外压封头的壁厚的设计 (5) 三、夹套尺寸的设计计算 (5) 夹套公称直径DN的确定 (5) 夹套筒体壁厚的设计 (6) 夹套筒体长度H的计算 (6) 夹套封头的设计 (6) 四、反应釜附件的选型及尺寸设计 (7) 封头法兰的设计 (7) 封头法兰尺寸及结构 (7) 封头法兰密封面的选型 (8) 工艺接管 (9) 工艺接管尺寸的确定 (9) 接管垫片尺寸及材质 (11) 手孔的设计 (12) 视镜的选型 (13) 五、搅拌装置的选型与尺寸设计计算 (14) 搅拌轴直径的初步计算 (14) 搅拌轴直径的设计 (14) 搅拌轴刚度的校核 (14) 搅拌轴轴承的选择 (14) 联轴器的选择 (15) 搅拌器的设计 (16) 挡板的设计与计算 (17) 六、传动装置的选型和尺寸计算 (17)

凸缘法兰的选型 (17) 安装底盖的选型 (18) 机架的选型 (19) 安装底盖与密封箱体、机架的配置 (19) 电动机的选型 (20) 减速器的选型 (21) 搅拌轴长度的设计 (21) 搅拌轴的结构 (21) 支座的计算 (21) 密封形式的选择 (23) 七、焊接的形式与尺寸 (24) 八、开孔补强计算 (26) 封头开手孔后削弱的金属面积的计算 (26) 接管起补强作用金属面积的计算 (27) 焊缝起补强作用金属面积的计算 (27) 九、反应釜釜体及夹套的压力试验 (27) 釜体的液压试验 (27) 水压试验压力的确定 (27) 水压试验的强度校核 (28) 压力表量程 (28) 水压试验的操作过程 (28) 釜体的气压试验 (28) 气体实验压力的确定 (28) 气压试验的强度校核 (28) 气压试验的操作过程 (29) 夹套的液压试验 (29) 水压试验压力的确定 (29) 水压试验的强度校核 (29) 压力表量程 (29) 液压试验的操作过程 (29) 十、反应釜的装配图(见大图) (29) 课程设计总结 (30) 参考文献 (31)

搅拌反应釜计算设计说明书

课程设计 设计题目搅拌式反应釜设计 学生姓名 学号 专业班级过程装备与控制工程 指导教师

“过程装备课程设计”任务书 设计者姓名:班级:学号: 指导老师:日期: 1.设计内容 设计一台夹套传热式带搅拌的反应釜 2.设计参数和技术特性指标 3.设计要求 (1)进行罐体和夹套设计计算;(2)选择接管、管法兰、设备法兰;(3)进行搅拌传动系统设计;(4)设计机架结构;(5)设计凸缘及选择轴封形式;(6)绘制配料反应釜的总装配图;(7)绘制皮带轮和传动轴的零件图 1罐体和夹套的设计 1.1 确定筒体内径

当反应釜容积V 小时,为使筒体内径不致太小,以便在顶盖上布置接管和传动装置,通常i 取小值,此次设计取i =1.1。 一般由工艺条件给定容积V 、筒体内径1D 按式4-1估算:得D=1084mm. 式中 V --工艺条件给定的容积,3m ; i ――长径比,1 1 H i D = (按照物料类型选取,见表4-2) 由附表4-1可以圆整1D =1100,一米高的容积1V 米=0.953m 1.2确定封头尺寸 椭圆封头选取标准件,其形式选取《化工设备机械基础课程设计指导书》图4-3,它的内径与筒体内径相同,釜体椭圆封头的容积由附表4-2 V 封=0.1983m ,(直边高度取50mm )。 1.3确定筒体高度 反应釜容积V 按照下封头和筒体两部分之容积之和计算。筒体高度由计算 H1==(2.2-0.198)/0.95=0.949m ,圆整高度1H =1000mm 。按圆整后的1H 修正实际容积由式 V=V1m ×H1+V 封=0.95×1.000+0.198=1.1483m 式中 V 封m --3封头容积,; 1V 米――一米高的容积3m /m 1H ――圆整后的高度,m 。 1.4夹套几何尺寸计算 夹套的结构尺寸要根据安装和工艺两方面的要求。夹套的内径2D 可根据内径1D 由

夹套反应釜课程设计

有搅拌装置的夹套反应釜 前言 《化工设备机械基础》化学工程、制药工程类专业以及其他相近的非机械类专业,对化下设备的机械知识和设计能力的要求而编写的。通过此课程的学习,是通过学习使同学掌握基本的设计理论并具有设计钢制的、典型的中、低、常压化工容器的设计和必要的机械基础知识。 化工设备机械基础课程设计是《化工设备机械基础》课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是学生体察工程实际问题复杂性,学习初次尝试化工机械设计。化工设计不同于平时的作业,在设计中需要同学独立自主的解决所遇到的问题、自己做出决策,根据老师给定的设计要求自己选择方案、查取数据、进行过程和设备的设计计算,并要对自己的选择做出论证和核算,经过反复的比较分析,择优选定最理想的方案和合理的设计。 化工设备课程设计是培养学生设计能力的重要实践教学环节。在教师指导下,通过裸程设计,培养学生独立地运用所学到的基本理论并结合生产实际的知识,综合地分析和解决生产实际问题的能力。因此,当学生首次完成该课程设计后,应达到一下几个目的: ⑴熟练掌握查阅文献资料、收集相关数据、正确选择公式,当缺乏必要的数据时,尚需要自己通过实验测定或到生产现场进行实际查定。 ⑵在兼顾技术先进性、可行性、经济合理的前提下,综合分析设计任务要求,确定化工工艺流程,进行设备选型,并提出保证过程正常、安全可

行所需的检测和计量参数,同时还要考虑改善劳动条件和环境保护的有效措施。 ⑶准确而迅速的进行过程计算及主要设备的工艺设计计算及选型。 ⑷用精炼的语言、简洁的文字、清晰地图表来表达自己的设计思想和计算结果。 化工设备机械基础课程设计是一项很繁琐的设计工作,而且在设计中除了要考虑经济因素外,环保也是一项不得不考虑的问题。除此之外,还要考虑诸多的政策、法规,因此在课程设计中要有耐心,注意多专业、多学科的综合和相互协调。

搅拌反应釜的设计

1 绪论 1.1 反应釜概况 搅拌设备是一种在一定容积的容器中,借助搅拌器向液相物料中传递必要的能量进行搅拌过程的化学反应设备。反应釜就是其中比较典型的一种,它适用于多种物性(如粘度、密度)和多种操作条件(温度、压力)的反应过程,广泛应用于石油化工、橡胶、农药、染料、医药等行业,是一种用以完成磺化、硝化、氢化、烃化、聚合、缩合等工艺过程,以及有机染料和中间体的许多其它工艺过程的反应设备。 搅拌式反应釜有很大的通用性,由于搅拌可以把多种液体物料相混合,把固体物料溶解在液体中、将几种不互溶的液体制成乳浊液、把固体微粒搅浑在液体中制成悬浮液或在液相中析出结晶等,故搅拌反应釜可以在带有搅拌的许多物理过程中广泛的应用。同时在研究容器的结构方面,如容器形状、搅拌装置、传热部件等,搅拌式反应釜都具有代表性。在大多数设备中,反映釜是作为反应器来应用的。例如在三大合成材料的生产中,搅拌设备作为反应器,约占反应器总数的90%。其它如染料、医药、农药、油漆等设备的使用亦很广泛。有色冶金部门对全国有色冶金行业中的搅拌设备作了调查及功率测试,结果是许多湿法车间的动力消耗50%以上是用在搅拌作业上。搅拌设备的应用范围之所以这样广泛,还因为搅拌设备操作条件(如浓度、温度、停留时间等)的可控范围广,又能适用于多样化的生产。 搅拌式反应釜在石油化工生产中被用于物料混合、溶解、传热、制备悬浮液、聚合反应、制备催化剂等。例如石油工业中,异种原油的混合调整和精致,汽油添加四乙基铅等添加物而进行混合,使原料液或产品均匀化。化工生产中,制造苯乙烯、乙烯、高压聚乙烯、聚丙烯、合成橡胶、苯胺燃料和油漆颜料等工艺过程,都装备着各种型式的搅拌设备。因为在石油工业中大量使用催化剂、添加剂,所以对于搅拌设备的需求量比较大。由于物料操作条件的复杂性、多样性、对搅拌

夹套反应釜设计

nd impr ove idl e land of utilizati on, real a chi eved envir onme nt improved a nd productivity development mut ual prom oting total wi n. Five, firmly implement, promoti ng work ahead, to create hig hlights. T hird depl oyment, impl ementation of seve n, the n it is imperative to stre ngthe n responsibility a nd impr ove the mechanisms and impleme ntation. All localities a nd departments m ust be convi nce d that goal s, goi ng all out, mustering spirit, w ork together t o ensure that thi s year's obje ctives carry out tasks, at the forefront. First, we m ust strengthen the leader shi p to implement. Departments at all level s shoul d always w ork and rural "five water treatment", "three to split" in a n important position, and carry the mai n responsibi lity, main lea der personally, leaders arre sted and layers of responsi bility rank transmissi on pre ssure e stabli she d hierarchical a ccountabilit y, and work together to pr omote the w ork of the mechani sm, a concerted effort pay attention to impleme ntation. County nong ban, flood, three to one dow n to further play a leadi ng catch total, integrate d and coordi nated role of all kinds is "long", "Sheriff" "Inspector" to 0.95m 3 夹套反应釜设计计算说明书 一、罐体和夹套设计计算 1.1 罐体几何尺寸计算 1.1.1 选择筒体和封头的形式 选择圆柱筒体及椭圆形封头。 1.1.2 确定筒体内径 已知设备容积要求0.95m 3 ,按式(4-1)初选筒体内径: 式中,V=0.95m 3 ,根据【2】38页表4-2,常反应物料为液-液类型, i =H 1/D 1=1~1.3,取 i =1.3,代入上式,计算得 3 31440.95==1.032i 3.14 1.1V D π?? ? 将D 1的估算值圆整到公称直径系列,取D 1=1100mm , 1.1.3 确定封头尺寸 标准椭圆形封头尺寸查附表4-2,DN=1100mm ,选取直边高度h 2=25mm 。 1.1.4 确定筒体高度 当D 1=1100mm, h 2=25mm 时,由【2】附表D-2查得椭圆形封头的容积V 封=0.1980 m 3 ,由附表D-1查得 筒体1m 高的容积V 1m =0.950 m 3 ,按式(4-2): H 1=(V-V 封)/V 1m =(0.950-0.198)/0.95=0.7916m 考虑到安装的方便,取H 1=0.9m ,则实际容积为 V= V 1m ×H 1+ V 封=0.950×0.9+0.198=1.053 m 3 1.2 夹套几何尺寸计算 1. 2.1 选择夹套结构 选择【2】39页图4-4 (b)所示结构。 1.2.2 确定夹套直径 查【2】表4-3, D 2= D 1+100=1100+100=1200mm 。套封头也采用椭圆形并与夹套筒体取相同直径。 1.2.3 确定夹套高度 装料系数η=操作容积/全容积=0.9/0.95=0.85 按式4-4计算夹套高度: H 2≥(ηV- V 封)/ V 1m =(0.85×1.053-0.198)/0.95=0.734 m 取H 2=750mm 。选取直边高度h 2=25mm 。 1.2.4 校核传热面积 查【2】附表D-2,由D 1=1100mm ,得罐体封头表面积F 1封=1.3980 m 2 查【2】附表D-1,一米高筒体内表面积F 1m =3.46 m 2 31 4i V D π ?罐体结构示意图

搅拌反应釜课程设计(优选.)

课程设计说明书 专业: 班级: 姓名: 学号: 指导教师: 设计时间:

要求与说明 一、学生采用本报告完成课程设计总结。 二、要求文字(一律用计算机)填写,工整、清晰。所附设备安 装用计算机绘图画出。 三、本报告填写完成后,交指导老师批阅,并由学院统一存档。

目录 一、设计任务书 (5) 二、设计方案简介 (6) 1.1罐体几何尺寸计算 (7) 1.1.1确定筒体内径 (7) 1.1.2确定封头尺寸 (8) 1.1.3确定筒体高度 (9) 1.2夹套几何计算 (10) 1.2.1夹套内径 (10) 1.2.2夹套高度计算 (10) 1.2.3传热面积的计算 (10) 1.3夹套反应釜的强度计算 (11) 1.3.1强度计算的原则及依据 (11) 1.3.2按内压对筒体和封头进行强度计算 (12) 1.3.2.1压力计算 (12) 1.3.2.2罐体及夹套厚度计算 (12) 1.3.3按外压对筒体和封头进行稳定性校核 (14) 1.3.4水压试验校核 (16) (二)、搅拌传动系统 (16) 2.1进行传动系统方案设计 (17) 2.2作带传动设计计算 (17) 2.2.1计算设计功率Pc (17) 2.2.2选择V形带型号 (17) 2.2.3选取小带轮及大带轮 (17) 2.2.4验算带速V (18) 2.2.5确定中心距 (18) (18) 2.2.6 验算小带轮包角 1 2.2.7确定带的根数Z (18) 2.2.8确定初拉力Q (19) 2.3搅拌器设计 (19) 2.4搅拌轴的设计及强度校核 (19) 2.5选择轴承 (20) 2.6选择联轴器 (20) 2.7选择轴封型式 (21) (三)、设计机架结构 (21) (四)、凸缘法兰及安装底盖 (22) 4.1凸缘法兰 (22) 4.2安装底盖 (23) (五)、支座形式 (24) 5.1 支座的选型 (24) 5.2支座载荷的校核计算 (26)

乙酸乙酯间歇反应釜课程设计

乙酸乙酯间歇反应釜 工 艺 设 计 说 明 书

目录 前言 (3) 摘要 (4) 一.设计条件和任务 (4) 二.工艺设计 (6) 1. 原料的处理量 (6) 2. 原料液起始浓度 (7) 3. 反应时间 (7) 4. 反应体积 (8) 三. 热量核算 (8) 1. 物料衡算 (8) 2. 能量衡算 (9) 3. 换热设计 (12) 四. 反应釜釜体设计 (13) 1. 反应器的直径和高度 (13) 2. 筒体的壁厚 (14) 3. 釜体封头厚度 (15) 五. 反应釜夹套的设计 (15) 1. 夹套DN、PN的确定 (15) 2. 夹套筒体的壁厚 (15) 3. 夹套筒体的高度 (16) 4. 夹套的封头厚度 (16) 六. 搅拌器的选型 (17) 1. 搅拌桨的尺寸及安装位置 (17) 2. 搅拌功率的计算 (18) 3. 搅拌轴的的初步计算 (18) 结论 (19) 主要符号一览表 (20) 总结 (21) 参考书目 (22)

前言 反应工程课程设计是《化工设备机械基础》和《反应工程》课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是学生体察工程实际问题复杂性,学习初次尝试反应釜机械设计。化工设计不同于平时的作业,在设计中需要同学独立自主的解决所遇到的问题、自己做出决策,根据老师给定的设计要求自己选择方案、查取数据、进行过程和设备的设计计算,并要对自己的选择做出论证和核算,经过反复的比较分析,择优选定最理想的方案和合理的设计。 反应工程是培养学生设计能力的重要实践教学环节。在教师指导下,通过裸程设计,培养学生独立地运用所学到的基本理论并结合生产实际的知识,综合地分析和解决生产实际问题的能力。因此,当学生首次完成该课程设计后,应达到一下几个目的: 1、熟练掌握查阅文献资料、收集相关数据、正确选择公式,当缺乏必要的 数据时,尚需要自己通过实验测定或到生产现场进行实际查定。 2、在兼顾技术先进性、可行性、经济合理的前提下,综合分析设计任务要 求,确定化工工艺流程,进行设备选型,并提出保证过程正常、安全可行所需的检测和计量参数,同时还要考虑改善劳动条件和环境保护的有效措施。 3、准确而迅速的进行过程计算及主要设备的工艺设计计算及选型。 4、用精炼的语言、简洁的文字、清晰地图表来表达自己的设计思想和计算 结果。 化工设备机械基础课程设计是一项很繁琐的设计工作,而且在设计中除了要考虑经济因素外,环保也是一项不得不考虑的问题。除此之外,还要考虑诸多的政策、法规,因此在课程设计中要有耐心,注意多专业、多学科的综合和相互协调。

搅拌反应釜计算设计说明书

课程设计 设计题目搅拌式反应釜设 学生姓名 学号 专业班级过程装备与控制工程 指导教师

“过程装备课程设计”任务书 设计者姓名:班级:学号: 指导老师:日期: 1.设计内容 设计一台夹套传热式带搅拌的反应釜 2.设计参数和技术特性指标 简图设计参数及要求 容器内夹套 内 工作压力, MPa 设计压力, MPa 工作温 度,℃ 设计温 <100<150 度,℃ 蒸汽 介质有机溶 剂 全容积,m3 操作容积, m3 传热面积, >3 m2 腐蚀情况微弱 推荐材料Q345R 搅拌器型 推进式 式 250 r/min 搅拌轴转 速 轴功率 3 kW 接管表

3.设计要求 (1)进行罐体和夹套设计计算;(2)选择接管、管法兰、设备法兰;(3)进行搅拌传动系统设计;(4)设计机架结构;(5)设计凸缘及选择轴封形式;(6)绘制配料反应釜的总装配图;(7)绘制皮带轮和传动轴的零件图 1罐体和夹套的设计 1.1 确定筒体内径 当反应釜容积V 小时,为使筒体内径不致太小,以便在顶盖上布置接管和传动装置,通常i 取小值,此次设计取i =1.1。 一般由工艺条件给定容积V 、筒体内径1D 按式4-1估算:得D=1084mm. 式中 V --工艺条件给定的容积,3m ;

i ――长径比,1 1 H i D = (按照物料类型选取,见表4-2) 由附表4-1可以圆整1D =1100,一米高的容积1V 米=0.953m 1.2确定封头尺寸 椭圆封头选取标准件,其形式选取《化工设备机械基础课程设计指导书》图4-3,它的内径与筒体内径相同,釜体椭圆封头的容积由附表4-2 V 封=0.1983m ,(直边高度取50mm )。 1.3确定筒体高度 反应釜容积V 按照下封头和筒体两部分之容积之和计算。筒体高度由计算 H1==(2.2-0.198)/0.95=0.949m ,圆整高度1H =1000mm 。按圆整后的1H 修正实际容积由式 V=V1m ×H1+V 封=0.95×1.000+0.198=1.1483m 式中 V 封m --3封头容积,; 1V 米――一米高的容积3m /m 1H ――圆整后的高度,m 。 1.4夹套几何尺寸计算 夹套的结构尺寸要根据安装和工艺两方面的要求。夹套的内径2D 可根据内径1D 由 选工艺装料系数η=0.6~0.85选取,设计选取η=0.80。 1.4.1夹套高度的计算H2=(ηV-V 封)/V1m=0.758m 1.4.2.夹套筒体高度圆整为2H =800mm 。 1.4.3罐体的封头的表面积由《化工设备机械基础》附表4-2查的F 封=1.398。 1.4.4一米高的筒体内表面由《化工设备机械基础》附表4-1查的。F1m=3.46 1.4.5实际的传热面积F=4.166>3,由《化工设备机械基础》式4-5校核4.166〉3所以传热面积合适。

搅拌反应釜的釜体设计及夹套设计

搅拌反应釜的釜体设计及夹套设计 概述 夹套式反应釜的釜体是由封头、筒体和夹套三部分组成。封头有椭圆形封头和锥形封头等形式。上、下封头与筒体常为焊接。 釜体材料的选择 根据工艺参数及操作条件(见附录2)确定封头、筒体及夹套的材料。此设计的釜体材料选用0Cr18Ni9与夹套材料选用Q235-B ,热轧钢板,其性能与用途见表2-1。 表2-1 Q235-B 性能与用途 由工艺参数及操作条件和表2-1可知,0Cr18Ni9和Q235—B 材料能够满足任务书中的设计温度、设计压力。在操作条件下,Q235—B 能使设备安全运转,并且不会因腐蚀而对介质产生污染,而且相对与其他钢号价格便宜,所以本设计釜体材料选用0Cr18Ni9与夹套材料采用Q235-B ,热轧钢板。 封头的选择 搅拌反应釜顶盖在受压状态下操作常选用椭圆形封头,本设计采用椭圆形标准封头,直边高度mm h 45=ο,其内径取与筒体内径相同的尺寸。 椭圆形封头是由半个椭圆球体和一个圆柱体组成,由于椭圆部分径线曲率平滑连续,封头中的应力分布不均匀。对于2=b a 得标准形封头,封头与直边的连接处 的不连续应力较小,可不予考虑。椭圆形封头的结构特性比较好。 釜体几何尺寸的确定 釜体的几何尺寸是指筒体的内径i D 和高度H 。釜体的几何尺寸首先要满足化工工艺的要求。对于带搅拌器的反应釜来说,容积V 为主要决定参数。 2.4.1 确定筒体的内径

由于搅拌功率与搅拌器直径的五次方成正比,而搅拌器直径往往需随釜体直径的增加而增大。因此,在同样的容积下筒体的直径太大是不适宜的。对于发酵类物料的反应釜,为使通入的空气能与发酵液充分接触,需要有一定的液位高度,筒体的高度不宜太矮。因此,要选择适宜的长泾比(i D H )。 根据釜体长径比对搅拌功率、传热的影响以及物料特性对筒体长径比的要求,又由实践经验,针对一般反应釜,液—液相物料,i D H 取值在之间,并且考虑还 要在封头上端布置机座和传动装置,因此,取i D H =。 由<<搅拌设备设计>>可知: i D =3 ) (41i D H V πηο (2-1) 有:操作容积=全容积?= 式中:V ——操作容积,3m ;H ——筒体高度,m ;i D ——筒体内径;1η——装料系数,取值为。 则: i D =33 .28.04 .64???π =m 将i D 值圆整到标准直径,取筒体内径i D =1600mm 。 2.4.2确定筒体的高度 由《搅拌设备设计》可知: )(44 D 1 2 2i h i h V V D V V H -=-=ηππο (2-2) 式中:h V ——下封头所包含的容积,在《材料与零部件》中查得,h V = 。 ) (0.6178 .0.6.4 6.142-?=πH =m 把1H 的值圆整到H =3700mm ,则: 3.21600 3700 == i D H 夹套的结构和尺寸设计 常用的夹套结构形式有以下几种:(1)仅圆筒部分有夹套,用于需加热面积不大的场合;(2)圆筒一部分和下封头包有夹套,是最常用的典型结构;(3)在

夹套反应釜设计

0.95m 3 夹套反应釜设计计算说明书 一、罐体和夹套设计计算 1.1 罐体几何尺寸计算 1.1.1 选择筒体和封头的形式 选择圆柱筒体及椭圆形封头。 1.1.2 确定筒体内径 已知设备容积要求0.95m 3 ,按式(4-1)初选筒体内径: 式中,V=0.95m 3 ,根据【2】38页表4-2,常反应物料为液-液类型, i =H 1/D 1=1~1.3,取 i =1.3,代入上式,计算得 3 31440.95==1.032i 3.14 1.1V D π?? ? 将D 1的估算值圆整到公称直径系列,取D 1=1100mm , 1.1.3 确定封头尺寸 标准椭圆形封头尺寸查附表4-2,DN=1100mm ,选取直边高度h 2=25mm 。 1.1.4 确定筒体高度 当D 1=1100mm, h 2=25mm 时,由【2】附表D-2查得椭圆形封头的容积V 封=0.1980 m 3 ,由附表D-1查得 筒体1m 高的容积V 1m =0.950 m 3 ,按式(4-2): H 1=(V-V 封)/V 1m =(0.950-0.198)/0.95=0.7916m 考虑到安装的方便,取H 1=0.9m ,则实际容积为 V= V 1m ×H 1+ V 封=0.950×0.9+0.198=1.053 m 3 1.2 夹套几何尺寸计算 1. 2.1 选择夹套结构 选择【2】39页图4-4 (b)所示结构。 1.2.2 确定夹套直径 查【2】表4-3, D 2= D 1+100=1100+100=1200mm 。套封头也采用椭圆形并与夹套筒体取相同直径。 1.2.3 确定夹套高度 装料系数η=操作容积/全容积=0.9/0.95=0.85 按式4-4计算夹套高度: H 2≥(ηV- V 封)/ V 1m =(0.85×1.053-0.198)/0.95=0.734 m 取H 2=750mm 。选取直边高度h 2=25mm 。 1.2.4 校核传热面积 查【2】附表D-2,由D 1=1100mm ,得罐体封头表面积F 1封=1.3980 m 2 查【2】附表D-1,一米高筒体内表面积F 1m =3.46 m 2 31 4i V D π ?罐体结构示意图

立式搅拌反应釜设计

立式搅拌反应釜工艺设计 1. 推荐的设计程序 1.1 工艺设计 1、做出流程简图; 2、计算反应器体积; 3、确定反应器直径和高度; 4、选择搅拌器型式和规格; 5、按生产任务计算换热量; 6、选定载热体并计算K 值; 7、计算传热面积; 8、计算传热装置的工艺尺寸; 9、计算搅拌轴功率; 1.2 绘制反应釜工艺尺寸图 1.3 编写设计说明书 2. 釜式反应器的工艺设计 2.1 反应釜体积的计算 2.1.1 间歇釜式反应器 V a =V R /φ (2-1) V D =F v (t+t 0) (2-2) 式中 V a —反应器的体积,m 3; V R —反应器的有效体积,m 3。 V D —每天需要处理物料的体积,m 3。 F v —平均每小时需处理的物料体积,m 3/h ; t 0 —非反应时间,h ; t —反应时间,h ; ? =A x R A A A V r dx n t 0 (2-3) 等温等容情况下 ? =A x A A A r dx C t 0 0 (2-4)

对于零级反应 A A x k C t 0 = (2-5) 对一级反应 A x k t -= 11ln 1 (2-6) 对二级反应 2A →P ;A+B →P (C A0=C B0) () A A A x kC x t -= 100 (2-7) 对二级反应 A+B →P ()A B A B x x C C k t ---= 11ln 100 (2-8) φ—装料系数,一般为0.4~0.85,具体数值可按下列情况确定: 不带搅拌或搅拌缓慢的反应釜 0.8~0.85; 带搅拌的反应釜 0.7~0.8; 易起泡沫和在沸腾下操作的设备 0.4~0.6。 2.2反应器直径和高度的计算 在已知搅拌器的操作容积后,首先要选择罐体适宜的长径比(H/D),以确定罐体直径和高度。长径比的确定通常采用经验值,即2-1 表2-1 罐体长径比经验表 在确定了长径比和装料系数之后,先忽略罐底容积,此时 ??? ? ??≈ ≈ i i i D H D H D V 32 44 π π (2-9) 选择合适的高径比,将上式计算结果圆整成标准直径。椭圆封头选择标准件,其内径与筒体内径相同。可参照《化工设备机械基础课程设计指导书》的附录查找。通过式(2-10)得出罐体高度。 π 4 2?-= i D V V H 封 (2-10) 其中 V 封——封头容积,m 3

夹套反应釜设计

《 夹套反应釜设计计算说明书 一、罐体和夹套设计计算 罐体几何尺寸计算 选择筒体和封头的形式 选择圆柱筒体及椭圆形封头。 确定筒体内径 * 已知设备容积要求,按式(4-1)初选筒体内径: 式中,V=,根据【2】38页表4-2,常反应物料为液-液类型, i =H 1/D 1=1~,取 i =,代入上式,计算得 1D ? ( 将D 1的估算值圆整到公称直径系列,取D 1=1100mm , 确定封头尺寸 标准椭圆形封头尺寸查附表4-2,DN=1100mm ,选取直边高度h 2=25mm 。 确定筒体高度 当D 1=1100mm, h 2=25mm 时,由【2】附表D-2查得椭圆形封头的容积V 封= m 3 ,由附表D-1查得筒体1m 高的容积V 1m = m 3 ,按式(4-2): H 1=(V-V 封)/V 1m =()/= 考虑到安装的方便,取H 1=,则实际容积为 V= V 1m ×H 1+ V 封=×+= m 3 【 夹套几何尺寸计算 选择夹套结构 选择【2】39页图4-4 (b)所示结构。 确定夹套直径 查【2】表4-3, D 2= D 1+100=1100+100=1200mm 。套封头也采用椭圆形并与夹套筒体取相同直径。 确定夹套高度 装料系数η=操作容积/全容积== · 按式4-4计算夹套高度: 31 4i V D π ?罐体结构示意图

H 2≥(ηV- V 封)/ V 1m =× m 取H 2=750mm 。选取直边高度h 2=25mm 。 校核传热面积 查【2】附表D-2,由D 1=1100mm ,得罐体封头表面积F 1封= m 2 查【2】附表D-1,一米高筒体内表面积F 1m = m 2 校核传热面积: 实际总传热面积F=F 筒+ F 1封=F 1m ×H 2 +F 1封=×+= m 2> m 2 ,可用。 : 罐体及夹套的强度计算 确定计算压力 按工艺条件,罐体内设计压力P 1=;夹套内设计压力P 2= 液体静压力P 1H =ρgH 2×10-6=1000×××10-6 =,取P 1H = 计算压力P 1c =P 1+P 1H =+= 夹套无液体静压,忽略P 2H ,故P 2c =P 2。 选择设备材料 " 分析工艺要求和腐蚀因素,决定选用Q235-A 热轧钢板,其中100℃-150℃下的许用应力为:[ó]t =113Mpa 。 罐体筒体及封头壁厚计算 罐体筒体壁厚的设计厚度为 采用双面焊缝,进行局部无损探伤检查,按教材表10-9,取焊缝系数φ=,C 2=2mm ,则 []1c 1d1210.191100 = 2 1.092 3.09 21130.850.19 2t c p D C p δσ??+= +=+=??-- % 查教材表10-10,取钢板负偏差C 1=,则δd1+C 1=,考虑到最小厚度 mim δ为3mm ,取名义厚度δn =5mm 罐体封头壁厚的设计厚度为 []11 d110.191100 = 2 1.092 3.09 21130.850.50.19 20.5c t c P D P δσ??= +=+=??-?-‘ 查教材表10-10,取钢板负偏差C 1=,则δd1’+C 1=,考虑到最小厚度 mim δ为3mm ,取名义厚度δn ’=5mm 夹套筒体及封头壁厚计算 夹套筒体壁厚的设计厚度为 - 采用双面焊缝,进行局部无损探伤检查,按【1】161页表10-9,取焊缝系数φ=(夹套封头用钢板拼焊),C 2=2mm ,则 []2 2c i d t c p D C p δσ?=+-[]2 2c i d t c p D C p δσ?= +-

立式搅拌反应釜设计

立式搅拌反应釜设计 第一节推荐的设计程序 一、工艺设计 1、作出流程简图; 2、计算反应器体积; 3、确定反应器直径和高度; 4、选择搅拌器型式和规格; 5、按生产任务计算换热量; 6、选定载热体并计算K值; 7、计算传热面积及夹套高度; 8、计算搅拌轴功率。 二、机械设计 1、确定反应器的结构型式及尺寸; 2、选择材料; 3、强度计算; 4、选用零部件; 5、绘图; 6、提出技术要求。 三、化工仪表选型 四、编制计算结果汇总表 五、绘制反应釜装配图 六、编写设计说明书 第二节釜式反应器的工艺设计 一、反应釜体积和段数的计算 1、间歇釜式反应器: V=V R/φ(3—1) V R=V O(τ+τ') (3—2)式中V—反应器实际体积,m3; V R—反应器有效体积,m3。

V O —平均每秒钟需处理的物料体积,m 3/s ; τ' —非反应时间,s ; τ —反应时间,s ; ?=Af x R A A V dx n 00,τ (3—3) 等温等容情况下 ()? -=Af x A A A r dx C 0 0,τ (3—4) 对一级反应 Af x k -= 11 ln 1τ 对二级反应 ()Af A A x xC x -= 10,0 ,τ φ—装料系数,一般为0.4~0.85,具体数值可按下列情况确定: 不带搅拌或搅拌缓慢的反应釜 0.8~0.85; 带搅拌的反应釜 0.7~0.8; 易起泡沫和在沸腾下操作的设备 0.4~0.6。 2、连续釜式反应器 (1)单段连续釜式反应器: ()φφA A A R r x F V V -= =0, (3—5)其中 F A,O —每秒钟所处理的物料摩尔数,kmol/s 。 对于一级反应:(-γA )=kC A =kC A,O (1-A x ) 则有效反应体积: () () 20,00,0,1A A A A A A A R KC C C V x kC x F V -= -= 其中 V O —每秒所处理的物料体积,m 3/s 对于二级反应:(-γA )= ()2 20,21A A A x kC kC -=,代入式(3-5)中 则有效反应体积为:V R =()()2 0,020,01A A A A A A kC C C V x kC x V -=- 其中 A x —转化率,其它符号同前。 (2)多级连续釜式反应器 V= φ ∑=n i i R V 1 ,, 而 V R,i = () ()i A i A i A r C C V ---,1,0 (3—6)

反应釜课程设计说明书

课程设计 资料袋 机械工程学院(系、部) 2012 ~ 2013 学年第二学期 课程名称指导教师职称 学生专业班级班级学号题目酸洗反应釜设计 成绩起止日期 2013 年 6 月 24 日~ 2013 年 6 月 30 日 目录清单 . . .

过程设备设计 设计说明书 酸洗反应釜的设计 起止日期: 2013 年 6 月 24 日至 2013 年 6 月 30 日 学生 班级 学号 成绩 指导教师(签字) 机械工程学院(部) 2013年6月26日

课程设计任务书 2012—2013学年第二学期 机械工程学院(系、部)专业班级 课程名称:过程设备设计 设计题目:酸洗反应釜设计 完成期限:自 2013 年 6 月 24 日至 2013 年 6 月 30 日共 1 周 指导教师(签字):年月日系(教研室)主任(签字):年月日 目录

第一章绪论 (4) 1.1 设计任务 (2) 1.2 设计目的 (2) 第二章反应釜设计 (2) 第一节罐体几何尺寸计算 (2) 2.1.1 确定筒体径 (2) 2.1.2 确定封头尺寸 (2) 2.1.3 确定筒体高度 (2) 2.1.4 夹套的几何尺寸计算 (3) 2.1.5 夹套反应釜的强度计算 (4) 2.1.5.1 强度计算的原则及依据 (4) 2.1.5.2 筒及夹套的受力分析 (4) 2.1.5.3 计算反应釜厚度 (5) 第二节反应釜釜体及夹套的压力试验 (6) 2.2.1 釜体的水压试验 (6) 2.2.1.1 水压试验压力的确定 (6) 2.2.1.2 水压试验的强度校核 (6) 2.2.1.3 压力表的量程、水温及水中Cl-的浓度 (6) 2.2.2 夹套的水压试验 (6) 2.2.2.1 水压试验压力的确定 (6) 2.2.2.2 水压试验的强度校核 (6) 2.2.2.3 压力表的量程、水温及水中Cl-的浓度 (6) 第三节反应釜的搅拌装置 (1) 2.3.1 桨式搅拌器的选取和安装 (1) 2.3.2 搅拌轴设计 (1) 2.3.2.1 搅拌轴的支承条件 (1) 2.3.2.2 功率 (1) 2.3.2.3 搅拌轴强度校核 (2) 2.3.2.4 搅拌抽临界转速校核计算 (2) 2.3.3 联轴器的型式及尺寸的设计 (2) 第四节反应釜的传动装置与轴封装置 (1) 2.4.1 常用电机及其连接尺寸 (1) 2.4.2 减速器的选型 (2) 2.4.2.1 减速器的选型 (2) 2.4.2.2 减速机的外形安装尺寸 (2) 2.4.3 机架的设计 (3) 2.4.4 反应釜的轴封装置设计 (3) 第五节反应釜其他附件 (1) 2.5.1 支座 (1) 2.5.2 手孔和人孔 (2) 2.5.3 设备接口 (3) 2.5.3.1 接管与管法兰 (3) 2.5.3.2 补强圈 (3) 2.5.3.3 液体出料管和过夹套的物料进出口 (4) 2.5.3.4 固体物料进口的设计 (4) 第六节焊缝结构的设计 (7) 2.6.1 釜体上的主要焊缝结构 (7) 2.6.2 夹套上的焊缝结构的设计 (8) 第三章后言............................................................. 错误!未定义书签。 3.1 结束语 ......................................................... 错误!未定义书签。 3.2 参考文献....................................................... 错误!未定义书签。

搅拌反应釜设计要点

<<化工容器>>课程设计 —搅拌反应釜设计 姓名: 余景超 学号: 2010115189 专业: 过程装备与控制工程 学院: 化工学院 指导老师: 淡勇老师 2013年 6 月18 日

目录一设计内容概述 1. 1 设计要求 1. 2 设计参数 1. 3 设计步骤 二罐体和夹套的结构设计 2. 1 几何尺寸 2. 2 厚度计算 2. 3 最小壁厚 2. 4 应力校核 三传动部分的部件选取 3.1 搅拌器的设计 3.2 电机选取 3.3 减速器选取 3.4 传动轴设计 3.5 支撑与密封设计 四标准零部件的选取 4.1 手孔 4.2 视镜

4.3 法兰 4.4 接管五参考文献

一设计内容概述 (一)设计内容:设计一台夹套传热式配料罐 设计参数及要求 容器内夹套内 工作压力,MPa 0.18 0.25 设计压力,MPa 0.2 0.3 工作温度,℃100 130 设计温度,℃120 150 介质染料及有 机溶剂 冷却水或蒸汽 全容积, 3 m 1.0 操作容积, 3 m0.80 传热面积, 2 m 3 腐蚀情况微弱推荐材料Q235--A 接管表 符号公称尺 寸DN 连接面形 式 用途 A 25 蒸汽入口 B 25 加料口 C 80 视镜 D 65 温度计管口 E 25 压缩空气入口 F 40 放料口 G 25 冷凝水出口 H 100 手孔

(二)设计要求: 压力容器的基本要求是安全性和经济性的统一。安全是前提,经济是目标,在充分保证安全的前提下,尽可能做到经济。经济性包括材料的节约,经济的制造过程,经济的安装维修。 搅拌容器常被称为搅拌釜,当作反应器用时,称为搅拌釜式反应器,简称反应釜。反应釜广泛应用于合成塑料、合成纤维、合成橡胶、农药、化肥等行业。反应釜由搅拌器、搅拌装置、传动装置、轴封装置及支座、人孔、工艺接管等附件组成。 压力容器的设计,包括设计图样,技术条件,强度计算书,必要时还要包括设计或安装、使用说明书。若按分析设计标准设计,还应提供应力分析报告。强度计算书的内容至少应包括:设计条件,所用规范和标准、材料、腐蚀裕度、计算厚度、名义厚度、计算应力等。设计图样包括总图和零部件图。 设计条件,应根据设计任务提供的原始数据和工艺要求进行设计,即首先满足工艺设计条件。设计条件常用设计条件图表示,主要包括简图,设计要求,接管表等内容。简图示意性地画出了容器的主体,主要内件的形状,部分结构尺寸,接管位置,支座形式及其它需要表达的内容。 (二)设计参数和技术性能指标 (三)设计步骤: 1.进行罐体和夹套设计计算; 2.搅拌器设计; 3.传动系统设计; 4.选择轴封; 5.选择支座形式并计算; 6.手孔校核计算; 7.选择接管,管法兰,设备法兰。

化工课程设计--夹套反应釜课程设计 (2)

化工设备机械基础课程设计题目:1m3夹套反应釜设计 学院: 化学与材料工程学院专业: 化学工程 班级: 10化工 姓名: 学号: 10111003101 指导老师: 完成日期: 2012年6月1日

夹套反应釜设计任务书 设计者:班级:10化工学号:10111003101 指导老师:日期: 一、设计内容 设计一台夹套传热式带搅拌的配料罐。 二、设计参数和技术特性指标 见下表 三、设计要求 1.进行罐体和夹套设计计算; 2.选择支座形式并进行计算; 3.手孔校核计算; 4.选择接管、管法兰、设备法兰; 5.进行搅拌传动系统设计; (1)进行传动系统方案设计(指定用V带传动); (2)作带传动设计计算:定出带型,带轮相关尺寸(指定选用库存电机Y1322-6,转速960r/min,功率5.5kW); (3)选择轴承; (4)选择联轴器; (5)进行罐内搅拌轴的结构设计、搅拌器与搅拌轴的连接结构设计; 6.设计机架结构; 7.设计凸缘及安装底盖结构; 8.选择轴封形式; 9.绘制装配图; 10. 绘传动系统部件图。

表1 夹套反应釜设计任务书 简图设计参数及要求 容器内夹套内 工作压力, Mpa 设计压力, MPa 0.2 0.3 工作温度, ℃ 设计温度, ℃ <100 <150 介质染料及有机溶剂冷却水或蒸汽 全容积,m3 1.0 操作容积, m3 0.8全容积 传热面积, m2 >3.5 腐蚀情况微弱 推荐材料Q235-A 搅拌器型式推进式 搅拌轴转 速,r/min 200 轴功率,kW 4 接管表 符号公称尺寸 DN 连接面形式用途 a 25 蒸汽入口 b 25 加料口 c 80 视镜 d 65 温度计管 口 e 25 压缩空气入口 f 40 放料口 g 25 冷凝水出 口 h 100 手孔